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Abstract

Existing localization approaches are divided into two
groups: range-based and range-free. The range-free
schemes often suffer from poor accuracy and low scalabil-
ity, while the range-based localization approaches heavily
depend on extra hardware capabilities or rely on the ab-
solute RSSI (received signal strength indicator) values, far
from practical. In this work, we propose a mobile-assisted
localization scheme called Perpendicular Intersection (PI),
setting a dedicate tradeoff between range-free and range-
based approaches. Instead of directly mapping RSSI values
into physical distances, by contrasting RSSI values from the
mobile beacon to a sensor node, PI utilizes the geometric
relationship of perpendicular intersection to compute node
positions. We have implemented the prototype of PI with
100 TelosB motes. Through comprehensive experiments, we
show that PI achieves high accuracy and low overhead, sig-
nificantly outperforming the existing range-based and the
mobile-assisted localization schemes.

1. Introduction

Locating sensor nodes is a crucial issue and acts as a
fundamental element in wireless sensor network (WSN) ap-
plications [2]. Localization can be classified as range-
based and range-free approaches. Range-free approaches
do not assume the availability or validity of distance infor-
mation, and only relies on the connectivity measurements
(e.g. hop-count) from undetermined sensors to a number of
seeds [4, 5, 12, 9]. Having lower requirements on hardware,
the accuracy and precision of range-free approaches are eas-
ily affected by the node densities and network conditions,
which are often unacceptable for many WSN applications
that demand precise localizations. Range-based approaches
calculate node distances based on some measured quantity,
such as TOA, TODA and AOA [3, 11, 16], while they usu-
ally require extra hardware support, thus they are expensive
in terms of manufacture cost and energy consumptions.

A popular and widely used ranging technique, some-

Figure 1. OceanSense Project: The upper left
photo shows a floating sensor. The upper
right figure is the airscape of 20 floating sen-
sors. The figure at the bottom is a field photo
of 20 floating sensors, which are labeled from
1 to 20.

times being treated as a “free lunch”, is the received sig-
nal strength (RSS) [3, 7], or quantified as received sig-
nal strength indicator (RSSI). The fundamental stumbling
block of existing RSSI-based approaches is that they rely
on the absolute RSSI values to estimate physical dis-
tances [14]. Although being easy to implement, RSSI-based
approaches face many challenges. First, RSS is sensitive
to channel noise, interference, attenuation, and reflection,
resulting in irregular propagation in different areas and di-
rections [7]. Second, ratio attenuation greatly varies due to
the environmental dynamics [23]. There is not a universal
signal propagation model that applies for all cases. As a re-
sult, it is often difficult to map the absolute RSSI values to
physical distances.

This work is motivated by one of our ongoing WSN
projects, OceanSense [1], in which locating sensors is a crit-
ical task. As shown in Fig. 1, a number of restricted floating
sensors [21] are deployed, usually tens of meters away from
each other (sparsely deployed), and their wireless commu-
nications are often tampered by the environmental factors,
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including winds and tides. Due to the aforementioned rea-
sons, the existing approaches cannot well support such a
practically complex scenario.

As an early attempt in addressing the problem, we ob-
serve the RSSI behaviors of sensor nodes through prelim-
inary experiments, as detailed in Subsection 3.1. We find
that although RSSI values are irregular and highly dynamic,
the difference in RSSI values consistently reflect the con-
trast of physical distances. In other words, for the same
pair of sensors, a sender and a receiver, when one of them
is moving closer to the other, in most cases, if not all, the
measured RSSI keeps increasing, although not in a smooth
manner. Based on this observation, we propose Perpendic-
ular Intersection (PI), a RSSI-based localization scheme us-
ing mobile beacon.

Major contributions of this paper are as follows:

• In order to avoid errors from directly mapping absolute
RSSI values to distances, we obtain the geometrical re-
lationship of sensors by contrasting the measured RSSI
values. We then design a novel localization scheme,
PI, which has better accuracy and low overhead, espe-
cially under dynamic and complex environments.

