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Abstract 
Motivated by the needs of precise forest inventory and real-
time surveillance for ecosystem management, in this paper 
we present GreenOrbs [1], a wireless sensor network system 
and its application for canopy closure estimates. Both the 
hardware and software designs of GreenOrbs are tailored for 
sensing in wild environments without human supervision, 
including a firm weatherproof enclosure of sensor motes and 
a light-weight mechanism for node state monitoring and data 
collection. By incorporating a pre-deployment training 
process as well as a distributed calibration method, the 
estimates of canopy closure stay accurate and consistent 
against uncertain sensory data and dynamic environments. 
We have implemented a prototype system of GreenOrbs and 
carried out multiple rounds of deployments. The evaluation 
results demonstrate that GreenOrbs outperforms the 
conventional approaches for canopy closure estimates. Some 
early experiences are reported in this paper.  

Categories and Subject Descriptors 
C.2.1 [Computer Communication Networks]: Network 
Architecture and Design – Distributed networks; Wireless 
communication; C.2.4 [Computer Communication 
Networks]: Distributed Systems – Distributed applications; 

General Terms 
Measurement, Design, Experimentation. 

Keywords:  
Wireless Sensor Network, Canopy Closure, Design, 
Deployment 

 
Figure 1. Definition of canopy closure: the percentage of 

ground area vertically shaded by overhead foliage 

1. Introduction 
Human beings nowadays have an unprecedented 
appreciation of environmental protection and sustainable 
development. Ecosystem management is attracting increasing 
attention and gradually replacing the traditional approaches 
to function in various application fields [2]. Forests, “the 
earth’s lungs”, are among the most precious natural resources 
that we must preserve to regulate our climate and keep 
ecological balance.  

Canopy closure, defined as the percentage of ground area 
vertically shaded by overhead foliage [3], is widely utilized 
as a critical indicator of the condition of a forest ecosystem. 
As illustrated in Figure 1, canopy closure in a forest refers to 
the ratio of the area shaded by the trees to the area of the 
entire ground. Having many significant uses for ecosystem 
management and disaster forecast,  canopy closure estimates, 
however, are practically non-trivial [3, 4, 5, 6]. Most existing 
approaches suffer the scalability problem, due to the limited 
measurement capacity and high costs. The status of canopy 
closure largely depends on the weather (e.g. the effect of 
strong winds) and can be highly dynamic. The measurement 
procedures are also restricted by the subjectivity of the 
surveyor, the landform, and the undergrowth. As a result, 
conventional approaches can only provide inaccurate 
estimates. 

To address this issue, we present GreenOrbs [1], a wireless 
sensor network (WSN) system in the forest, and its 
application for canopy closure estimates. In GreenOrbs, a 
number of commercial off-the-shelf sensor motes are 
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programmed, enclosed, and deployed in the forest. With 
every node equipped with light, temperature, and humidity 
sensors, GreenOrbs supports various ecological applications. 
In this paper, we focus on the application for canopy closure 
estimates. Our contributions are summarized as follows: 

1. We propose a sensor network design that enables accurate 
canopy closure estimates using inexpensive sensors 
randomly deployed in the forest; 

2. We propose a technique to calibrate the light sensors and 
discriminate the states between light versus shade; 

3. We design light-weight mechanisms for node state 
monitoring, which reduces communication overhead; 

4. We present a detailed evaluation of GreenOrbs and 
compare it with conventional forestry methods. The results 
demonstrate the advantages of WSN techniques and their 
great potential benefits by introducing WSNs into the 
traditional forestry field. 

The rest of this paper is organized as follows. Section 2 
briefly introduces the background. Section 3 presents the 
system framework and theoretical foundation of canopy 
closure estimates with GreenOrbs. Section 4 elaborates on 
the system design. The implementation details and evaluation 
results are presented in Section 5. In Section 6, we briefly 
review previous WSN applications related to our work. 
Section 7 concludes the paper. 

2. Background 

2.1 Canopy Closure 
Canopy closure is a valuable forest inventory factor, which 
plays an important role in ecosystem management. It is 
actually a fundamental factor to define a forest. The current 
global definition of forest is an area of land that is more than 
0.5 hectares with more than 10% canopy closure [7]. Canopy 
closure is being seen as more important recently in the sense 
of environmental protection. For instance, it is a key 
indicator of the water conservation capacity of a forest. 
When logging in a forest with non-uniform vegetation, the 
canopy closure of different areas in the forest must be 
considered to maintain sustainable development. In a process 
of urban greening, canopy closure is useful in characterizing 
the forest stand structure.  

In ecological forestry and agriculture, canopy closure is used 
to estimate various indexes, such as penetration of light to the 
understory, absorbance of carbon dioxide, and release of 
oxygen, which are closely associated with photosynthesis. 
Continuous measurements of canopy closure reflect the 
growth of vegetation, and thus can be used to assist 
ecological planning in forestry and agriculture. Moreover, 
regulations for certain regional wildlife species require 
maintenance of certain levels of canopy cover. Real-time 
data of canopy closure can be used to construct precise 

computational models of rain interception, so that people can 
better predict disasters like floods and mud-rock flows.  

2.2 Canopy Closure Estimates 
Despite the significance of canopy closure, the usage of 
canopy closure is often restricted due to the lack of accurate 
and efficient measurement approaches. The existing 
approaches fall into two categories: ground measurement and 
aerial measurement.  

With ground measurement, canopy closure is manually 
estimated by people or with auxiliary devices. Approaches 
like ocular estimate, line-intercept, and crown mapping fall 
into this category. Ocular estimate and line-intercept are 
traditional approaches using simple inexpensive instruments 
[3, 4]. Ocular estimate relies on an experienced surveyor 
conducting a long training process. Line-intercept estimates 
canopy closure by the percentage of shaded length on a line 
placed on the ground. It is efficient for estimating the profile 
of large crowns but often fails to capture the interspaces 
among the leaves inside a crown, due to the limited breadth 
of a line. Crown mapping [6] maps the crowns of trees with a 
spherical densitometer or a vertical point sampling device. 
Canopy closure can thus be estimated by scanning and 
processing the maps of crowns. Crown mapping requires 
careful mounting of devices, and may yield detailed 
estimates, while it suffers poor scalability due to the 
inconvenient deployment and prohibitive measuring cost. 
Fisheye lenses that are able to take hemispherical 
photographs can be used to measure the canopy of a very 
small area but cannot measure a vast forest. 

