
On the Reliability of Large-Scale Distributed Systems - A Topological View

1Yuan He, 2Hao Ren, 1Yunhao Liu, and 3Baijian Yang
1Hong Kong University of Science

and Technology
{heyuan, liu}@cse.ust.hk

2National University of Defense
Technology

 renhao1973@gmail.com

3Ball State University,
U.S.A.

byang@bsu.edu

Abstract

In large-scale, self-organized and distributed systems, such

as peer-to-peer (P2P) overlays and wireless sensor networks
(WSN), a small proportion of nodes are likely to be more
critical to the system's reliability than the others. This paper
focuses on detecting cut vertices so that we can either
neutralize or protect these critical nodes. Detection of cut
vertices is trivial if the global knowledge of the whole system
is known but it is very challenging when the global knowledge
is missing. In this paper, we propose a completely distributed
scheme where every single node can determine whether it is a
cut vertex or not. In addition, our design can also confine the
detection overhead to a constant instead of being proportional
to the size of a network. The correctness of this algorithm is
theoretically proved and a number of performance measures
are verified through trace driven simulations.

1. Introduction

Large-scale and distributed systems, such as Peer-to-peer
(P2P) and wireless sensor networks (WSN) are proliferating
due to their high flexibility, easy implementation, and high
autonomy. However, such systems suffer from node failures
because P2P nodes might leave the system arbitrarily, and
sensor nodes may suddenly die from running out of energy or
being attacked. Hence, providing reliable services is a very
critical and challenging problem for those systems.

For a large-scale distributed system, it is often not cost-
effective to protect all the nodes. Moreover, nodes in a
distributed system are usually not equally important from the
reliability point of view. For example, S. Saroiu et al. [1]
observe that after randomly removing 30% of the nodes from
a 1771 nodes Gnutella network, 1106 of the remaining 1300
nodes stay connected, and are likely to exchange and share
information. In contrast, if 4% of carefully selected nodes are
removed from the network, the overlay is fragmented into
hundreds of pieces. Other researchers also notice the existence
of critical nodes or critical links in the context of P2P or
sensor network systems [2, 3, 4].

Figure 1(a) illustrates a topology representing a part of a
P2P overlay or a WSN. The dashed arrows depict the
data/information flow. Clearly, the failure of any white node
in Fig. 1 (a) has not much impact on the overall reliability of
the system. However, if the red node P fails, the system is
broken into two pieces. For a P2P system, the critical node P

can be protected by inserting edge AB or AC to the system, as
illustrated in Fig. 1(b). As a result, the network will remain
connected and the services will not be interrupted when node
P leaves. If it is a sensor network, we can give the critical
node P a higher priority in competing channels or exempt it
from unnecessary sensing jobs to save its power and prolong
its lifetime. The motivation of our work is to answer the
following two questions. 1) If we cannot afford to protect
every node, is it effective to just concentrate on the critical
nodes? 2) How do we identify the critical nodes?

Figure 1. Cut vertex in a P2P overlay or a WSN

We model a distributed system, such as a P2P overlay or a
WSN, by an undirected graph G = (V , E) where the vertex set
V represents units such as hosts or sensors, and the edge set E
represents physical links. Intuitively, all the cut vertices in a
graph are critical nodes. For ease of expression, we use terms
“node” and “vertex”, “edge” and “connection”
interchangeably in the remainder of this paper. It is trivial to
compute the cut vertices if we have the complete information
of a graph G [5]. However, collecting global information in a
dynamic, large-scale distributed system is extremely difficult,
if not impossible. While existing approaches usually depend
on the global knowledge, they usually incur huge traffic
overhead and are impractical in large-scale distributed systems
[6, 7]. In this paper, we propose a novel approach to identify
cut vertices in a distributed manner. A tool is designed for
each node to determine if it is a critical node. Corresponding
actions are then proposed to protect those critical nodes to
achieve higher reliability.

The highlights of our approach are summarized as follows:
1. Local: without the help of global knowledge, a node can

identify whether it is a cut vertex based solely on local
information;

2. Traffic lightweight: the proposed adaptive detection does
not insert any extra traffic into the network, because in both
P2P and WSN systems, message transmissions are considered
more resource-consuming than local computing;

3. Adaptive-accuracy: we use relatively limited information
to identify cut vertices. Note that a 100% accurate algorithm is
not necessary as long as all the cut vertices are detected and
the number of wrongly identified cut vertices is small.
Furthermore, corrective actions can be taken by requesting
more information when necessary.