• We design the optimal trajectory of the mobile beacon
in PI and theoretically prove its correctness. Only one
mobile beacon is needed to broadcast beacon signals
in PI, and other sensor nodes simply listen to the sig-
nals, store a few necessary packets, and compute their
coordinates without interfering with each other.

• We implement a prototype of PI with 100 sensors, and
evaluate its performance in real environments, includ-
ing indoor and outdoor spots. We show the advantages
of this design through comprehensive experimental re-
sults.

The rest of the paper is organized as follows. Section
2 summarizes the related works in localization of WSNs.
Section 3 presents our observations of RSSI and elaborates
the design of PI. Section 4 theoretically analyzes the per-
formance and the overhead of PI. Section 5 presents our
implementation and the experimental results. We conclude
the work in Section 6.

2. Related Work

Many approaches have been proposed to determine sen-
sor node locations, falling into two categories: range-based
approaches and range-free approaches.

2.1. Range-Based Approaches

Range-based approaches assume that sensor nodes are
able to measure the distance and/or the relative directions

of neighbor nodes. Various techniques are employed to
measure the physical distance. For examples, Time of Ar-
rival (TOA) obtains range information via signal propaga-
tion times [20], and Time Difference of Arrival (TDOA) es-
timates the node locations by utilizing the time differences
among signals received from multiple senders [15, 17]. As
an extension of TOA and TDOA, Angle of Arrival (AOA)
allows nodes to estimate the relative directions between
neighbors by setting an antenna array for each node [11].
All those approaches require expensive hardware.

RSSI is utilized to estimate the distance between two
nodes with ordinary hardware [3, 7]. Various theoretical
or empirical models of radio signal propagation have been
constructed to map absolute RSSI values into estimated dis-
tances [14]. The accuracy and precision of such models,
however, are far from perfect. Factors like multi-path fad-
ing and background interference often result in inaccurate
range estimations [7, 23].

Recently, mobile-assisted localization approaches are
proposed to improve the efficiency of range-based ap-
proaches [18, 13, 19, 10]. The location of a sensor node can
be calculated with the range measurements from the mobile
beacon to itself, so no interaction is required between nodes,
avoiding cumulative errors of coordinate calculations and
unnecessary communication overhead. The localization ac-
curacy can also be improved via multiple measurements ob-
tained when the mobile beacons are at different positions.

2.2. Range-Free Approaches

Knowing the hardware limitations and energy con-
straints required by range-based approaches, researchers
propose range-free solutions as cost-effective alternatives.

Having no distances among nodes, range-free ap-
proaches depend on the connectivity measurements from
sensor nodes to a number of reference nodes, called seeds.
For example, in Centroid [4], seeds beacon their positions to
their neighbor nodes that record all received beacons. Each
node estimates its location by calculating the center of all
seeds it hears. In APIT [5], each node estimates whether it
resides inside or outside several triangular regions bounded
by the seeds it hears, and refines the computed location by
overlapping the regions the sensors likely reside in. SeR-
Loc [8] employs a similar approach while emphasizes a
secure mechanism against malicious attacks. As an alter-
nate solution, DV-HOP only makes use of constant num-
ber of seeds [12]. Instead of single hop broadcasts, seeds
flood their locations throughout the network, maintaining
a running hop-count at each node along the path. Nodes
calculate their positions based on the received seed loca-
tions, the hop-counts from the corresponding anchors, and
the average-distance per hop through trilateration.

Instead of using the absolute RSSI values, by contrasting
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Figure 2. Observations of RSSI: (a) deployment sketch (b) RSSI values of the received signals

the measured RSSI values from the mobile beacon to a sen-
sor node, our proposed PI utilizes the geometric relationship
of perpendicular intersection to compute the position of the
node. In this sense, PI is actually between range-based and
range-free approaches.