Ground measurement approaches have two common 
limitations: First, various factors can often interfere in the 
estimated results, such as the subjectivity of the surveyor, the 
landform, and the undergrowth. Second, they can only 
measure a small portion of forest, and thus lack scalability in 
large-scale applications.  

In order to eliminate the ground measurement limitations, 
aerial measurement and satellite imaging are proposed for 
canopy closure estimates [4, 5]. Aerial measurement 
estimates the canopy closure based on bird's-eye view photos 
of a forest. Since the photos are taken from the air at limited 
heights, the results are often overestimated due to the non-
vertical visual angles on a large canopy. The quality of 
photos is highly dependant on the weather. Photos taken on a 
sunless day have poor contrast, while strong sunlight results 
in high reflection from the vegetation. Regardless, both cases 
lead to poor estimates of canopy closure.  

Satellite imaging is the latest proposal for canopy closure 
estimates, but has not yet reached a mature approach. It 
overcomes the drawbacks of aerial measurement, but still 
suffers many difficulties. For example, in a satellite image, it 
is hard to accurately discriminate the canopy from the 
undergrowth. 



 
Figure 2. Work flow of GreenOrbs includes four main phases: training, deployment, operation, and data translation

The accuracies of aerial measurement and satellite imaging 
are further affected by the artificially constructed 
computation models. The resulting estimates usually have 
large variations. 

3. System Framework 

3.1 GreenOrbs Overview 
We adopt the TelosB Mote [8] with a MSP430 processor and 
CC2420 transceiver. A photodiode (Hamamatsu S1087 
series [9]) on the mote perceives the illuminance. Each mote 
is equipped with two 2200 mAh batteries. A number of 
sensors are randomly deployed in the forest to measure the 
illuminance and then examine whether they are in the light or 
shade. The sensors and a sink node deployed near the border 
of a forest form a WSN. Through appropriate samplings, the 
percentage of sensors in the shade can accurately reflect the 
value of canopy closure.  

Figure 2 illustrates the entire work flow of GreenOrbs. Prior 
to the deployment, a training process (Section 4.1) is 
conducted on all the sensor nodes to analyze the correlations 
among their readings and obtain a linear discrimination 
model to discriminate their states. The enclosed sensor nodes 
are then installed into the forest. During the daily operations 
(Section 4.2), a node keeps monitoring its own state after 
determining its initial state, according to the guidelines from 
training. Whenever the node state changes, it will inform the 
sink of the change. By filtering the environmental noise, the 
sink translates the collected data into estimates of canopy 
closure (Section 4.3).  

3.2 Theoretical Foundation 
Canopy closure estimates with GreenOrbs are based on the 
Monte Carlo Theory [10]. Throughout this paper, the real 
canopy closure is denoted by R. Suppose a number of 
sensors V(n) with size |V(n)|=n are randomly deployed at 
sampled locations, we partition the sensors into two sets Vlight 
and Vshade, where Vlight U Vshade = V and Vlight ∩ Vshade =Φ.  
Abusing notations, we use V instead of V (n). Then in 
practice R is estimated as RV, where  

| | / | |V shadeR V V=  

In this section, we disclose the relationship between the 
accuracy of RV and the number of randomly sampled sensors 
n. These will serve as the guideline in parameter selections in 
our experiments and deployments. 

First, we give the following well known lemma which is 
useful in our further proof: 

Lemma 1 (Binomial Distribution): Consider n independent 
variables Xi,  
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The following theorem discloses the relationship between the 
accuracy of RV and the number of sensors n. Specifically, we 
use the ratio between RV and R as a metric to measure how 
accurate RV is. 

Theorem 2: Under the above system settings,  
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Proof:  According to the property of Lemma 1, X is a 
binomially distributed random variable, n is number of trials, 
and p is success probability. In our specific case, X = |Vshade| 
is the number of sensors in the shade, n is total number of 
randomly deployed nodes, and p is the probability of a node 
being in the shade. Note that p = R, according to the 
definition of canopy closure, it follows that, 
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Figure 3. Simultaneous readings of 21 sensors that are 

placed under different illuminance in the forest 

Pr( |Vshade| ≤ c1R·n ) = Pr( RV ≤ c1R ), 

Pr( |Vshade| > c2R·n ) = Pr( RV > c2R ). 

Then together with the property of union probability, we 
immediately get 
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Theorem 2 represents the ideal case when every sensor can 
be placed into its corresponding subset (either Vlight or Vshade) 
correctly. Such an assumption, however, does not always 
hold in practice, due to the uncertainties in sensor readings 
and environmental dynamics (e.g. the sunlight). This is one 
of the major challenges we address in the following 
subsections. Nevertheless, Theorem 2 is useful to estimate 
the best attainable result with n sampled sensors. 

4. Design 
The following key issues need to be addressed in the design 
of GreenOrbs. First, the sensors in GreenOrbs have diverse 
instrumental errors in their readings. We need to devise an 
effective calibration method and a model which best 
separates the sensors into two subsets, Vlight and Vshade. 
Second, considering the energy constraints on the nodes, we 
need an energy-efficient mechanism for state monitoring and 
data collection. Third, considering the varying solar altitude, 
a universal model is required to translate the measured 
percentage of sensors in the shade into an estimated canopy 
closure. The design of GreenOrbs mainly consists of three 
components: pre-deployment training, online data processing, 
and sink-side data translation. 

4.1 Pre-deployment Training 
The training process yields the guidelines of online sensory 
data processing, namely calibration and node state 
discrimination.  
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Figure 4. Simultaneous readings of five sensors that are 

placed under the same illuminance 
Accordingly, the training process is divided into two phases, 
correlation analysis and linear discrimination analysis. 

