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Abstract 

 
In large-scale, self-organized and distributed systems, such 

as peer-to-peer (P2P) overlays and wireless sensor networks 
(WSN), a small proportion of nodes are likely to be more 
critical to the system's reliability than the others. This paper 
focuses on detecting cut vertices so that we can either 
neutralize or protect these critical nodes. Detection of cut 
vertices is trivial if the global knowledge of the whole system 
is known but it is very challenging when the global knowledge 
is missing. In this paper, we propose a completely distributed 
scheme where every single node can determine whether it is a 
cut vertex or not. In addition, our design can also confine the 
detection overhead to a constant instead of being proportional 
to the size of a network. The correctness of this algorithm is 
theoretically proved and a number of performance measures 
are verified through trace driven simulations. 
 
1. Introduction 
 

Large-scale and distributed systems, such as Peer-to-peer 
(P2P) and wireless sensor networks (WSN) are proliferating 
due to their high flexibility, easy implementation, and high 
autonomy. However, such systems suffer from node failures 
because P2P nodes might leave the system arbitrarily, and 
sensor nodes may suddenly die from running out of energy or 
being attacked. Hence, providing reliable services is a very 
critical and challenging problem for those systems. 

For a large-scale distributed system, it is often not cost-
effective to protect all the nodes. Moreover, nodes in a 
distributed system are usually not equally important from the 
reliability point of view. For example, S. Saroiu et al. [1] 
observe that after randomly removing 30% of the nodes from 
a 1771 nodes Gnutella network, 1106 of the remaining 1300 
nodes stay connected, and are likely to exchange and share 
information. In contrast, if 4% of carefully selected nodes are 
removed from the network, the overlay is fragmented into 
hundreds of pieces. Other researchers also notice the existence 
of critical nodes or critical links in the context of P2P or 
sensor network systems [2, 3, 4].  

Figure 1(a) illustrates a topology representing a part of a 
P2P overlay or a WSN. The dashed arrows depict the 
data/information flow. Clearly, the failure of any white node 
in Fig. 1 (a) has not much impact on the overall reliability of 
the system. However, if the red node P fails, the system is 
broken into two pieces. For a P2P system, the critical node P 

can be protected by inserting edge AB or AC to the system, as 
illustrated in Fig. 1(b). As a result, the network will remain 
connected and the services will not be interrupted when node 
P leaves. If it is a sensor network, we can give the critical 
node P a higher priority in competing channels or exempt it 
from unnecessary sensing jobs to save its power and prolong 
its lifetime. The motivation of our work is to answer the 
following two questions. 1) If we cannot afford to protect 
every node, is it effective to just concentrate on the critical 
nodes?  2) How do we identify the critical nodes?   

 
Figure 1. Cut vertex in a P2P overlay or a WSN 

We model a distributed system, such as a P2P overlay or a 
WSN, by an undirected graph G = (V , E) where the vertex set 
V represents units such as hosts or sensors, and the edge set E 
represents physical links. Intuitively, all the cut vertices in a 
graph are critical nodes. For ease of expression, we use terms 
“node” and “vertex”, “edge” and “connection” 
interchangeably in the remainder of this paper. It is trivial to 
compute the cut vertices if we have the complete information 
of a graph G [5]. However, collecting global information in a 
dynamic, large-scale distributed system is extremely difficult, 
if not impossible. While existing approaches usually depend 
on the global knowledge, they usually incur huge traffic 
overhead and are impractical in large-scale distributed systems 
[6, 7]. In this paper, we propose a novel approach to identify 
cut vertices in a distributed manner. A tool is designed for 
each node to determine if it is a critical node. Corresponding 
actions are then proposed to protect those critical nodes to 
achieve higher reliability. 