3. Design of PI

In this section, we first describe the experimental obser-
vations on RSSI in Subsection 3.1, which motivated this
design. Subsection 3.2 presents the overview of the PI de-
sign. Subsection 3.3 discusses the optimal trajectory of the
mobile beacon for PI. Subsection 3.4 presents our localiza-
tion scheme in detail. For convenience of expression, the
terms “location”, “position” and “coordinates” are used in-
terchangeably in the rest of this paper.

3.1. Observations on RSSI

RSSI is initially used for power control in wireless net-
works [10]. The existing signal propagation models of
RSSI, however, are far from perfect, mainly because of the
uncertain influences such as background interference, non-
uniform spreading, signal fading and reflections. To better
understand RSSI patterns, we conduct some initial experi-
ments with 12 TelosB sensors on our campus, as illustrated
in Fig. 2(a).

In this set of experiments, node A broadcasts signals,
and the rest nodes receive RSSI values from their CC2420
transceivers. Node A moves from 10 meters away from O
to 20, 30, 40, and 50 meters. All the measured RSSI values
are shown in Fig. 2(b).

With the RSSI values from node A to a node, in ideal
sense the distance between other nodes and node A should
be calculated according to the log-normal shadowing model
in Equation (1), which is widely used in range-based local-
ization approaches [3, 14, 22].

RSSI(d) = PT − PL(d0) − 10ηlog10
d

d0
+ Xσ (1)

where PT is the transmission power, PL(d0) is the path
loss for a reference distance of d0, and η is the path loss
exponent. The random variation in RSSI is expressed as a
Gaussian random variable Xσ = N(0, σ2). All powers are
in dBm and all distances are in meters. η is set between 2
and 5. σ is set between 4 and 10, depending on the specific
environment [14].

The real and estimated distances between A and O are
compared in Table 1. The average relative error is 9.06%,
leading to unacceptable localization errors in WSNs.

Interestingly, we find that, the closer a node is to the sig-
nal sender, the larger RSSI value it perceives. This simple
observation motivates our design of PI.

3.2. Perpendicular Intersection

In our experiment, when the mobile beacon moves along
a straight line, the largest RSSI value received by a sen-
sor node often, if not always, corresponds to the point on
the line that is closest to the node. Theoretically, this point
should be the projection of the node on the line. Given two
different projections of the sensor node on the trajectory,
this node can be located as the intersection point of two per-
pendiculars that cross the mobile beacon’s trajectory over
the two projections, respectively.

Table 1. Observation results (m)

|AO| 10 20 30 40 50
Estimated
distance

9.62 19.19 30.41 34.12 60.68
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Figure 3. An example of PI scheme

In order to illustrate how PI works, we show an example
in Fig. 3, where a mobile beacon traverses the region while
broadcasting beacon packets periodically. A beacon packet
contains the coordinates of the position of the mobile bea-
con. The solid black lines in Fig. 3 form the trajectory of the
mobile beacon, with the arrows denoting its moving direc-
tions. The mobile beacon (in red) starts at point P1, turns its
direction at point P2, and stops at point P3. By combining
the trajectory with the virtual line P1P3, we obtain a virtual
triangle �P1P2P3 (we call it VT from now on).

Let R be the transmission range of mobile beacon. To
ensure that all the nodes in a VT can receive the signals
from the beacon, the sides P1P2 and P2P3 should not be
longer than R. Meanwhile, the angle θ between the two
lines should satisfy 0 < θ ≤ π/3.

Suppose the five nodes (in blue) in Fig. 3 are located us-
ing PI. We use node N (x,y) as an example. The mobile bea-
con starts at point P1 and broadcasts the start signal with its
current location. Node N records the start position when it
hears the start signal. Along its trajectory from P1 to P2, the
mobile beacon broadcasts beacon packets periodically with
its current location. Node N receives all the beacon packets,
and records the one with the largest RSSI value. When the
mobile beacon arrives at P2, it broadcasts a stop signal with
its current location. When node N receives the stop packet,
it knows that the mobile beacon has just finished traversing
the line from P1 to P2. The recorded position is the po-
sition where the beacon packet with largest RSSI value is
broadcast. We label the recorded position as A(x′,y′).