4.1.1 Correlation Analysis 
Sensor readings are intrinsically error-prone. Due to the 
diverse instrumental errors, the raw sensor readings without 
calibration often result in incorrect measurements. We 
conduct an observational experiment to disclose the 
importance of calibration. We first place 21 sensors at 
different locations (some in the light and the others in the 
shade) when the environmental illuminance is 114.75Klux. 
Here environmental illuminance is defined as the illuminance 
at a location without any shade, denoting the maximum 
illuminance in the environment. Figure 3 shows the 
perceived illuminance of the sensors. The maximum 
difference between any two readings is 8.41KLux.  

We then place the 21 sensors under exactly the same 
illuminance and let them sense the illuminance once every 
second. Note that the illuminance varies with time. The 
readings of five typical sensors are plotted in Figure 4. 
Surprisingly, the maximum difference between two sensor 
readings is around 6KLux. We take more rounds of the 
experiments and obtain similar results, indicating that the 
instrumental errors of sensor readings cannot be overlooked.  
Unless the sensor readings are appropriately calibrated, we 
cannot correctly estimate canopy closure.  

Figure 4 indicates another fact that the instrumental errors on 
each individual sensor are consistent over time. Thus an 
intuitive guess comes into our mind: Are the readings of 
sensors linearly correlated with each other? Yes. To validate 
this answer, we take a randomly selected sensor in the above 
experiment as the reference and analyze the correlation 
between the reference and any other node. 

There are a total of 21 sensors in the experiment, denoted by 
S0, S1, S2, ..., and S20. Let n denote the total number of 
readings a sensor produces. k (1≤k≤n) denotes the counter of 
sensor reading. Nk denotes the reading of the reference sensor 
S0 while Mik (i=1, 2, ..., 20) denotes the reading of Si. The 



Pearson product-moment correlation coefficients [11] 
between S0 and Si are calculated using Equation (1). 
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The calculation results are shown in the second column of 
Table 1, which validate that the sensor readings are almost 
linearly correlated. Taking S0 as the reference, we can thus 
calibrate the readings of all the other sensors through linear 
transformations. Let M’ik denote the calibrated reading of Si. 
The linear transformation from Mik to M’ik is 

ik i ik iM a M b′ = +  
called calibration formula, where ai and bi are the calibration 
coefficients for Si. To minimize the instrumental error 
differences between S0 and Si, ai and bi need to satisfy the 
following conditions. First, the expectation of M’ik equals 
that of Nk. 
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Second, ai and bi minimize the deviation of M’ik to Nk. 
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Table 1: The correlation coefficients between S0 and Si 
and calibration coefficients of Si 

Node ID (i) ri ai bi (KLux)
1 0.9645 1.09 -7.76 
2 0.9512 1.10 -12.93 
3 0.9525 1.22 -25.62 
4 0.9543 1.19 -21.98 
5 0.9329 1.21 -22.83 
6 0.9421 0.99 0.67 
7 0.9412 1.03 -2.60 
8 0.9585 0.88 14.23 
9 0.9478 0.94 7.14 

10 0.9666 1.07 -5.50 
11 0.9635 1.12 -14.36 
12 0.9637 1.01 -2.48 
13 0.9555 1.18 -18.41 
14 0.9555 1.11 -11.04 
15 0.9780 1.04 -3.77 
16 0.9498 0.91 8.68 
17 0.9443 0.91 10.89 
18 0.9363 1.22 -22.04 
19 0.9283 0.98 2.46 
20 0.9700 0.95 3.94 

Average 0.9528 1.06 -6.17 
Standard Deviation 0.0129 0.11 12.16 

 

Solving Equations (2) and (3) yields the value of ai and bi as 
follows.  
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The last two columns of Table 1 list the calibration 
coefficients. Through a similar training process, we obtain 
the calibration formulas of all sensors to be deployed. The 
training results are omitted here due to the page limit. Section 
5.2.1 has more details on the effectiveness of calibration. 

4.1.2 Linear Discrimination Analysis 
A sensor cannot determine its status merely based on the 
perceived illuminance, even it is calibrated. For example, we 
observe that at one time a sensor in the shade perceived 
illuminance of 106.3KLux, while at another time a sensor in 
the light perceived illuminance of only 102KLux. The 
discriminating point between light and shade actually 
depends on the environmental illuminance. It requires both 
the sensor’s calibrated reading and the current environmental 
illuminance to get an accurate determination of the sensor’s 
current state. Hence, in the second phase of the training, we 
derive a linear discrimination model from a comprehensive 
training data set. Node states in the set are recorded through 
manual observations. The corresponding calibrated sensor 
readings are then collected at the sink. The reference sensor 
is placed under the sun to perceive the environmental 
illuminance. As shown in Figure 5, Point (x, y) denotes a 
sensor reading of y when the environmental illuminance is x. 
Clearly, there exists a separating boundary between Vlight and 
Vshade. We use the method of Least Linear Squares to derive 
the linear discrimination model, denoted by Y=d0+d1X. We 
have 
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Figure 5. The linear discrimination model 
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Solving Equations (4) and (5) with the training data set, we 
get d0=17.45, d1=0.81. Using this model, a node is able to 
exactly determine its current state under any environmental 
illuminance.  

Note that as shown in Figure 5, the discrimination model 
produces a very small portion of false judgments when the 
environmental illuminance is over 115KLux. We have more 
discussions on this problem in Section 4.2.3. 

4.2 Online Data Processing 
The calibration formulas and the linear discrimination model 
are loaded into all the nodes before deployment. Since the 
nodes all perceive nearly zero illuminance at night, canopy 
closure estimates are conducted only in the daytime. Every 
day sensors start operation at 8:30 a.m. and switch off at 
15:30 (we explain in Section 4.3 why we set such a 
measurement period). 

Whenever in operation, the raw readings are calibrated once 
they are perceived. Without special declaration, the sensor 
readings refer to the calibrated ones. 

4.2.1 Initial State Determination 
The initial node states are determined based on the linear 
discrimination model. As soon as GreenOrbs starts in 
operation, nodes exchange their initial readings through 
gossip [12]. Every node forwards the highest reading it 
obtains (either its own reading or a reading from the others). 
The gossip process converges in O(d) time where d is the 
network diameter.  