4. Dynamic: as P2P nodes come and leave frequently, and
sensor nodes might run out of energy at any time, the
algorithm is able to run at each node at any time to identify
itself if it becomes a cut vertex at the given time.

To simplify the discussion, we focus on P2P systems in this
paper. The remainder of this paper is organized as follows.
Section 2 briefly discusses the related work. Section 3
presents the distributed approach. We then elaborate the
correctness of our approach in Section 4, and introduce our
simulation methodology as well as the results in Section 5.
Our work is concluded in Section 6.

2. Related Work

The reliability of a system relies on many aspects, such as

the resilience and stability of network topology, the
availability of the data and service, and the efficiency of
content distribution and transmission etc. The dynamic and
self-organizing nature of large-scale distributed systems
brings more challenges to this issue. Over the past few years,
numerous methods and techniques have been proposed for
monitoring, modeling, detecting failures [8, 9, 10], and
various schemes have been developed to improve the
availability and the system resiliency [11, 12, 13, 14, 15] to
provide reliable services.

D. Dumitriu et al [11] sort the patterns of Denial-of-Service
attacks and observe node behavior in P2P file sharing systems.
Misbehaving "super-nodes" and power-law network topology
are regarded as the contributing factors to the resilience of
such systems. Instead of identifying vulnerable peers, they
propose counter-strategies to provide immunity to the attacks
which sacrifice performance in the absence of such attacks. In
[8, 9], novel techniques are proposed for network anomaly
detection and traffic measurement. This school of approaches
mainly focuses on network anomaly and dynamic failure and
is not beneficial to normal cases. Some other recently
proposed algorithms also address the reliability problems of
overlay networks [11, 12, 13, 14], but they treat all the nodes
equally without distinguishing the “critical” nodes from the
ordinary ones. Indeed, critical nodes do exist in all sorts of
distributed systems, such as critical nodes in service [16], in
data or resources [11], and in topology. They are extremely
important to the reliability of network systems.

In this paper, we focus on the critical nodes from the
topological perspective, specifically, cut vertices. Cut vertex is
a concept in graph theory which has been studied extensively.
Existing algorithms to find cut vertices in graph theory
include the DFS-based algorithm and bi-connected component
sorting algorithm [5, 7]. Both algorithms require global
information of the topology. As we know, it is extremely
difficult, if not impossible, to obtain such topology
information in large scale distributed systems.

P. Keyani et al. [17] address distributed recovery from
attacks in P2P systems. They propose to modify the P2P
overlay so as to reduce the number of high degree nodes. High
degree nodes are more vulnerable to attacks, which are similar
to the role of critical nodes in our paper. Because detecting
high degree nodes is less difficult than locating cut vertices,
their method tries to reduce high degree nodes and is invoked
only when an attack occurs. However, their method cannot
improve the reliability of topology for the normal cases when
there are no attacks.

Critical nodes in WSNs are studied more than those in P2P
and other distributed systems, probably because they have
limited power energy and communication ranges. W. Zhang et
al. [17] propose a node placement algorithm in WSNs. Their
approach focuses on a small portion of critical nodes to
support fault-tolerant communication and the computation
complexity is approximated to O(1). From the topological
point of view, the relay nodes they defined are very likely to
be cut vertices. In comparison with the work in [17], our
scheme concentrates more on cut vertex detection and
topology optimization. Moreover, our scheme can be applied
to both P2P overlays and WSNs. Proposals in [6, 15] are
related to the work in this paper, but both rely on active
detections to identify cut vertices, resulting in additional
overhead. Although many overlay optimization
approaches have been proposed for P2P systems [18, 19, 20],
these studies mainly aim to reduce the searching overhead
instead of improving the system reliability. L. Ramaswamy et
al. [21] propose a mechanism for detecting and constructing
clusters in a P2P system. But their approach cannot be applied
to identify cut vertices.

3. The Distributed Approach

This section describes our distributed approach to identify

the critical nodes in large-scale distributed systems. We
assume the communication between peers/sensors is mainly
by flooding. With the help of information interchanged among
peers/sensors, we then design a zero-overhead adaptive
detection method to identify critical nodes. The accuracy of
the adaptive detection can be reinforced by an active detection
method with a fairly low cost. Both the adaptive and active
detection will be executed periodically to reflect the dynamics
of large-scale P2P overlays and WSNs.