The highlights of our approach are summarized as follows: 
1. Local: without the help of global knowledge, a node can 

identify whether it is a cut vertex based solely on local 
information; 

2. Traffic lightweight: the proposed adaptive detection does 
not insert any extra traffic into the network, because in both 
P2P and WSN systems, message transmissions are considered 
more resource-consuming than local computing; 



3. Adaptive-accuracy: we use relatively limited information 
to identify cut vertices. Note that a 100% accurate algorithm is 
not necessary as long as all the cut vertices are detected and 
the number of wrongly identified cut vertices is small. 
Furthermore, corrective actions can be taken by requesting 
more information when necessary. 

4. Dynamic: as P2P nodes come and leave frequently, and 
sensor nodes might run out of energy at any time, the 
algorithm is able to run at each node at any time to identify 
itself if it becomes a cut vertex at the given time. 

To simplify the discussion, we focus on P2P systems in this 
paper. The remainder of this paper is organized as follows. 
Section 2 briefly discusses the related work. Section 3 
presents the distributed approach. We then elaborate the 
correctness of our approach in Section 4, and introduce our 
simulation methodology as well as the results in Section 5. 
Our work is concluded in Section 6. 
 
2. Related Work 

 
The reliability of a system relies on many aspects, such as 

the resilience and stability of network topology, the 
availability of the data and service, and the efficiency of 
content distribution and transmission etc. The dynamic and 
self-organizing nature of large-scale distributed systems 
brings more challenges to this issue. Over the past few years, 
numerous methods and techniques have been proposed for 
monitoring, modeling, detecting failures [8, 9, 10], and 
various schemes have been developed to improve the 
availability and the system resiliency [11, 12, 13, 14, 15] to 
provide reliable services. 

D. Dumitriu et al [11] sort the patterns of Denial-of-Service 
attacks and observe node behavior in P2P file sharing systems. 
Misbehaving "super-nodes" and power-law network topology 
are regarded as the contributing factors to the resilience of 
such systems. Instead of identifying vulnerable peers, they 
propose counter-strategies to provide immunity to the attacks 
which sacrifice performance in the absence of such attacks. In 
[8, 9], novel techniques are proposed for network anomaly 
detection and traffic measurement. This school of approaches 
mainly focuses on network anomaly and dynamic failure and 
is not beneficial to normal cases. Some other recently 
proposed algorithms also address the reliability problems of 
overlay networks [11, 12, 13, 14], but they treat all the nodes 
equally without distinguishing the “critical” nodes from the 
ordinary ones. Indeed, critical nodes do exist in all sorts of 
distributed systems, such as critical nodes in service [16], in 
data or resources [11], and in topology. They are extremely 
important to the reliability of network systems. 

In this paper, we focus on the critical nodes from the 
topological perspective, specifically, cut vertices. Cut vertex is 
a concept in graph theory which has been studied extensively. 
Existing algorithms to find cut vertices in graph theory 
include the DFS-based algorithm and bi-connected component 
sorting algorithm [5, 7]. Both algorithms require global 
information of the topology. As we know, it is extremely 
difficult, if not impossible, to obtain such topology 
information in large scale distributed systems. 

P. Keyani et al. [17] address distributed recovery from 
attacks in P2P systems. They propose to modify the P2P 
overlay so as to reduce the number of high degree nodes. High 
degree nodes are more vulnerable to attacks, which are similar 
to the role of critical nodes in our paper. Because detecting 
high degree nodes is less difficult than locating cut vertices, 
their method tries to reduce high degree nodes and is invoked 
only when an attack occurs. However, their method cannot 
improve the reliability of topology for the normal cases when 
there are no attacks. 

Critical nodes in WSNs are studied more than those in P2P 
and other distributed systems, probably because they have 
limited power energy and communication ranges. W. Zhang et 
al. [17] propose a node placement algorithm in WSNs. Their 
approach focuses on a small portion of critical nodes to 
support fault-tolerant communication and the computation 
complexity is approximated to O(1). From the topological 
point of view, the relay nodes they defined are very likely to 
be cut vertices. In comparison with the work in [17], our 
scheme concentrates more on cut vertex detection and 
topology optimization. Moreover, our scheme can be applied 
to both P2P overlays and WSNs. Proposals in [6, 15] are 
related to the work in this paper, but both rely on active 
detections to identify cut vertices, resulting in additional 
overhead. Although many overlay optimization 
approaches have been proposed for P2P systems [18, 19, 20], 
these studies mainly aim to reduce the searching overhead 
instead of improving the system reliability. L. Ramaswamy et 
al. [21] propose a mechanism for detecting and constructing 
clusters in a P2P system. But their approach cannot be applied 
to identify cut vertices. 