At the end of gossip, all the nodes possess an identical 
highest reading, which denotes the current environmental 
illuminance, denoted by X0. According to the discrimination 
model, the value separating Vlight and Vshade is calculated by 
Y0=d0+d1X0. Let yi0 denote the initial reading of Node Vi. Its 
initial state is determined as follows: If yi0> Y0, Vi is in the 
light. Otherwise, Vi is in the shade. 

4.2.2 Node State Monitoring and Collection 
The sensing frequency of nodes in GreenOrbs is set at once 
per minute. Considering the degree of dynamics in the forest, 
such a sensing frequency is sufficient to capture all possible 
changes in the environment at relatively low cost. 

A straightforward but inefficient method (called naive 
method) to monitor the node state is to let each node 
periodically send every reading directly to the sink. Such a 
method obviously incurs a huge amount of network traffic. 
Besides, considering the multi-hop transmission in a large 
WSN, concurrent data collection from all the nodes will 

probably cause congestion over bandwidth-constrained 
wireless links, which will lead to frequent packet loss and 
extra retransmission cost [13]. 

A possible minor improvement is to execute distributed state 
monitoring (called gossip-based method), as we do in the 
initial state discrimination. Nevertheless, it requires a gossip 
process in the whole network to propagate the environmental 
illuminance in each period and still incurs considerable 
network traffic. 

GreenOrbs realizes a light-weight mechanism for node state 
monitoring and data collection, which overcomes all the 
above drawbacks. During the whole measurement period 
after the initial state discrimination, a node updates its state to 
the sink node only when it detects a state transition from light 
to shade, or vice versa. We have observed that the course of 
a state transition lasts at least five minutes. Hence we set the 
periodical interval of state monitoring as five minutes. At the 
end of every interval, a node calculates the average of the 
latest five readings. Let I and I’ denote the current average 
and the average of the previous interval, respectively. The 
varying rate of readings is calculated by Vrate=(I−I’)/5. The 
unit is KLux/min.  

Note that the varying rate of sensor readings is not directly 
associated with the node state. A large variation in the 
perceived illuminance does not necessarily imply a state 
transition; however, a state transition always corresponds to a 
large variation in the perceived illuminance on a node. The 
ultimate goal of our algorithm is to identify the large 
variations of sensor readings which indeed cause state 
transitions.  

If the variation is caused by the swaying of leaves, the 
phenomenon is usually transitory so the node state stays 
unchanged over a relatively long period. One can filter such 
noises by averaging the latest sensor readings. That’s why 
we set the interval of state monitoring at five minutes. If the 
variation is caused by reflection or refraction (the change in 
direction of light when it irradiates or passes through the 
vegetation), it is really a problem that our current design 
cannot solve. We leave it for future work. 

Great variations in environmental illuminance (i.e. the 
sunlight) also cause large variations in the perceived 
illuminance on a sensor node. For example, a floating cloud 
sometimes blocks out the sunshine. In this case, the 
perceived illuminance on the nodes greatly varies, but 
actually the node states stay unchanged.  

The real cause of node state transitions is the change of the 
solar altitude. In this case, only a small portion of the nodes, 
namely the nodes lying near the boundary of the light and 
shaded areas, change their states. In this case, we would 
expect the Vrate of such a node to differ significantly from 
the average Vrate of its neighbors. This is the key idea 
behind our algorithm, shown in Figure 6. 



 
Figure 6. The pseudo code of node state monitoring 

Figure 6 shows the pseudo code of node state monitoring. 
We define two thresholds for the detection of state transitions, 
namely S1=6KLux/min and S2=5KLux/min. The thresholds 
are obtained from practical observations on node state 
transitions. If Vrate exceeds S1, it means the readings vary 
greatly and triggers the node to check whether the state has 
changed. Through one-hop communications, the node 
compares its Vrate with the AverageVrate of its neighbors. If 
their difference exceeds S2, it indicates that the node state has 
changed. Otherwise, the node state remains unchanged and 
probably the environmental illuminance has varied greatly. 

4.2.3 Discussion 
Here we have a brief discussion on the effectiveness of the 
mechanism for node state monitoring. 
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Figure 7. Tree shadows with varying solar altitude 

First, except for the daily starting phase, node state 
monitoring is based solely on local information and the data 
from its one-hop neighbors. Compared to the naive and 
gossip-based methods, it saves a large amount of energy cost. 

Second, according to the observation, the daily frequency of 
node state transitions is 2.25 times on average, of which we 
have more details in Section 5.2.3. A daily measurement 
period includes 7ä60/5=84 intervals of state monitoring. 
Assuming that node transitions are uniformly distributed 
over the course of a day, then on average less than 3% of the 
nodes change their state at every interval. Hence the 
concurrency of data transmissions is significantly reduced 
and the data collection process becomes essentially 
asynchronous. Consequently, GreenOrbs avoids congestion 
over the links and further enhances the energy efficiency. 

Third, as we mention in Section 4.1.2, the linear 
discrimination model produces a very small portion of false 
judgments when the environmental illuminance is over 
115KLux. In GreenOrbs, however, this model is used only 
for initial state discrimination. Another fact is the 
environmental illuminance in the early morning is never over 
110KLux. Therefore, those false judgments are avoided.  

4.3 Sink-side Data Translation 
Canopy closure is calculated using the collected states of all 
the nodes. Recall that canopy closure is defined as the 
percentage of ground area “vertically” shaded by overhead 
foliage. Here we define the solar altitude, denoted by α 
(0≤α≤90±), as the angle between the direction of sunlight and 
the horizontal plane. Note that α is a time-varying parameter. 
Observed in our deployment area, α is usually less than 83± 
and varies with the seasons and the time of a day. Hence, the 
calculated percentage of sensors in the shade cannot be 
directly regarded as canopy closure of the forest. Calculated 
results at different times cannot be merged, either. We 
introduce a translation model, with which the measured 
percentage of sensors in the shade (RV) is translated into an 
estimate of canopy closure R. We further define Sp as the 
area of the crown’s vertical projection on the ground, and Sα 
as the area of the shade when the solar altitude is α.  

p
V

S
R R

Sα

= ×     (6) 