We begin our discussion from essential definitions and
principles, followed by the proposed adaptive detection and
active detection. A straightforward method of cut vertex
neutralization is then introduced to enhance the system
reliability. The last part of this section discusses the overhead
of our scheme.

3.1. Definitions and Principles

As stated in Section 1, we model a distributed system, such

as a P2P overlay or a WSN, by an undirected graph G = (V , E)
where the vertex set V represents units such as hosts or
sensors, and the edge set E represents physical links. The
following are the formal definitions used in this discussion [5].

Figure 2. Three cases of cut vertex

Cut vertex: a vertex of a graph such that removal of it
causes an increase in the number of connected components.

Bridge: an edge whose removal disconnects a graph.
Component: a maximally connected subgraph.
K-connected: if it is always possible to establish a path

from any vertex to all others even after removing any (k – 1)
vertices, then the graph is said to be k-connected.

Block: a maximally connected subgraph having no cut
vertex. A block in a graph can be either a 2-connected
subgraph or a bridge with its end-vertices.

Because a cut vertex partitions one component into many,
we come to the following theorem: a vertex is a cut vertex if
and only if it is the joint of multiples blocks. The correctness
of this theorem is proved in Section 4.

Without loss of generality, three possible cases are
illustrated in Fig.2, where two blocks are connected by one or
more cut vertices. In Fig. 2(a), the cut vertex (red point) is the
joint of a 2-connected subgraph and a bridge; in Fig. 2(b), the
cut vertex is the joint of two 2-connected subgraphs; in Fig.
2(c), the cut vertex in the middle is the joint of two bridges.
Indeed, all cut vertices fall into these three cases.

3.2. Adaptive Detection

A P2P overlay or a WSN usually adopts the flooding
mechanism where a message is propagated from a node to
others hop by hop. The forwarding path of a flooded message
also contains the connectivity information from the starting
node to the current receiving node. Our basic idea is to utilize
such information to find cut vertices by sorting the neighbors
of a node into one or more blocks. According to the
aforementioned theorem, a node is a cut vertex if its
neighbors belong to multiple blocks.

In our scheme, we assume the following characteristics in a
distributed system:

Figure 3. Example of adaptive detection

======================================
/* P: the node receiving a flooding message
msg: the flooding message node P receives */
On_Flooding ()
{

if (P receives msg for the 1st time)
{

P creates a new entry for msg in P.MsgList;
if (msg.TTL>0)
P forwards msg;

}
else // P has received same msg before
{

P creates a new entry for msg in P.MsgList
/* Find entries in P.MsgList which have same Message
ID with msg;*/
FindEntries(P.MsgList);
/* Merge the neighbor where msg comes from and the

neighbors in the entries just found; */
MergeBlocks(P.BlockSet);
P drops msg;

}
}
======================================
Figure 4. Pseudo code of the function On_Flooding()

1) A node forwards a message it receives to all its
neighbors except the node which the message comes from;

2) Each message is assigned a globally unique message ID;
3) A node forwards each message only once. If it receives

the same message later, it simply drops the duplicates.
Now let us examine the example in Fig. 3. In this figure,

node P is a cut vertex that connects three blocks. The removal
of node P causes the whole graph to be partitioned into three
components, labeled as Cpnt 1, Cpnt 2, and Cpnt 3, as denoted
in the figure with dotted circles.

In the adaptive detection, each node keeps track of recently
received messages. A list of records is cached on each node,
called MsgList, with each entry representing a message
received recently in the format of <Message ID, Neighbor
where the message comes from>. A node also keeps the data-
structure called BlockSet that records the block information of
its neighbors. At the beginning of an adaptive detection period,
MsgList is empty and all the neighbors of a node are assumed
to be in different blocks.