According to the observations in SubSection 3.1, line
segment NA is the shortest one among all the line segments
connecting node N and any point on line P1P2. In other
words, Node A is the projection of node N on line P1P2.
Hence, line NA is perpendicular to line P1P2, and we have:

y2 − y1

x2 − x1
× y − y′

x − x′ = −1 (2)

Similarly, when the mobile beacon moves from P2 to P3,
another position B(x′′, y′′) is recorded which is the projec-

tion of node N on line P2P3. Thus we have:

y3 − y2

x3 − x2
× y − y′′

x − x′′ = −1 (3)

By solving Formulas (2) and (3), we can compute the
coordinates (x,y) of node N :

(
x
y

)
=

(
x2 − x1 y2 − y1

x3 − x2 y3 − y2

)−1

× M (4)

where

M =
(

x2 − x1 y2 − y1 0 0
0 0 x3 − x2 y3 − y2

)⎛
⎜⎜⎝

x′

y′

x′′

y′′

⎞
⎟⎟⎠

In the above process, we do not use any absolute RSSI
values, so as to avoid the errors brought by the translations
from RSSI values to physical distances.

3.3. Optimal Trajectory

Clearly, a sensor node can be easily located when it is
in the scope of a VT. When the entire deployment area of
a sensor network cannot be covered by one VT, however,
the trajectory of the mobile beacon to locate all the sensor
nodes needs further considerations. We require an optimal
trajectory with the following characteristics:

1) The localization latency, defined as the elapsed time
from a node receiving the first beacon packet to determining
its location, is minimized. Therefore, if a VT covers a node,
the node should be located as soon as the beacon traverses
along the two sides of the VT.

2) It is able to locate all the sensor nodes. The optimal
trajectory thus consists of multiple joint VTs, which cover
the entire deployment area.

3) It is the shortest trajectory so that the mobile bea-
con traverses the entire area in the shortest time and con-
sumes the minimum energy cost. Consequently, every VT
in the optimal trajectory covers the largest acreage, given its
perimeter. We define such a VT as the optimal VT.

Theorem 1: The optimal VT in PI is an equilateral tri-
angle with the lengths of its sides all equal to R, where R is
the transmission radius of the mobile beacon.

Proof. A VT of ΔABC with its inscribed circle O is shown
in Fig.4. The radius of circle O is r. Let S be the acreage
of �ABC and L be the perimeter of �ABC.

We define the parameter of λ = S/L, which represents
the ratio of the acreage to the perimeter of the triangle. Con-
sequently, the optimal VT has the largest value of λ.

λ =
S

L
=

1
2 × L × r

L
=

r

2
(5)
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Figure 4. A VT with its inscribed circle

Obviously, λ reaches its maximum when the radius r
reaches its maximum. Note that AF = AD, BD = BE,
CE = CF , because F , D, and E are the intersection points
of inscribed circle O with the sides of �ABC. We have:

L = r × (ctg
A

2
+ ctg

B

2
+ ctg

C

2
)

r =
L

2 × (ctg A
2 + ctg B

2 + ctg C
2 )

≤ L

2 × (3 × 3

√
ctg A

2 ctg B
2 ctg C

2 )

The equality in the above formula is valid iff. ctg A
2 =

ctg B
2 = ctg C

2 , which means angles A, B, and C equal to
each other. Thus �ABC is an equilateral triangle.

Let a be the side length of equilateral triangle �ABC,
we have:

λ =
r

2
=

√
3a

12
(6)

That is, λ is proportional to a. From the previous sub-
section, we know a≤R, which ensures all nodes in the VT
can be located. Hence, λ of the virtual triangle in PI reaches
its maximum, when a = R.