/* Node.Neighbors: the neighboring node set of Node; 
Node.Vrate: the varying rate of Node’s reading;  
Node.State: the current node state, denoted by 0 or 1; 
Node.Interval: the interval of state monitoring; 
S1, S2: the two predefined thresholds. */ 
 
void Monitoring() 
{ 

// Calculate the varying rate in the last interval. 
Node.Vrate=CalculateVrate(interval); 
// Detect a possible state transition from 0 to 1. 
if (Node.Vrate>S1 && Node.State==0)  
{ 

AverageVrate= GetVrate(Node.Neighbors); 
// Compare local Vrate with that of neighbors 
if (Node.Vrate−AverageVrate>S2) Node.State=1; 
UpdateState(); //Update the latest state to the sink  

} 
// Detect a possible state transition from 1 to 0. 
else if (Node.Vrate<−S1 && Node.State==1) 
{ 

AverageVrate= GetVrate(Node.Neighbors); 
if (Node.Vrate−AverageVrate<−S2) Node.State=0; 
UpdateState(); 

} 
} 
 
// Calculate average Vrate in nodeset 
int GetVrate(nodeset) 
{ 

int rate=0; 
for (every node v in nodeset) 
{Request v.Vrate from node v; rate=rate+v.Vrate;} 
rate=rate/|nodeset|; //|nodeset| is nodeset’s cardinality 
return rate; 

} 



Figure 8. Vertical and non-vertical shades  
of a conic crown 

 
Figure 9. The case of non-overlapping tree shadows

Here we need to compute Sp/Sα. As conventionally assumed 
in forestry [14], the crown of a tree can be modeled as a 
certain stereo shape, depending on the tree species. Figure 7 
depicts the shadows of different trees at different times of a 
day, which indicates that given the tree species and the solar 
altitude, the tree shade is uniquely determined. Although this 
is an approximate model for trees, we show through the 
performance evaluation that estimates based on this modeling 
indeed have satisfactory accuracies. 

Without loss of generality, we use the conic crown as an 
example. Figure 8 illustrates a conic crown, its vertical 
projection, and its shade when the solar altitude is α. We 
have Sp=πr2 and  
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The tree species and the solar altitude at a given time of day 
are relatively static information about a forest. The sink node 
stores such information as offline data. By substituting the 
above results into Equation (6), the sink node translates the 
measured RV into an estimate of canopy closure R. Actually 
Sp/Sα is computable given the tree species and slope of the 
ground [15]. We assume horizontal ground here for ease of 
discussion.  

Note that in theory, tree shadows possibly overlap each other. 
Here we briefly discuss this issue. Figure 9 plots two 
neighboring trees, where d is the distance between two 

(a) (b) 
Figure 10. The enclosure of mote  

and the deployment area 
neighboring trees, h is the height of the trees, h’ is the height 
of the crown, and r is the radius of the crown. Then the 
necessary condition for non-overlapping tree shadows is 

( ') cot cotd r h h hα α− + − ≥ , that is 
'arctan h

d r
α ≥

−
    (7) 

Note that we assume the two trees are the same shape and 
size, which is the case in a normal forest. We use such an 
assumption just to deduce the necessary condition, for 
example in our deployment, d≈4m, r≈1.6m, h’≈2.8m. 
According to (7), α≥49.3±. This condition is basically 
satisfied from 8:30 a.m. till 15:30 everyday in the summer. 
Thus we set this period as the daily measurement period. 
Using a similar method, we may also deduct the 
measurement period for any given type of forest. 

5. Performance Evaluation 

5.1 Implementation 
Enclosure. As GreenOrbs is deployed for long-term 
monitoring in the forest without human supervision, the 
sensor nodes must be firmly protected to resist possible 
inclement weather and physical destruction (e.g. knocks from 
wild animals). Otherwise, the system would suffer frequent 
unexpected loss of sensor nodes and thus break down in a 
very short space of time. We devise a firm weatherproof 
enclosure of the sensor node as shown in Figure 10(a). The 
sensor mote is enclosed by a plastic box with a transparent 
upper face so that the enclosure has little influence on the 
illuminance perceived by the sensor. The pre-deployment 
training process is conducted on the enclosed sensors, too.  

There are holes on the side facets of the box. Recall that 
GreenOrbs supports many other ecological applications 
which require temperature and humidity data as well. Those 
holes let air circulate smoothly in and out, so that the 
temperature and humidity perceived by the sensor are same 
as those in the outside environment. The enclosed node is 
then mounted on a bracket and installed into the forest, as 
shown in Figure 10(a). 
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Figure 11. Calibrated readings of 5 
nodes under the same illuminance  

Figure 12. Standard deviations of sensor 
readings before and after calibration

Figure 13. Daily frequency of node 
state transitions 

Table 2. Confusion matrix of initial state discrimination 

Real state  
In light In shade 

In light 0.998 0.041 Result of 
discrimination In shade 0.002 0.959 

Software. The sensor program is developed based on 
TinyOS 2.1. The HamamatsuS1087ParC component 
provides the illuminance readings, while the 
SensirionSht11C component provides the temperature and 
humidity readings. The VoltageC component is used to read 
data from the MCU-internal voltage sensor. The 
LowPowerListening interface is used to enable low power 
listening on duty-cycled nodes. The CollectionC component 
is used to support a multi-hop data collection with collection 
tree protocol [27].  

Other than collecting the data for canopy closure estimates, 
we also let the nodes report their networking status, such as 
one-hop neighbors, link quality, and the routing path of each 
data packet. 

Deployments. Figure 10(b) shows the satellite imagery of 
the deployment area on the campus of Zhejiang Forestry 
University, Hangzhou, China (30º15'28"N, 119º43'45"E), 
which is about 20,000 m2. We have carried out multiple 
rounds of deployments for the GreenOrbs prototype. The 
first deployment included 50 nodes, which commenced in 
July 2008, and lasted for a month. The 
CC2420_DEF_RFPOWER was set at 31 and the diameter of 
the resulting network was 6 hops. The second deployment 
started in early March 2009 and initially included 120 nodes. 
The CC2420_DEF_RFPOWER was set at 28 and the 
diameter of the resulting network was 10 hops.  