 
3. The Distributed Approach 

 
This section describes our distributed approach to identify 

the critical nodes in large-scale distributed systems. We 
assume the communication between peers/sensors is mainly 
by flooding. With the help of information interchanged among 
peers/sensors, we then design a zero-overhead adaptive 
detection method to identify critical nodes. The accuracy of 
the adaptive detection can be reinforced by an active detection 
method with a fairly low cost. Both the adaptive and active 
detection will be executed periodically to reflect the dynamics 
of large-scale P2P overlays and WSNs. 

We begin our discussion from essential definitions and 
principles, followed by the proposed adaptive detection and 
active detection. A straightforward method of cut vertex 
neutralization is then introduced to enhance the system 
reliability. The last part of this section discusses the overhead 
of our scheme. 

 
3.1. Definitions and Principles 

 
As stated in Section 1, we model a distributed system, such 

as a P2P overlay or a WSN, by an undirected graph G = (V , E) 
where the vertex set V represents units such as hosts or 
sensors, and the edge set E represents physical links. The 
following are the formal definitions used in this discussion [5]. 



 
Figure 2. Three cases of cut vertex 

Cut vertex: a vertex of a graph such that removal of it 
causes an increase in the number of connected components. 

Bridge: an edge whose removal disconnects a graph. 
Component: a maximally connected subgraph. 
K-connected: if it is always possible to establish a path 

from any vertex to all others even after removing any (k – 1) 
vertices, then the graph is said to be k-connected. 

Block: a maximally connected subgraph having no cut 
vertex. A block in a graph can be either a 2-connected 
subgraph or a bridge with its end-vertices. 

Because a cut vertex partitions one component into many, 
we come to the following theorem: a vertex is a cut vertex if 
and only if it is the joint of multiples blocks. The correctness 
of this theorem is proved in Section 4. 

Without loss of generality, three possible cases are 
illustrated in Fig.2, where two blocks are connected by one or 
more cut vertices. In Fig. 2(a), the cut vertex (red point) is the 
joint of a 2-connected subgraph and a bridge; in Fig. 2(b), the 
cut vertex is the joint of two 2-connected subgraphs; in Fig. 
2(c), the cut vertex in the middle is the joint of two bridges. 
Indeed, all cut vertices fall into these three cases. 

 
3.2. Adaptive Detection 
 

A P2P overlay or a WSN usually adopts the flooding 
mechanism where a message is propagated from a node to 
others hop by hop. The forwarding path of a flooded message 
also contains the connectivity information from the starting 
node to the current receiving node. Our basic idea is to utilize 
such information to find cut vertices by sorting the neighbors 
of a node into one or more blocks. According to the 
aforementioned theorem, a node is a cut vertex if its 
neighbors belong to multiple blocks. 

In our scheme, we assume the following characteristics in a 
distributed system:  

 
Figure 3. Example of adaptive detection 

 
======================================  
/* P: the node receiving a flooding message  
msg: the flooding message node P receives */ 
On_Flooding () 
{ 

if (P receives msg for the 1st time) 
{ 

P creates a new entry for msg in P.MsgList; 
if (msg.TTL>0)  
P forwards msg; 

} 
else // P has received same msg before  
{ 

P creates a new entry for msg in P.MsgList 
/* Find entries in P.MsgList which have same Message 
ID with msg;*/ 
FindEntries(P.MsgList); 
/* Merge the neighbor where msg comes from and the 

neighbors in the entries just found; */ 
MergeBlocks(P.BlockSet); 
P drops msg; 