According to Theorem 1, we can conclude that the tra-
jectory of mobile beacon is optimal, when it consists of
multiple joint optimal VTs, as depicted in Fig. 5.

3.4. PI Scheme

If a node only receives two pairs of start and stop signals
broadcast by the mobile beacon, it knows the three vertices
of the VT and then locates itself. Nodes at special positions,
however, might receive more than two pairs of start and stop
signals and PI needs to deal with this situation.

As illustrated in Fig. 5, nodes N1, N2, N3, N4 repre-
sent four special cases, where N1 can receive three pairs
of start and stop signals when the mobile beacon traverses
sides P1P2, P2P3 and P3P4, N2 receives four pairs of

signals when beacon traverses P5P6, P6P7 of one VT and
P8P9, P9P10 of another VT. N3 receives three pairs of sig-
nals when the mobile beacon traverses sides P8P9,P9P10

and P10P11. N4 receives six pairs of signals when the mo-
bile beacon traverses the six sides of four VTs �P5P6P7,
�P8P9P10, �P9P10P11 and �P10P11P12.

Lemma 1: A node can receive at most 6 pairs of start
and stop signals, during the whole localization process of
PI.

It is straightforward to prove Lemma 1 by enumerating
all the possible locations of a sensor node. Due to the page
limit, we skip the proof. If a node receives start and stop
signals from all the three vertices of a VT, we call this VT a
locating VT for the node. PI let each node compute the sum
of RSSI values from the three vertices of a locating VT, and
the locating VT whose vertices have the largest sum of RSSI
values is used to calculate the node location.

The pseudo code of the main function on message pro-
cessing in PI is shown in Fig. 6. We define side(i) (1≤i≤6)
as the side from which the node receives the ith pair of start
and stop signals. Let cp(i) denote the point on side(i) that
is closest to the node. Variable side denotes the current
side traversed by the mobile beacon. Variable rssimax and
positionmax respectively denote the current largest RSSI
value and its corresponding beacon position. Variable loc
denotes the location calculated from the current locating
VT. The final result of the node coordinates is stored in the
variable location. SumRSSI(l) calculates the sum of RSSI
values from the three vertices of node l’s locating VT.

PI can address all the special cases. For example, N1

receives three pairs of start and stop signals, respectively
from the locating VTs �P1P2P3 and �P2P3P4, so the cor-
responding calculated results by using these two locating
VTs are the coordinates of points N ′

1 and N1. For a node

Figure 5. A sensor network and its optimal
trajectory of the mobile beacon
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OnMessageReceived(Message m)
{

if (m.flag=start)
{

//start of side(i)
side.clear(); //clear the variable side(i-1)
Record(side.start,m);
//save RSSI and position of the
//first beacon signal on side(i)
rssimax=m.RSSI; positionmax=m.position;

}
else if ((m.flag=beacon)and(m.RSSI≥rssi))
{

//larger RSSI, update current
//rssimax and positionmax

rssimax=m.RSSI; positionmax=m.position;
}
else if (m.flag=stop)
{

//end of side(i)
Record(side.stop,m);
side(i)=side; cp(i)=position;
if (side(i-1).stop=side(i).start)
{

loc=calculate(side(i-1),side(i));
//keep the one with the largest SumRSSI(),
//if multiple location results exist
if((loc!=location)and(SumRSSI(loc)
>SumRSSI(location)))

location=loc;
}

}
}

Figure 6. PI Algorithm

at point N1, �P2P3P4 has larger sum of RSSI values than
�P1P2P3. Thus, the coordinates of point N1 can be cor-
rectly selected in place of the coordinates of N ′

1. Similarly,
nodes N2, N3 and N4 can determine their coordinates from
multiple calculated results.

4. Discussions

4.1. Theoretical Estimation Error

Although the mobile beacon can keep moving in a con-
tinuous manner, the beacon packets have to be broadcast pe-
riodically, with a specified interval between every two con-
secutive packets. As a result, the beacon trace is chopped
into a series of discrete beacon points. Hence there exists
an error between the estimated location by PI and the real
location.