The deployment area belongs to the north subtropical 
monsoon climate, where the annual average temperature is 
15.3~15.9±C and the annual average precipitation is 
1286~1424mm.  

5.2 Effectiveness of Design  
This section evaluates the effectiveness of the design 
including calibration, initial state discrimination, and node 
state monitoring. 

5.2.1 Calibration 
Figure 11 shows the calibrated readings of five typical 
sensors, corresponding to Figure 4. After calibration, the five 
sensor readings stay nearly consistent under various 
environmental illuminances. For further comparison, we 
calculate the standard deviations (STD) of all sensor readings 
under the same illuminance. These data are collected in the 
training process. Figure 12 plots the cumulative distributions 
of STD before and after calibration. We can see that the 
variations among sensor readings are significantly reduced 
through calibration. As a fundamental element in our design, 
calibration guarantees that different sensors, although having 
diverse instrumental errors, produce almost the same 
readings as long as they are under the same illuminance. 

5.2.2 Accuracy of Initial State Discrimination 
Every morning, we organized a group of surveyors to 
manually annotate the initial states (i.e. in the light or in the 
shade) of each sensor for 20 consecutive days. Altogether 
1000 node states were recorded. They are regarded as the 
real initial sensor states and compared with the results of 
initial state discrimination collected at the sink node. Table 2 
is the corresponding confusion matrix. The accuracy of 
initial state discrimination is very high. The slightly higher 
false rate in judging the sensors in the shade was caused by 
the reflection and refraction from the surroundings. While 
they are an infrequent phenomenon, we will address them in 
our future work. 

5.2.3 Node State Monitoring 
Figure 13 illustrates the daily frequency of node state 
transitions in GreenOrbs. The average frequency is 2.25 
times per day, which indicates that state transitions are quite 
infrequent in nature. As a consequence, a large portion of the 
energy costs can be saved if a node only updates its state to 
the sink node when a state transition happens. Based on the 
above observation, we conduct trace-driven simulations with 
100 nodes to evaluate the communication cost (measured by 
the average number of daily radio messages) on a node using 
different state monitoring methods, namely the naive method, 
the gossip-based method, and GreenOrbs’ light-weight 
method.  



Table 3. Communication cost of state monitoring, 
measured by the average number of daily radio messages 

Method Initial state 
discrimination 

State 
updates 

Total 

Naive 0 289.2 289.2 
Gossip-based 0 266.8 266.8 
GreenOrbs 6.5 91.7 98.2 

Table 4. Results in the first deployment * 
RV Day 

9:00 10:00 11:00 12:00 13:00 14:00 15:00
1 0.49 0.47 0.41 0.41 0.45 0.46 0.48
2 0.50 0.46 0.44 0.43 0.42 0.45 0.46
3 0.51 0.45 0.48 0.44 0.41 0.46 0.48
4 0.50 0.47 0.41 0.44 0.43 0.42 0.46
5 0.54 0.49 0.47 0.45 0.45 0.50 0.52
6 0.52 0.46 0.46 0.42 0.45 0.48 0.44
7 0.45 0.44 0.43 0.39 0.44 0.44 0.48
8 0.49 0.42 0.38 0.41 0.41 0.41 0.47
9 0.47 0.44 0.44 0.40 0.44 0.46 0.52

10 0.51 0.44 0.41 0.45 0.44 0.44 0.48
11 0.51 0.46 0.43 0.42 0.43 0.42 0.47
12 0.48 0.50 0.48 0.45 0.44 0.46 0.48
13 0.52 0.41 0.46 0.42 0.44 0.45 0.48
14 0.52 0.45 0.44 0.44 0.46 0.48 0.47
15 0.50 0.46 0.42 0.43 0.46 0.45 0.47
16 0.50 0.42 0.43 0.40 0.44 0.48 0.50

Sp/Sα 0.83 0.97 1.00 1.00 1.00 0.97 0.86
R 0.41 0.44 0.44 0.43 0.44 0.44 0.41

Overall 0.43 
Ground 
Truth 

0.44 
* Each of the 7*16 cells (9:00~15:00, Day 1 ~ Day 16) 
denotes a measured percentage of sensors in the shade. Each 
cell in the second last row denotes an estimate of canopy 
closure at the corresponding time of day, with respect to the 
time-varying translation parameters (Sp/Sα). The last row is 
the average of the data in the second last row, denoting the 
overall estimate of canopy closure. 

Note that the naive and gossip-based methods do not need 
initial state discrimination, while state updates involve both 
the process of detecting state transitions and the process of 
sending the data to the sink. The simulation results in Table 3 
show that GreenOrbs greatly reduces the communication 
costs by 66.0% and 61.2%, compared to the other approaches 
respectively. 

5.3 Estimates of Canopy Closure 
This section presents the evaluation of canopy closure 
estimates with GreenOrbs and compares it with other 
conventional approaches. We further evaluate the impact of 
miscellaneous factors, such as the environmental 
illuminance, dynamics, and sample size. 

Table 5. Estimated results of distinct canopy closure 
 

 Real Canopy 
Closure 

Estimated Canopy 
Closure 

Relative 
error 

Region 1 0.368 0.353 4.1% 
Region 2 0.512 0.506 1.2% 
Overall 0.44 0.43 2.27%

 
Figure 14. Canopy closure map of the deployment area  

5.3.1 Overall Results 
Figure 14 shows the canopy closure map of the area where 
GreenOrbs was first deployed. The map is manually drawn 
by experienced surveyors. Note that a point in the map has 
only binary states (in the light or in the shade). The varying 
color depths represent macroscopic canopy closure in 
different local areas. In other words, Figure 14 is an intuitive 
display of canopy distribution and does not represent the 
ground truth.  

The real canopy closure is measured via a manual process: 
The surveyors identify every tree shade and profile it on the 
ground (usually on a large piece of white cloth or paper 
placed on the ground under the tree). By collecting all the 
cloth (or paper), canopy closure is then given by the ratio of 
the aggregated area inside the profiles to the total area of the 
forest. That means the surveyors need to carefully measure 
the area inside the profile on each piece of cloth (or paper). 
Obviously, this is a labor-intensive job and can only be used 
in a relatively small forest to obtain the ground truth. 