During the periodical executions of the adaptive detection,
node P receives messages from the nodes in all the three
components. For instance, when node A gets message 1, it
broadcasts message 1 to its neighbors. When nodes X and Y
receive message 1 through disjoint paths and forward it to
node P, node P will discover that there exist two disjoint paths
in which message 1 is delivered. Though node P perhaps does
not know which node originally issues the message, it is able
to find a cycle (A, X, P, Y) containing nodes X, Y, and itself.
As a result, nodes X and Y are 2-connected and they are in the
same block (refer to the Theorem 2 in Section 4). Node P
merges the blocks containing nodes X and Y into one single
block. Similarly, after receiving message 2 from nodes Y and
Z, node P puts nodes X, Y, and Z in the same block (refer to

the Lemma 1 in Section 4). Nodes S and T are merged into
one block after node P receives message 3. Node R remains
isolated in its block. There is no other node except R that
could possibly forward message 4 to node P.

Figure 4 provides the pseudo code of the function
On_Flooding(). As more messages arrive, node P keeps
merging the blocks in its BlockSet. At the end of an adaptive
detection period, all the neighbors of node P will probably be
merged into a few blocks. If only one block remains in the
BlockSet, node P is not a cut vertex. Otherwise, an active
detection process is triggered for further determination, which
we introduce in Section 3.3. Note that the adaptive detection is
executed passively during flooding search. It does not incur
any additional traffic overhead.

3.3. Active Detection

With the adaptive detection, a node knows for sure that it is
not a cut vertex if all the neighbors belong to a single block.
However, having two or more blocks remaining at the end of
adaptive detection does not mean a node is a cut vertex. For
example, a node might not be able to receive all the flood
messages from its neighbors because the requested item of a
search is found or the TTL threshold is reached. Therefore we
believe that an active detection is necessary to further identify
cut vertices. Compared to the adaptive detection, the active
detection achieves shorter convergence time at the cost of
additional but acceptable traffic overhead.

If the neighbors of a node are sorted into two or more
blocks at the end of adaptive detection, it regards itself as a
cut vertex candidate and immediately starts an active detection
process. At first, it randomly selects a neighbor from each
block and numbers the connection to each neighbor with a
unique index (e.g. 1, 2, 3 ...). Then the node sends probe
messages along these connections. The format of the probe
message is <ID, timestamp, TTL, connection_index>, where
ID is the candidate’s node ID, timestamp records the time the
probe message is generated, TTL is a pre-configured threshold
and connection index represents the connection between the
neighbor and the candidate. Each node keeps a connection list.
There is one entry for each candidate in the connection list
with the format of <candidate’s ID, timestamp,
connection_index 1, connection_index 2 …>. Upon receiving
the probe messages from candidates, a node will take
corresponding actions according to the information stored in
its connection list.

For the ease of illustration, we still use the example in
Fig.3 but remove unrelated nodes and symbols, as shown in
Fig. 5. We further assume node X, R, and S are selected from
each block. When other nodes receive the probe messages
originating from candidate P, they compare the probe
messages with the information stored in their connection lists.
Nodes that receive the probe messages also keep the latest
records of those cut vertex candidates. If there is no entry for a
candidate, a new entry is created. After that the TTL value is
reduced by 1 and the probe messages are then forwarded to
the downstream nodes.

Figure 5. Example of active detection

In Fig. 5, node V receives two messages from the same
candidate P but through different connections (connection 2
and connection 3). Therefore node V generates an arrival
message containing node P’s ID, a timestamp and two
connection indexes (2 and 3). The arrival message is sent to
the candidate P at once, which is depicted as the green dashed
arrow from V to P in Fig. 5.

On receiving the arrival message from node V, the
candidate P is able to find a cycle (P, R, V, S) containing
nodes R, S, and itself. That is, nodes R and S are 2-connected
and they should be in the same block (refer to the Theorem 2
in Section 4). So node P merges the blocks containing nodes
R and S into one block. In other words, Cpnt 2 and Cpnt 3 are
actually in one block.

In this way, the neighbors of a cut vertex candidate can be
merged into fewer and fewer blocks. If only one block
remains in the BlockSet, node P is not a cut vertex. Otherwise,
node P must be a cut vertex. Since the initial TTL value of a
probe message is usually small, we are able to get the result of
the active detection much sooner than the adaptive detection.
In other words, the active detection can be applied as a useful
complement to the adaptive detection. It can also be utilized as
an independent approach to identify cut vertices if we value
speed over cost.