Figure 7. A VT with all beacon positions

Figure 7 shows an example in which P1, C1, C2, P2, C3,
C4, and P3 are beacon points. Given the velocity of the mo-
bile beacon as V and the broadcast frequency as F , the dis-
tance between two beacon points is V/F . With high proba-
bility, the closest points to node N on sides P1P2 and P2P3

(i.e. the theoretical projections of node N on the sides) lie
between two beacon points. Accordingly, node N stores the
coordinates of C2 instead of A in its location computation,
as the beacon packet broadcast at C2 has the largest RSSI
value. Similarly, C4 is stored instead of B.

Suppose |AC2| = d1 and |BC4| = d2, the distance be-
tween the real location of node N and the estimated location
N ′ is:

|NN ′| =

√
4
3
(d2

1 + d2
2 + d1d2)

If C3 is closer to position B than C4,

|NN ′| =

√
4
3
(d2

1 + d2
2 − d1d2)

Thus the upper bound of theoretical estimation error
(TERR) is given by:

TERRmax =
V

F
when d1 = d2 =

V

2F

Meanwhile, the theoretical mean estimation error is:

TERR =
4V√
3F

(
∫ √

3
4

−
√

3
4

∫ 1
2

0

√
x2 + y2 + xydxdy

+
∫ 0

−
√

3
2

∫ 1
4

− 1
4

√
x2 + y2 − xydxdy) = 0.8218

V

F

4.2. Trajectory Length and Localization La-
tency

A rectangle deployment area with length L and width
H is shown in Fig. 5. The length of the optimal trajectory
labeled as LM is:

LM = (�L

R
� × 2R + R) × � H

√
3

2 R
� + � H

√
3

2 R
	 ×

√
3

2
R
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Furthermore, sensor locations are calculated when the
mobile beacon moves. This process ends when the mobile
beacon arrives at the terminal of the trajectory. The latency
for locating all the sensors can be calculated by:

T =
LM

V

4.3. Overhead

Communication Cost. The communication cost of a sen-
sor node depends on the total number of beacon packets it
receives. The number of beacon packets (NBP ) received
by a sensor node when the mobile beacon traverses one VT
side is:

NBP =
FR

V
Meanwhile, a sensor node receives the beacon packets

from at most 6 sides according to Lemma 1. Therefore
the upper bound of communication cost of a sensor node
is 6FR/V .

Computation overhead. From Fig. 6 we can see that the
most frequent operation in PI is to compare the recorded
RSSI value with the latest RSSI value on one side of VT.
The number of beacon packets received by a sensor node on
one VT side is FR/V , and the sensor node can receive the
beacon packets from 6 sides at most. Thus the computation
overhead on a sensor node is O(FR/V ).

Storage overhead. PI only stores two vertices and one
point of maximum RSSI value for each VT side. The local-
ization result is achieved based on the information from two
joint sides. When a node has two possible location results,
it compares the aggregate RSSI values of both locating VTs
and only saves one after comparison, as illustrated in Fig.
6. Therefore PI only needs to store at most 14 vertices with
their corresponding RSSI values, which costs 70 bytes. In
short, both the computation and storage overhead are appli-
cable for the ordinary sensor nodes.

5. Performance Evaluation

To better evaluate the PI design, we implement a proto-
type system of PI with 100 TelosB sensors in various en-
vironments, including library hall, laboratory, racket court
and parking lots. The mobile beacon is also a TelosB mote
which moves manually. A sink is deployed to collect the
localization results of all the sensor nodes.