Table 4 lists the measurement results in 16 consecutive 
days in the first deployment. Indeed, we observed in July 
2008 that the maximum difference among the solar 
altitudes in 16 days does not exceed 1º. Thus we use an 
identical solar altitude in calculating canopy closure. We 
changed the node locations everyday during the 16 days. 
Everyday the new coordinates of every node were 
regenerated on a PC. According to the generated data, we 
went into the forest and moved the nodes to their new 
locations. To give a clear picture, we only include the 
statistical data on the seven hours.  

According to Equation (6), we calculate the canopy closure 
at different hours as shown in the second last row. Taking 
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Figure 15. Estimated results with 
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Figure 16. Impact of environmental 
illuminance 

Figure 17. Estimation accuracy with 
different sample sizes 

the average, we get the overall estimated canopy closure as 
0.43. The real canopy closure is 0.44. Compared to the real 
canopy closure, the relative error of GreenOrbs’ estimate is 
only 2.27%.  

Note that the estimated results at 10:00, 11:00, 12:00, 13:00, 
and 14:00 are very accurate, while the estimates at 9:00 and 
15:00 are a bit smaller. This is due to the partially 
overlapping shadows of the trees. Recall the necessary 
condition in Section 4.3, the tree shadows do not overlap 
when α≥49.3±. On the other hand, α=45± at 9:00 and 15:00, 
which leads to slightly overlapping tree shadows in some 
places. Thus Sα is overestimated and the estimated results 
become slightly smaller.  

In order to examine the accuracy of GreenOrbs’ estimates, 
we further divide the entire deployment area into two sub-
regions as shown in Figure 14, which apparently have 
different canopy closures. Table 5 compares the real and 
estimated canopy closures with GreenOrbs. When the 
canopy closure gets larger, the estimation accuracy becomes 
slightly higher too. This is consistent with our theoretical 
conclusion in Section 3.2.  

5.3.2 Comparison  
Now we compare GreenOrbs with the conventional 
approaches for canopy closure estimates, such as ocular 
estimates, line-intercept, crown mapping, and satellite 
imaging. The ocular estimates are carried out by experienced 
surveyors 10 times. The line-intercept estimates are 
conducted three times, by placing a line along three different 
directions on the forest ground. The crown mapping estimate 
is conduct only once, because of the prohibitive measuring 
cost. Estimates with digital photography are conducted nine 
times based on nine different sample areas in the forest. The 
result of GreenOrbs corresponds to the overall estimate in 
Table 4.  

Figure 15 compares the estimated results of all the above 
methods to the real canopy closure. The maximum errors of 
each method are marked as well, if applicable. We can see 
that GreenOrbs outperforms all the other methods with the 
best accuracy and the highest consistency. Clearly, crown 

mapping has comparable accuracy with GreenOrbs, while it 
is not scalable in large-scale measurement due to the 
prohibitive cost. 

5.3.3 Impact of Environmental Factors 
In this subsection, we evaluate the impact of environmental 
illuminance on the estimation accuracy. For this purpose, we 
define the illumination index of a day as shown in Table 6. If 
there are two or more states of weather in a day, the 
illumination index is calculated as the average of multiple 
indexes. For example, a cloudy to showery day has an 
illumination index of 3. 

Figure 16 plots the daily estimated results and illumination 
indexes of 16 consecutive days. Interestingly, we see strong 
correlation between them. Specifically, GreenOrbs achieves 
more accurate estimates on sunny days, because the nodes in 
the shade differ more distinctly from the nodes in the light in 
stronger sunlight. When a node state transition happens, the 
perceived illuminance on the sensor also presents a larger 
varying rate. Consequently, the accuracy of GreenOrbs’ state 
monitoring algorithm is higher, too. 

5.3.4 Impact of Sample Size 
Now we perform offline analysis based on the collected data 
to evaluate the impact of sample size on the estimation 
accuracy. Everyday during the first GreenOrbs deployment, 
we randomly assigned the node locations, the number of 
sampled locations (denoted by N) represented by the 
collected data set is much larger than the system size (n).  

For each sample size, we conduct 105 times the random 
samplings from the whole collected data set and therefore 
obtain 105 estimates of canopy closure. Figure 17 shows the 

Table 6. Definition of illumination index of a day 

Weather Illumination index 
Fine 1 

Cloudy 2 
Showery 4 

Rainy 8 
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Figure 18. LQI under varying temperature and humidity 

cumulative distribution of relative errors. The results 
demonstrate that GreenOrbs is able to provide satisfactory 
estimates, even when we use only 50 samples. The average 
relative error is 4.69% when N=50. Meanwhile, the 
estimation accuracy increases when the sample size is 
increased. However, the benefit from involving more 
samples is slight, especially when the sample size exceeds 
200. When N=200 and N=800, the average relative errors are 
3.12% and 2.97%, respectively. 

Here we give a brief summary of the evaluation results. We 
have validated the design of GreenOrbs. Specifically, 
calibration eliminates the diverse instrumental errors among 
different sensors and the results of the initial state monitoring 
are very accurate. The light-weight mechanism for state 
monitoring saves the communication cost. The results clearly 
demonstrate that GreenOrbs outperforms all the conventional 
methods. It produces accurate and consistent estimates of 
canopy closure with various parameter settings, such as 
different canopy closure, varying solar altitude, different 
environmental illuminance, and different sample sizes. The 
impacts of the above factors are also carefully assessed. 

5.4 Observations on GreenOrbs 
5.4.1 Power Consumption 
We have measured the current on each sensor node. The 
current on a GreenOrbs node is 19.0 mA when the radio 
power is on, and varies from 13.1~16.2 uA when the radio 
power is off. In the first deployment of GreenOrbs, we did 
not adopt any duty cycling mechanism and the batteries ran 
out in about 100 hours, which was insufficient to support 
continuous environmental surveillance for months.  

In order to prolong the battery lifetime, since the second 
deployment of GreenOrbs, we have incorporated the built-in 
software interface of low power listening in TinyOS 2.1 and 
let the nodes work at 5% duty cycles. Thus we can roughly 
estimate the daily power consumption on a GreenOrbs node 
as 23.5 mAh. Given the battery capacity (2200 mAh), the 

node lifetime should be more than 60 days. This is a 
conservative estimate, considering that some batteries stop 
working before it depletes all the power.  