3.4. Cut Vertex Neutralization

The goal of cut vertex neutralization is to enhance the

system reliability with respect to topology connectivity. Cut
vertex neutralization is relatively easy to achieve by building
extra connections between nodes in different blocks. For
example, node P selects a neighbor from each block, such as Z
and T. Then node P sends requests to nodes Z and T and asks
them to connect with each other. After the new connection is
built (depicted as the blue line in Fig. 5), the two initially
independent blocks are merged into one block. Consequently,
all nodes in the graph get 2-connected and node P becomes a
normal node.

3.5. Overhead

We evaluate the traffic overhead by counting the messages
delivered due to the cut vertex detection in a P2P system.
Clearly, the adaptive detection does not incur any traffic
overhead. For the active detection, suppose the system has n
nodes, let c be the average degree of nodes and let t be the
initial TTL value. Compared with the amount of arrival
messages and connection requests, the amount of probe
messages is much more because they are passed in the fashion
of peer-to-peer flooding. Therefore the total traffic cost of the
active detection is dominated by the cost of forwarding probe
messages.

Note that a node will not forward the probe message if it
has already sent an arrival message back to the corresponding
candidate. We define the set of nodes which may be traversed
by the same connection number of a candidate as the traversal
set of that connection. Then the traversal sets of different
connections of a candidate cannot overlap. As a result, the
total traffic cost of probe messages should be O(n2c/2), where
nc/2 is the number of edges in the whole graph. On the other
hand, the traffic cost is also limited by the initial TTL value. It
can never exceed O(nct).

Therefore the total traffic cost of forwarding probe
messages should be min(O(nct), O(n2c/2)). For large-scale
distributed systems, the value of c is usually much smaller
than that of n. The inequality ct≤n holds when the initial TTL
value t is limited to save traffic cost. Thus we can conclude
that the total traffic cost of active detection is O(nct).

The storage overhead of adaptive detection on a node is
dominated by the number of received flooded messages that
come from different nodes. Let m1 denote the size of an entry
in the MsgList. Then the storage overhead on a node is
O(m1ct). Similarly, let m2 denote the size of an entry in the
connection list. The storage overhead of active detection on a
node is O(m2ct).

For real distributed systems, c is usually fairly small, such
as 3, 4 or 5. We can use a small initial TTL value to limit the
traffic cost of active detection, as well as to limit the storage
overhead of both adaptive and active detections. The
simulation results in Section 5 also demonstrate that a small
value of t provides decent accuracy.

4. Correctness

Theorem 1: Two blocks in a graph have at most one joint
vertex.

Lemma 1: Let vertices A, B, C and D be four vertices in
graph G. A, B and C are in the same block, while A, B and D
are in the same block. Then A, B, C and D are in the same
block, too.

Theorem 2: If there are two disjoint paths between two
vertices in a graph, the two vertices are in the same block.

Theorem 3: A vertex is a cut vertex if and only if it is the
joint of multiple blocks.

Due to the page limit, we do not present the proofs here.
Please refer to our technical report for detailed proofs
(http://www.cse.ust.hk/~heyuan/Recu080118.pdf).

Consider an undirected graph G = (V, E) to represent an
overlay network, where V is the set of overlay nodes and E is

the set of the edges of the overlay network. We illustrate the
correctness of our distributed approaches.

Assume that the network topology is static and the initial
TTL value of each flooding message is set to infinity. As long
as there is a path between two nodes, the path will be detected
by either the adaptive or the active detection. Therefore the
overlay topology can be sketched if the detection lasts for an
adequately long period of time. According to Theorem 3, if
the neighbors of a node are finally merged into one single
block, the node is not a cut vertex; otherwise, the node is a cut
vertex. Thus the correctness of our distributed approaches is
proved.

As for the accuracy of our approach, it is well known that
given an appropriate topology construction, a query from one
node to another in the overlay could be achieved in O(lnN)
hops, where N represents the size of the overlay [22].
Moreover, it has been widely recognized that most practical
networks appear to be small-world or power-law networks,
where the complexity of search is O(lnN) or even O(ln(lnN))
[23]. Therefore, the length of a path between two nodes is
usually within the logarithmic order of the size of the overlay.
Through the real trace simulations in the next section, we also
show that setting the initial TTL value to a small constant is
sufficient to obtain a fairly high accuracy.