} 
} 
====================================== 
Figure 4. Pseudo code of the function On_Flooding() 

1) A node forwards a message it receives to all its 
neighbors except the node which the message comes from;  

2) Each message is assigned a globally unique message ID; 
3) A node forwards each message only once. If it receives 

the same message later, it simply drops the duplicates. 
Now let us examine the example in Fig. 3. In this figure, 

node P is a cut vertex that connects three blocks. The removal 
of node P causes the whole graph to be partitioned into three 
components, labeled as Cpnt 1, Cpnt 2, and Cpnt 3, as denoted 
in the figure with dotted circles. 

In the adaptive detection, each node keeps track of recently 
received messages. A list of records is cached on each node, 
called MsgList, with each entry representing a message 
received recently in the format of <Message ID, Neighbor 
where the message comes from>. A node also keeps the data-
structure called BlockSet that records the block information of 
its neighbors. At the beginning of an adaptive detection period, 
MsgList is empty and all the neighbors of a node are assumed 
to be in different blocks. 

During the periodical executions of the adaptive detection, 
node P receives messages from the nodes in all the three 
components. For instance, when node A gets message 1, it 
broadcasts message 1 to its neighbors. When nodes X and Y 
receive message 1 through disjoint paths and forward it to 
node P, node P will discover that there exist two disjoint paths 
in which message 1 is delivered. Though node P perhaps does 
not know which node originally issues the message, it is able 
to find a cycle (A, X, P, Y) containing nodes X, Y, and itself. 
As a result, nodes X and Y are 2-connected and they are in the 
same block (refer to the Theorem 2 in Section 4). Node P 
merges the blocks containing nodes X and Y into one single 
block. Similarly, after receiving message 2 from nodes Y and 
Z, node P puts nodes X, Y, and Z in the same block (refer to 



the Lemma 1 in Section 4). Nodes S and T are merged into 
one block after node P receives message 3. Node R remains 
isolated in its block. There is no other node except R that 
could possibly forward message 4 to node P.  

Figure 4 provides the pseudo code of the function 
On_Flooding(). As more messages arrive, node P keeps 
merging the blocks in its BlockSet. At the end of an adaptive 
detection period, all the neighbors of node P will probably be 
merged into a few blocks. If only one block remains in the 
BlockSet, node P is not a cut vertex. Otherwise, an active 
detection process is triggered for further determination, which 
we introduce in Section 3.3. Note that the adaptive detection is 
executed passively during flooding search. It does not incur 
any additional traffic overhead. 

 
3.3. Active Detection 
 

With the adaptive detection, a node knows for sure that it is 
not a cut vertex if all the neighbors belong to a single block. 
However, having two or more blocks remaining at the end of 
adaptive detection does not mean a node is a cut vertex. For 
example, a node might not be able to receive all the flood 
messages from its neighbors because the requested item of a 
search is found or the TTL threshold is reached. Therefore we 
believe that an active detection is necessary to further identify 
cut vertices. Compared to the adaptive detection, the active 
detection achieves shorter convergence time at the cost of 
additional but acceptable traffic overhead. 

If the neighbors of a node are sorted into two or more 
blocks at the end of adaptive detection, it regards itself as a 
cut vertex candidate and immediately starts an active detection 
process. At first, it randomly selects a neighbor from each 
block and numbers the connection to each neighbor with a 
unique index (e.g. 1, 2, 3 ...). Then the node sends probe 
messages along these connections. The format of the probe 
message is <ID, timestamp, TTL, connection_index>, where 
ID is the candidate’s node ID, timestamp records the time the 
probe message is generated, TTL is a pre-configured threshold 
and connection index represents the connection between the 
neighbor and the candidate. Each node keeps a connection list. 
There is one entry for each candidate in the connection list 
with the format of <candidate’s ID, timestamp, 
connection_index 1, connection_index 2 …>. Upon receiving 
the probe messages from candidates, a node will take 
corresponding actions according to the information stored in 
its connection list. 