We evaluate the performance of PI in all the four envi-
ronments, and compare it with other two RSSI-based lo-
calization approaches: a range-based approach of trilatera-
tion and a mobile-assisted localization approach, which are
briefly introduced as follows.

In the range-based approach of trilateration (called TRL
in short) [6], beacon packets from the three vertices of the

Figure 8. Deployment of hall experiment

VT where the node resides, are used to calculate its loca-
tion. As for the mobile-assisted localization approach, it
exploits Bayesian inference to improve the estimation ac-
curacy [18]. We call that approach BI. Six beacon packets
are used in the computation process of BI. Three of them
are sent from the three vertices of the VT where the node
resides, while the other three are chosen randomly from the
positions on the two sides of the VT. Both approaches rely
on the signal propagation model of Equation (1) to trans-
form absolute RSSI values to physical distances.

5.1. Hall Experiment

The first experiment is conducted in a hall of our library,
which is about 450m2. 14 sensor nodes are deployed ran-
domly and the side length of a VT is 15m. The moving
velocity is 0.1m/s and the broadcast frequency is 1 time per
second. The sketch of this deployment is shown in Fig. 8.

Figure 9(a) plots the RSSI values of the beacon packets
received by node N6. It is clear that two extrema of the
RSSI values exist. Through measurements beforehand, we
obtain precise values of the parameters in Equation (1). η =
3.4, PL(d0) = 145. The value of σ is chosen as 4 according
to [14].

Figure 9(b) compares the estimation errors of PI, BI,
and TRL approaches. The average estimation error of PI
is 1.22m and the standard deviation of estimation error is
0.38m. The averages and standard deviations of estimation
error of BI and TRL are shown in Table 2.

We repeat the experiments for multiple times and
Fig. 9(c) compares the three approaches with the curves of
cumulative distribution function (CDF). The results demon-
strate that PI outperforms BI and TRL with lower estimation
errors and more stable precision.

5.2. Laboratory Experiment

In order to examine PI’s performance in a more dynamic
complex environment, we perform another experiment in
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Figure 10. Results of laboratory experiment: (a) deployment (b) estimation errors of 12 typical nodes
(c) CDF of estimation errors of PI compared with BI and TRL

the laboratory of computer software center, which is a room
of 324m2 with 120 computers and desks inside. Some peo-
ple are sitting, standing, or moving in the room. We use 100
sensor nodes. The moving velocity of the mobile beacon is
set at 0.1m/s and the broadcast frequency is set at 1 time per
second. The side length of a VT is 9m. The sketch of this
deployment is plotted in Fig. 10(a). The trajectory length of
the mobile beacon is 79.79m and the localization latency of
the entire sensor network is 13′27′′.

Figure 10(b) plots the estimation errors of 12 nodes us-
ing the three approaches. Fig. 10(c) shows the cumulative
distribution of estimation errors of all the 100 nodes. The
averages and standard deviations of the estimation errors of
the three approaches are compared in Table 2. The results
demonstrate that PI outperforms BI and TRL with lower es-
timation errors and more stable precisions, even in a com-
plex environment.

5.3. Outdoor Experiments

Now we move the experiments to the outdoor environ-
ments: racket court and parking lots. The moving velocity
of the mobile beacon is set at 0.1m/s and the broadcast fre-
quency is set at 1 time per second. The localization errors
of 4 typical sensor nodes in the two environments are shown
in Fig. 11(a) and 11(b) respectively.

The averages and standard deviations of the estimation
errors of these three approaches are listed in Table 2. We
can see that the three approaches achieve the smallest es-
timation errors in the hall experiments, similar estimation
errors in two outdoor experiments, and the largest estima-
tion errors in the laboratory experiments. This is consistent
with the fact that all RSSI-based localization approaches are
more or less affected by the interference in wireless signal
propagation, and the dynamic of the environments.