On the other aspect, without global information in our
scheme, a tiny portion of nodes might be falsely identified as
cut vertices. One possible case is that these nodes lie in very
long cycles in the graph while such cycles are not detected by
our distributed approaches with limited TTLs. However, such
nodes are rare and those neglected long cycles probably make
no sense in practical applications. Another possibility is due to
the variations of the transmission delays among different
nodes. Even though nodes might be falsely identified as cut
vertices in our proposal, applying cut vertex neutralization to
those false positive nodes will generate no harm to the system.

5. Performance Evaluation

We evaluate the impact of cut vertices, the accuracy of
detection, the traffic overhead and the effect of cut vertex
neutralization through intensive real trace experiments.
Further experiments are conducted on the correlation between
accuracy of detection and overlay dynamics. Aiming at
mitigating the negative impact of cut vertices, our scheme is
proved to be highly accurate, lightweight and greatly
beneficial to the reliability of large scale distributed systems.

5.1. Experimental Methodology

Table 1. Information of selected traces

Trace Size Average
degree

Number of Cut
Vertices

1 10101 2.41 1315
2 13086 6.7 1865
3 15142 5.1 2075
4 25702 4.9 4169
5 40036 3.88 6448

5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Trace index

N
um

be
r o

f n
od

es

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Trace index

A
ve

ra
ge

 n
od

es
 d

eg
re

e

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Trace index

P
er

ce
nt

ag
e

of
 c

ut
 v

er
tic

es

Figure 6. Size of traces Figure 7. Average node degree Figure 8. Proportion of cut vertices

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cut Vertices deleted

Q
ue

ry
 S

uc
ce

ss
 R

at
e

trace 1
trace 2
trace 3
trace 4
trace 5

1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial TTL value

A
cc

ur
ac

y
of

 d
et

ec
tio

n

trace 2 adaptive

trace 2 active

trace 3 adaptive

trace 3 active

Figure 9. Impact on efficiency Figure 10. Impact on connectivity Figure 11. Accuracy of Detection
The overlay topology in our experiments is generated with

the DSS Clip2 traces that were collected from Dec. 7th 2000
to June 15th 2001. We can provide the traces upon request.

Altogether we have 60 traces, and 13 of them are
neglected because they contain small quantities of nodes and
scarce connections. Nodes in the other 47 traces vary from
around 8000 nodes to more than 45000 and the average
degree varies from 2.4 to 6.7. We select 5 traces as the
representative for the subsequent experiments, as listed in
Table 1. Relevant information of all 60 traces is illustrated in
Figs. 6-8.

5.2. Impact of Cut Vertices

We first take a look at the impact of losing the critical
vertices in terms of query efficiency and connectivity. In Fig.
9, we measure the success rate of flooding-based queries,
setting the TTL value at 5. It is well known that query
efficiency largely relies on how well the nodes in the overlay
are connected. Though cut vertices usually account for less
than 10% of the overlay, deleting them often badly reduce
the success rate of queries. For a typical example, trace 3, in
Fig. 9, the original query success rate is 90%. When the cut
vertices are deleted step by step, the query success rate
rapidly drops. And after all the cut vertices are deleted
(x=100%), the query success rate drops to only 10%.

Losing cut vertices also results in many isolated
components in each overlay. As shown in Fig. 10, deleting a
small portion of those vertices significantly increases the
number of components. In other words, removal of cut
vertices causes the overlay to be fragmented. For example,
when half of the critical nodes leave, an overlay can break
into thousands of disconnected components.

5.3. Accuracy of Detection

As stated in Section 2, all the cut vertices in a graph can
be found by the traditional DFS algorithm. Based on the
results of the DFS algorithm, we evaluate the accuracy of our
proposed adaptive and active algorithm. Accuracy here refers
to the percentage of real cut vertices in the output. For the
adaptive detection, the output is the set of nodes identified as
cut vertices after all the nodes have issued a flooding-based
query. For the active detection, the output is the set of nodes
identified as cut vertices after all the nodes have executed the
active detection once. The preset TTL value in the
experiment corresponds to the scope of flooding in the
adaptive detection while it limits the range of probe messages
in the active detection.

Curves in Fig. 11 demonstrate that both the adaptive and
the active detection have high accuracy even when the initial
TTL value is as small as 4 (more than 98% are correct). More
interestingly, without introducing any extra traffic overhead,
the adaptive detection performs almost as well as the active
detection does. This finding also enables us to adopt a hybrid
strategy (a combination of two kinds of detection) when
identifying cut vertices to achieve high accuracy with low
traffic overhead.