For the ease of illustration, we still use the example in 
Fig.3 but remove unrelated nodes and symbols, as shown in 
Fig. 5. We further assume node X, R, and S are selected from 
each block. When other nodes receive the probe messages 
originating from candidate P, they compare the probe 
messages with the information stored in their connection lists. 
Nodes that receive the probe messages also keep the latest 
records of those cut vertex candidates. If there is no entry for a 
candidate, a new entry is created. After that the TTL value is 
reduced by 1 and the probe messages are then forwarded to 
the downstream nodes. 

 
Figure 5. Example of active detection 

In Fig. 5, node V receives two messages from the same 
candidate P but through different connections (connection 2 
and connection 3). Therefore node V generates an arrival 
message containing node P’s ID, a timestamp and two 
connection indexes (2 and 3). The arrival message is sent to 
the candidate P at once, which is depicted as the green dashed 
arrow from V to P in Fig. 5. 

On receiving the arrival message from node V, the 
candidate P is able to find a cycle (P, R, V, S) containing 
nodes R, S, and itself. That is, nodes R and S are 2-connected 
and they should be in the same block (refer to the Theorem 2 
in Section 4). So node P merges the blocks containing nodes 
R and S into one block. In other words, Cpnt 2 and Cpnt 3 are 
actually in one block. 

In this way, the neighbors of a cut vertex candidate can be 
merged into fewer and fewer blocks. If only one block 
remains in the BlockSet, node P is not a cut vertex. Otherwise, 
node P must be a cut vertex. Since the initial TTL value of a 
probe message is usually small, we are able to get the result of 
the active detection much sooner than the adaptive detection. 
In other words, the active detection can be applied as a useful 
complement to the adaptive detection. It can also be utilized as 
an independent approach to identify cut vertices if we value 
speed over cost. 

 
3.4. Cut Vertex Neutralization 

 
The goal of cut vertex neutralization is to enhance the 

system reliability with respect to topology connectivity. Cut 
vertex neutralization is relatively easy to achieve by building 
extra connections between nodes in different blocks. For 
example, node P selects a neighbor from each block, such as Z 
and T. Then node P sends requests to nodes Z and T and asks 
them to connect with each other. After the new connection is 
built (depicted as the blue line in Fig. 5), the two initially 
independent blocks are merged into one block. Consequently, 
all nodes in the graph get 2-connected and node P becomes a 
normal node. 

 
3.5. Overhead 
 



We evaluate the traffic overhead by counting the messages 
delivered due to the cut vertex detection in a P2P system. 
Clearly, the adaptive detection does not incur any traffic 
overhead. For the active detection, suppose the system has n 
nodes, let c be the average degree of nodes and let t be the 
initial TTL value. Compared with the amount of arrival 
messages and connection requests, the amount of probe 
messages is much more because they are passed in the fashion 
of peer-to-peer flooding. Therefore the total traffic cost of the 
active detection is dominated by the cost of forwarding probe 
messages. 

Note that a node will not forward the probe message if it 
has already sent an arrival message back to the corresponding 
candidate. We define the set of nodes which may be traversed 
by the same connection number of a candidate as the traversal 
set of that connection. Then the traversal sets of different 
connections of a candidate cannot overlap. As a result, the 
total traffic cost of probe messages should be O(n2c/2), where 
nc/2 is the number of edges in the whole graph. On the other 
hand, the traffic cost is also limited by the initial TTL value. It 
can never exceed O(nct).  

Therefore the total traffic cost of forwarding probe 
messages should be min(O(nct), O(n2c/2)). For large-scale 
distributed systems, the value of c is usually much smaller 
than that of n. The inequality ct≤n holds when the initial TTL 
value t is limited to save traffic cost. Thus we can conclude 
that the total traffic cost of active detection is O(nct).  