We can also see even the worst result of PI (in the lab-

100



1 2 3 4
0

1

2

3

4

5

6

7

Node ID

Lo
ca

tio
n 

E
rr

or
 (

m
)

PI Error
BI Error
TRL Error
Average PI Error
Average BI Error
Average TRL Error

(a)

1 2 3 4
0

1

2

3

4

5

6

7

Node ID

Lo
ca

tio
n 

E
rr

or
 (

m
)

PI Error
BI Error
TRL Error
Averge PI Error
Averge BI Error
Averge TRL Error

(b)

Figure 11. Results of outdoor experiments: (a)racket court (b)parking lots
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Figure 12. Impact of the velocity and the broadcast frequency: (a) average estimation error (b) aver-
age estimation error and communication cost

Table 2. Errors of overland experiments (m)

Results
PI BI TRL

Ave. S.D. Ave. S.D. Ave. S.D.
Hall 1.22 0.38 2.49 0.77 3.36 0.95
Lab 2.04 1.05 2.75 1.15 3.97 1.50
Racket Court 1.22 0.45 2.23 0.87 3.69 1.45
Parking Lots 1.27 0.52 2.21 0.34 3.73 0.88

oratory) is better than the best results of BI and TRL. This
result again confirms the advantage of PI, which compares
the measured RSSI values of beacon packets to calculate the
coordinates of the nodes, effectively eliminating the side-
effect of the irregularity of measured RSSI values.

5.4. Impact of Different Factors

According to the analysis in Section 4, the estimation er-
ror and communication cost are affected by the velocity and

the broadcast frequency of the mobile beacon. In order to
gain insight of their relationship, we conduct several exper-
iments using different settings of the moving velocity and
the broadcast frequency. The experiments are similarly de-
ployed as those in Subsection 5.1. The moving velocity is
set at 0.05m/s, 0.1m/s, 0.2m/s and 0.4m/s, while the broad-
cast frequency is set at 0.5, 1, 2, and 4 times per second
respectively. Thus we have 16 different combinatorial set-
tings.

Figure 12(a) shows the average estimation error of all the
14 nodes. Due to the irregularity of RSSI values, the exper-
imental average estimation error is slightly larger than the
theoretical one. The result indicates that ERR is propor-
tional to both V and 1/F , as is in accordance with the an-
alytical result in Subsection 4.1. Further, Fig. 12(b) shows
the curves of the average estimation error (ERR) and the
communication cost (NBP ) as functions of the ratio of the
velocity to the broadcast frequency (V/F ). Clearly ERR is
proportional to V/F while NBP is inverse proportional to
V/F .

It is also worth noticing that there is an intersection

101



point of the two curves, where V/F=0.1, ERR=1.28, and
NBP=300. It represents a good setting in practice, which
sets appropriate trade-off between the average estimation
error and the communication cost. Specifically, if we de-
viate V/F away from the point 0.1, e.g. to the left (right),
the communication cost (the average estimation error) will
remarkably increase, without much benefit in the average
estimation error (the communication cost).

6. Conclusion

Localization is a crucial issue in wireless sensor network
applications. The range-free schemes often suffer from poor
accuracy and low scalability, while the range-based local-
ization approaches heavily depend on extra hardware capa-
bilities or rely on the absolute RSSI values, far from practi-
cal. In this work, we propose a mobile-assisted localization
algorithm called Perpendicular Intersection (PI).

By comparing the received RSSI values on a sensor
node, PI exploits the geometric relationship between the
node and the trajectory of the mobile beacon, eliminating
the side-effect of the irregularity of the RSSI signals. We
examine the performance of PI by implementing a proto-
type system with 100 TelosB motes. Both the analytical
and experimental results demonstrate that PI is superior to
all the existing approaches with high precision.

We plan to further improve our prototype of PI in all as-
pects, for example, introducing an automatic mobile bea-
con. Large-scale field tests of the improved prototype of PI
on the OceanSense platform are also in our plan. We will
also extend PI in the underwater acoustic sensor networks.
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