Additional experiments are conducted on trace 3. Setting
the initial TTL value at 5, we change the proportion of nodes
that do flooding-based queries in an adaptive detection
period. The curve in Fig. 12 shows that as long as a small
portion of nodes issue flooding-based queries, the adaptive
detection can be precise enough. For example, when only 3%
of nodes issue flooding-based queries, the resulting accuracy
is as good as 90%. Considering the contrast in traffic
overhead, this result further proves the advantage of the
adaptive detection over the active detection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of flooding nodes

A
cc

ur
ac

y
of

 d
et

ec
tio

n
trace 3

1 2 3 4 5 6 7
10

4

105

10
6

107

10
8

109

10
10

Initial TTL value

M
es

sa
ge

s
de

liv
er

ed

trace 1

trace 3

trace 5

Figure 12. Accuracy of Detection Figure 13. Cost of Active Detection Figure 14. Effect of Neutralization (1)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trace index

A
m

pl
itu

de
 o

f q
ue

ry
 s

uc
ce

ss
 ra

te

0

2000

4000
0 10 20 30 40

0

500

1000

1500

2000

2500

3000

A
verage Life

Period length

N
nu

m
be

r o
f f

al
se

 n
eg

at
iv

e

0

2000

4000

010203040
0

200

400

600

800

1000

1200

A
verage Life

Period length

N
um

be
r o

f f
al

se
 p

os
iti

ve

Figure 15: Effect of Neutralization
(2)

Figure 16: Accuracy vs. Dynamics
(1)

Figure 17: Accuracy vs. Dynamics
(2)

5.4. Traffic Overhead

The major workload in the adaptive detection is
information processing on each node. Considering the
powerful processing capacity of modern processors, the
computation overhead appears to be trivial. Hence, this
discussion focuses on the traffic overhead incurred by the
active detection, as shown in Fig. 13. Note that in our design,
active detection is required only after a node cannot identify
itself through adaptive detection, especially when we adopt
hybrid identification strategies. According to the previous
experiment results, most of the cut vertices can be identified
by the adaptive detection. Therefore, only a tiny portion of
nodes have to execute the active detection. On the other hand,
the average cost on each node is acceptable. For example,
when TTL=5 in trace 1, the active detection has an accuracy
higher than 90% and the average traffic overhead is around
100 messages per node, without regard to the potential
benefit of the adaptive detection.

5.5. Effect of Cut Vertex Neutralization

We evaluate the effects of cut vertex neutralization
through two groups of experiments.

In the first group of experiments, we measure the number
of components increased after deleting a certain amount of
cut vertices, as shown in Fig. 14. Comparing the curves in
Fig. 14 with those in Fig. 10, we find the remarkable benefit
of cut vertex neutralization. After cut vertex neutralization,
the destructive effect of deleting cut vertices is reduced to
only 20%~30% of the original level.

In the second group of experiments, we measure the query
success rate after cut vertex neutralization. Randomly taking
4 or 6 nodes as the query targets, Fig. 15 depicts the
amplitude by comparing the query success rates before and
after cut vertex neutralization. As we can see from the
histograms, cut vertex neutralization improves the query
efficiency by 20%~90%.

From the experiment results above, we conclude that cut
vertex neutralization greatly improves the reliability of large
scale distributed systems.

 5.6. Accuracy vs. Dynamics

Since the information processed by the adaptive detection
is periodically extracted from the flooding messages, the
accuracy of the adaptive detection should have some
correlation with the overlay dynamics. In the last two
experiments, two metrics are adopted to measure the
accuracy of the adaptive detection with dynamic overlay: the
number of false negatives and the number of false positives.
False negatives represent nodes which are cut vertices but
not identified as cut vertices. False positives represent nodes
which are not cut vertices but identified as cut vertices. Both
numbers are counted as errors in the output but have different
impacts.

When false negative nodes exist, the adaptive detection
will inevitably miss some cut vertices (i.e. false negative
nodes). After the subsequent cut vertex neutralization, the
overlay connectivity is still vulnerable to the failure of cut
vertices. False positive nodes, on the other hand, introduce
unnecessary additional connections without any negative
effect on the connectivity.