The storage overhead of adaptive detection on a node is 
dominated by the number of received flooded messages that 
come from different nodes. Let m1 denote the size of an entry 
in the MsgList. Then the storage overhead on a node is 
O(m1ct). Similarly, let m2 denote the size of an entry in the 
connection list. The storage overhead of active detection on a 
node is O(m2ct). 

For real distributed systems, c is usually fairly small, such 
as 3, 4 or 5. We can use a small initial TTL value to limit the 
traffic cost of active detection, as well as to limit the storage 
overhead of both adaptive and active detections. The 
simulation results in Section 5 also demonstrate that a small 
value of t provides decent accuracy. 

 
4. Correctness 
 

Theorem 1: Two blocks in a graph have at most one joint 
vertex. 

Lemma 1: Let vertices A, B, C and D be four vertices in 
graph G. A, B and C are in the same block, while A, B and D 
are in the same block. Then A, B, C and D are in the same 
block, too. 

Theorem 2: If there are two disjoint paths between two 
vertices in a graph, the two vertices are in the same block. 

Theorem 3: A vertex is a cut vertex if and only if it is the 
joint of multiple blocks. 

Due to the page limit, we do not present the proofs here. 
Please refer to our technical report for detailed proofs 
(http://www.cse.ust.hk/~heyuan/Recu080118.pdf). 

Consider an undirected graph G = (V, E) to represent an 
overlay network, where V is the set of overlay nodes and E is 

the set of the edges of the overlay network. We illustrate the 
correctness of our distributed approaches.  

Assume that the network topology is static and the initial 
TTL value of each flooding message is set to infinity. As long 
as there is a path between two nodes, the path will be detected 
by either the adaptive or the active detection. Therefore the 
overlay topology can be sketched if the detection lasts for an 
adequately long period of time. According to Theorem 3, if 
the neighbors of a node are finally merged into one single 
block, the node is not a cut vertex; otherwise, the node is a cut 
vertex. Thus the correctness of our distributed approaches is 
proved. 

As for the accuracy of our approach, it is well known that 
given an appropriate topology construction, a query from one 
node to another in the overlay could be achieved in O(lnN) 
hops, where N represents the size of the overlay [22]. 
Moreover, it has been widely recognized that most practical 
networks appear to be small-world or power-law networks, 
where the complexity of search is O(lnN) or even O(ln(lnN)) 
[23]. Therefore, the length of a path between two nodes is 
usually within the logarithmic order of the size of the overlay. 
Through the real trace simulations in the next section, we also 
show that setting the initial TTL value to a small constant is 
sufficient to obtain a fairly high accuracy. 

On the other aspect, without global information in our 
scheme, a tiny portion of nodes might be falsely identified as 
cut vertices. One possible case is that these nodes lie in very 
long cycles in the graph while such cycles are not detected by 
our distributed approaches with limited TTLs. However, such 
nodes are rare and those neglected long cycles probably make 
no sense in practical applications. Another possibility is due to 
the variations of the transmission delays among different 
nodes. Even though nodes might be falsely identified as cut 
vertices in our proposal, applying cut vertex neutralization to 
those false positive nodes will generate no harm to the system. 

 
5. Performance Evaluation 
 

We evaluate the impact of cut vertices, the accuracy of 
detection, the traffic overhead and the effect of cut vertex 
neutralization through intensive real trace experiments. 
Further experiments are conducted on the correlation between 
accuracy of detection and overlay dynamics. Aiming at 
mitigating the negative impact of cut vertices, our scheme is 
proved to be highly accurate, lightweight and greatly 
beneficial to the reliability of large scale distributed systems. 

 
5.1. Experimental Methodology 
 

Table 1. Information of selected traces 

Trace Size Average 
degree 

Number of Cut 
Vertices 

1 10101 2.41 1315 
2 13086 6.7 1865 
3 15142 5.1 2075 
4 25702 4.9 4169 
5 40036 3.88 6448 
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Figure 9. Impact on efficiency Figure 10. Impact on connectivity Figure 11. Accuracy of Detection
The overlay topology in our experiments is generated with 

the DSS Clip2 traces that were collected from Dec. 7th 2000 
to June 15th 2001. We can provide the traces upon request. 