The system lifetime can be further prolonged by using more 
powerful batteries or a solar panel charging solution [16]. 
Indeed, we are planning to do so in the near future. 

5.4.2 Environment-sensitive Link Quality 
Since GreenOrbs is deployed in the forest, we are interested 
to observe the interactions between the system and the 
environmental factors, such as temperature and humidity. 
Although researchers have discovered the impact of 
environmental factors on the wireless link quality, the 
relationship is a long way from being clearly disclosed.  

Here we use the Link Quality Indicator (LQI) [8] as a metric 
to measure the wireless link quality, which is then measured 
under varying temperatures and humidity during the 
operations of GreenOrbs. Figure 18 plots LQI between two 
nodes as a function of node distance in three different 
scenarios, where the temperature and humidity differ from 
one another.  

We can see that both temperature and humidity have certain 
impacts on LQI, while neither impact is remarkable. The 
observational results show that LQI slightly decreases when 
the humidity goes down, and slightly decreases when the 
temperate goes up. The impact becomes more apparent when 
the node distance is longer.  

5.4.3 Environment-sensitive Network Topology 
Due to the broadcast nature of wireless communications in 
WSNs, a packet can be sent from a source node to the sink 
node via different intermediate relaying nodes. On the other 
hand, based on the observations in Section 5.4.2, the link 
qualities among nodes are indeed affected by the 
environmental factors. Thus we guess the network topology 
in GreenOrbs is also environment-sensitive.  

By letting all the nodes along a data collection path to the 
sink node (including the source node) piggy-back their node 
IDs on the packets, we collect a number of snapshots of 
network topologies at different times, via which data are 
transmitted. 

Figure 19 shows two snapshots of the network topologies in 
GreenOrbs, which correspond to different environmental 
conditions. It is interesting to see two distinctive network 
topologies as well. Moreover, we quantify the topological 
dynamics as follows. For a node, the parent node switch for 
data collection is regarded as a change of topology. We then 
measure the ratio of topological changes to the total number 
of collected packets. The average ratio is 5.4% and the 
standard deviation is 6.0%, which indicates that the network 
topologies exhibit certain dynamics along with the varying 
environmental factors.  



 
(a) Temperature: 31±C 

Humidity: 65% 
(b) Temperature: 23±C 

Humidity: 92% 
Figure 19. Two snapshots of the network topologies: 
each line represents a link between two sensor nodes 

Our observational results may be employed as a guide for 
practical WSN deployments as well as networking designs. 
Without regard to other factors (e.g. obstacles inside the 
deployment area), it generally requires lower density of 
nodes in a cool moist environment than in a warm dry 
environment. Further, if a WSN has the ability to sense 
temperature and humidity (such as GreenOrbs), it is feasible 
it can predicate the changes in routing-related factors (e.g. 
LQI) and network topologies. Thus intelligent and more 
efficient protocols for routing and topology control can be 
designed, which are proactive in dynamic environments. 

6. Related Work 
He et al. in [17] present the design and implementation of 
multi-dimensional power management strategies in VigilNet, 
a surveillance application using power-constrained sensor 
devices. In order to increase the system lifetime, they 
propose a novel tripwire service with an effective sentry and 
duty cycle scheduling in the system.  

An early study of WSNs for habitat monitoring is reported 
by Mainwaring et al. in [18]. They present an instance of 
WSN for monitoring seabird nesting environments and 
behaviors. Several issues are investigated, such as the 
hardware design of the sensors, the design of the network 
architecture, and capabilities for remote data access and 
management.  

There are many other WSN applications for environmental 
surveillance. We summarize a few typical examples as 
follow. Tolle et al. [19] have developed a WSN to monitor a 
redwood tree by installing nodes throughout the tree. The 
sensory data are logged every 5 minutes and transmitted via a 
GPRS modem to an external computer. Selavo et al. [20] 
create a WSN for measuring light intensity, using a 
hierarchical architecture which includes distributed reliable 
storage, delay-tolerant networking, and deployment time 
validation techniques. They performed a field experiment 
over one day with seven nodes and installed 19 sensor nodes 

in another experiment. Werner-Allen et al. [21] present the 
science-centric evaluation of a WSN deployment at an active 
volcano in Ecuador. Each of the 16 nodes continuously 
sample seismic and acoustic data during a 19-day test. 
Barrenetxea et al. [22] share their experience in the 
SensorScope system with its multiple campaigns in various 
environments. Xu et al. [23] present the design of a WSN 
system for structural data acquisition. Similarly, Li et al. 
present the design of an underground structure monitoring 
system using WSNs [24] and in particular address the issue 
of safety assurance in underground coal mines.  

Compared to the previous work, the main novelty of 
GreenOrbs lies in a new WSN application, which is not just 
generic habitat monitoring, but quantitative measurement of 
canopy closure. Moreover, we present a thorough evaluation 
of GreenOrbs and compare it with the conventional forestry 
methods. The results demonstrate the advantage of WSN 
techniques and the great potential benefit of introducing 
WSN to traditional forestry. 

7. Conclusion and Future Work 
We present GreenOrbs, a WSN system in the forest, and its 
application for canopy closure estimates. Canopy closure 
estimates are a fundamental task in ecosystem management, 
but have not been well addressed thus far. In every respect, 
the design of GreenOrbs is tailored to WSN deployments in 
wild environments. We have examined the effectiveness of 
this design and evaluated the performance through 
comprehensive experiments.  

The current design of GreenOrbs is admittedly in its early 
stages. When adding a node to the system, the new node has 
to undergo the pre-deployment training process before being 
added into the network. Also, the failure of the reference 
node will cause problems during calibration. We will address 
these issues and seek more efficient calibration methods in 
future work. We also plan to observe the impacts of other 
environmental factors (e.g. the wind and tree species) on 
GreenOrbs’ performance. The current design will then be 
extended to measuring an irregular forest with a variety of 
tree species. We are now expanding the GreenOrbs system to 
a 1200 node scale in Tianmu Mountain. More details are 
reported in the project website [1]. 
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