Altogether we have 60 traces, and 13 of them are 
neglected because they contain small quantities of nodes and 
scarce connections. Nodes in the other 47 traces vary from 
around 8000 nodes to more than 45000 and the average 
degree varies from 2.4 to 6.7. We select 5 traces as the 
representative for the subsequent experiments, as listed in 
Table 1. Relevant information of all 60 traces is illustrated in 
Figs. 6-8. 

 
5.2. Impact of Cut Vertices 
 

We first take a look at the impact of losing the critical 
vertices in terms of query efficiency and connectivity. In Fig. 
9, we measure the success rate of flooding-based queries, 
setting the TTL value at 5. It is well known that query 
efficiency largely relies on how well the nodes in the overlay 
are connected. Though cut vertices usually account for less 
than 10% of the overlay, deleting them often badly reduce 
the success rate of queries. For a typical example, trace 3, in 
Fig. 9, the original query success rate is 90%. When the cut 
vertices are deleted step by step, the query success rate 
rapidly drops. And after all the cut vertices are deleted 
(x=100%), the query success rate drops to only 10%. 

Losing cut vertices also results in many isolated 
components in each overlay. As shown in Fig. 10, deleting a 
small portion of those vertices significantly increases the 
number of components. In other words, removal of cut 
vertices causes the overlay to be fragmented. For example, 
when half of the critical nodes leave, an overlay can break 
into thousands of disconnected components.  

 

5.3. Accuracy of Detection 
 

As stated in Section 2, all the cut vertices in a graph can 
be found by the traditional DFS algorithm. Based on the 
results of the DFS algorithm, we evaluate the accuracy of our 
proposed adaptive and active algorithm. Accuracy here refers 
to the percentage of real cut vertices in the output. For the 
adaptive detection, the output is the set of nodes identified as 
cut vertices after all the nodes have issued a flooding-based 
query. For the active detection, the output is the set of nodes 
identified as cut vertices after all the nodes have executed the 
active detection once. The preset TTL value in the 
experiment corresponds to the scope of flooding in the 
adaptive detection while it limits the range of probe messages 
in the active detection. 

Curves in Fig. 11 demonstrate that both the adaptive and 
the active detection have high accuracy even when the initial 
TTL value is as small as 4 (more than 98% are correct). More 
interestingly, without introducing any extra traffic overhead, 
the adaptive detection performs almost as well as the active 
detection does. This finding also enables us to adopt a hybrid 
strategy (a combination of two kinds of detection) when 
identifying cut vertices to achieve high accuracy with low 
traffic overhead. 

Additional experiments are conducted on trace 3. Setting 
the initial TTL value at 5, we change the proportion of nodes 
that do flooding-based queries in an adaptive detection 
period. The curve in Fig. 12 shows that as long as a small 
portion of nodes issue flooding-based queries, the adaptive 
detection can be precise enough. For example, when only 3% 
of nodes issue flooding-based queries, the resulting accuracy 
is as good as 90%. Considering the contrast in traffic 
overhead, this result further proves the advantage of the 
adaptive detection over the active detection. 
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5.4. Traffic Overhead 
 

The major workload in the adaptive detection is 
information processing on each node. Considering the 
powerful processing capacity of modern processors, the 
computation overhead appears to be trivial. Hence, this 
discussion focuses on the traffic overhead incurred by the 
active detection, as shown in Fig. 13. Note that in our design, 
active detection is required only after a node cannot identify 
itself through adaptive detection, especially when we adopt 
hybrid identification strategies. According to the previous 
experiment results, most of the cut vertices can be identified 
by the adaptive detection. Therefore, only a tiny portion of 
nodes have to execute the active detection. On the other hand, 
the average cost on each node is acceptable. For example, 
when TTL=5 in trace 1, the active detection has an accuracy 
higher than 90% and the average traffic overhead is around 
100 messages per node, without regard to the potential 
benefit of the adaptive detection.  

 
5.5. Effect of Cut Vertex Neutralization 
 

We evaluate the effects of cut vertex neutralization 
through two groups of experiments.  

In the first group of experiments, we measure the number 
of components increased after deleting a certain amount of 
cut vertices, as shown in Fig. 14. Comparing the curves in 
Fig. 14 with those in Fig. 10, we find the remarkable benefit 
of cut vertex neutralization. After cut vertex neutralization, 
the destructive effect of deleting cut vertices is reduced to 
only 20%~30% of the original level. 

In the second group of experiments, we measure the query 
success rate after cut vertex neutralization. Randomly taking 
4 or 6 nodes as the query targets, Fig. 15 depicts the 
amplitude by comparing the query success rates before and 
after cut vertex neutralization. As we can see from the 
histograms, cut vertex neutralization improves the query 
efficiency by 20%~90%. 

From the experiment results above, we conclude that cut 
vertex neutralization greatly improves the reliability of large 
scale distributed systems. 

 
 5.6. Accuracy vs. Dynamics 
 

Since the information processed by the adaptive detection 
is periodically extracted from the flooding messages, the 
accuracy of the adaptive detection should have some 
correlation with the overlay dynamics. In the last two 
experiments, two metrics are adopted to measure the 
accuracy of the adaptive detection with dynamic overlay: the 
number of false negatives and the number of false positives. 
False negatives represent nodes which are cut vertices but 
not identified as cut vertices. False positives represent nodes 
which are not cut vertices but identified as cut vertices. Both 
numbers are counted as errors in the output but have different 
impacts.  

When false negative nodes exist, the adaptive detection 
will inevitably miss some cut vertices (i.e. false negative 
nodes). After the subsequent cut vertex neutralization, the 
overlay connectivity is still vulnerable to the failure of cut 
vertices. False positive nodes, on the other hand, introduce 
unnecessary additional connections without any negative 
effect on the connectivity. 



We count the number of false negatives and the number of 
false positives as we regulate the degree of overlay dynamics 
and the detection frequency. As we can see in Fig. 16 and Fig. 
17, the average life span varies from 100 to 4000 sec while 
the period length of the adaptive detection varies from 1 to 
40 sec. Fig. 16 shows that the number of false negatives has 
close correlation with both the detection frequency and the 
degree of overlay dynamics. Especially when the average life 
span is short, the detection accuracy becomes much more 
sensitive to the detection frequency. On the contrary, Fig. 17 
shows that the overlay dynamics have little impact on the 
number of false positives. And the latter keeps at a fairly low 
level unless we execute detection too frequently. 

As an observation result, we find it is reasonable to set 
comparatively low frequency of the adaptive detection. The 
output is highly accurate unless the overlay gets extremely 
unstable. More frequent detection is necessary in more 
dynamic environments. However, since the adaptive 
detection incurs zero traffic overhead, our distributed 
approaches keeps effective and lightweight under various 
scenarios. 

 
6. Conclusion 
 

The connectivity among the nodes basically determines 
the reliability of a large-scale distributed system. It is 
observed that a small portion of nodes are often more critical 
to the system reliability than the others. Removal of critical 
nodes usually destroys the topology connectivity and incurs 
substantive extra traffic within the systems.  

We propose a distributed approach to identify cut vertices. 
The proposed scheme is composed of three parts: adaptive 
detection, active detection and cut vertex neutralization. The 
adaptive detection utilizes the information from common 
flooding message and realizes zero-overhead detection. As a 
complement to the adaptive method, the active detection is 
conducted to further improve the accuracy of detection. It is 
also feasible to solely adopt the active method for fast and 
lightweight detection. Based on the results of the detection, 
cut vertex neutralization builds additional connections 
around the critical nodes and enhances the system reliability. 
We prove the correctness of our scheme theoretically and 
evaluate the performance with trace-driven simulations. 
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