We count the number of false negatives and the number of
false positives as we regulate the degree of overlay dynamics
and the detection frequency. As we can see in Fig. 16 and Fig.
17, the average life span varies from 100 to 4000 sec while
the period length of the adaptive detection varies from 1 to
40 sec. Fig. 16 shows that the number of false negatives has
close correlation with both the detection frequency and the
degree of overlay dynamics. Especially when the average life
span is short, the detection accuracy becomes much more
sensitive to the detection frequency. On the contrary, Fig. 17
shows that the overlay dynamics have little impact on the
number of false positives. And the latter keeps at a fairly low
level unless we execute detection too frequently.

As an observation result, we find it is reasonable to set
comparatively low frequency of the adaptive detection. The
output is highly accurate unless the overlay gets extremely
unstable. More frequent detection is necessary in more
dynamic environments. However, since the adaptive
detection incurs zero traffic overhead, our distributed
approaches keeps effective and lightweight under various
scenarios.

6. Conclusion

The connectivity among the nodes basically determines
the reliability of a large-scale distributed system. It is
observed that a small portion of nodes are often more critical
to the system reliability than the others. Removal of critical
nodes usually destroys the topology connectivity and incurs
substantive extra traffic within the systems.

We propose a distributed approach to identify cut vertices.
The proposed scheme is composed of three parts: adaptive
detection, active detection and cut vertex neutralization. The
adaptive detection utilizes the information from common
flooding message and realizes zero-overhead detection. As a
complement to the adaptive method, the active detection is
conducted to further improve the accuracy of detection. It is
also feasible to solely adopt the active method for fast and
lightweight detection. Based on the results of the detection,
cut vertex neutralization builds additional connections
around the critical nodes and enhances the system reliability.
We prove the correctness of our scheme theoretically and
evaluate the performance with trace-driven simulations.

Acknowledgements

This work is supported in part by NSF China Grants
No.60673179, No.60573140, No.60736013, and
No.60573135.

References

[1] S. Saroiu, P. Gummadi, and S. Gribble, "A Measurement Study
of Peer-to-Peer File Sharing Systems," in Proceedings of
Multimedia Computing and Networking (MMCN), 2002.
[2] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza, "RBP:
Robust Broadcast Propagation in Wireless Networks," in
Proceedings of ACM SenSys, 2006.

[3] O. Younis, S. Fahmy, and P. Santi, "An architecture for robust
sensor network communications," International Journal on
Distributed Sensor Networks (IJDSN), Special issue on localized
communication and topology protocols for sensor networks, 2005.
[4] W. Zhang, G. Xue, and S. Misra, "Fault-tolerant relay node
placement in wireless sensor networks: problems and algorithms;,"
in Proceedings of IEEE INFOCOM, 2007.
[5] F. Buckley and M. Lewinter, A Friendly Introduction to Graph
Theory, 2002.
[6] X. Liu, L. Xiao, A. Kreling, and Y. Liu, "Optimizing Overlay
Topology by Reducing Cut Vertices," in Proceedings of ACM
NOSSDAV, 2006.
[7] B. Awerbuch, "A New Distributed Depth-First Search
Algorithm," Information Processing Letters, vol. 20, pp. 147-150,
1985.
[8] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, "Sketch-
based Change Detection: Methods, Evaluation, and Applications,"
in Proceedings of ACM SIGCOMM Internet Measurement
Conference (IMC), 2003.
[9] S. Kim and A. L. N. Reddy, "Image-based Anomlay Detection
Technique: Algorithm, Implementation and Effectiveness"," IEEE
JSAC, 2006.
[10] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang,
"Locating Internet Bottlenecks: Algorithms, Measurements, and
Implications," in Proceedings of ACM SIGCOMM, 2004.
[11] D. Dumitriu, E. Knightly, I. Stoica, and W. Zwaenepoel,
"Denial of Service Resilience in Peer-to-Peer File Sharing
Systems," in Proceedings of ACM SIGMETRICS, 2005.
[12] Y. Lin, B. Liang, and B. Li, "Data Persistence in Large-scale
Sensor Networks with Decentralized Fountain Codes," in
Proceedings of IEEE INFOCOM 2007, 2007.
[13] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D.
Kubiatowicz, "Exploiting Routing Redundancy via Structured Peer-
to-Peer Overlays," in Proceedings of IEEE ICNP, 2003.
[14] Y. Zhu and Y. Hu, "Making Peer-to-Peer Anonymous Routing
Resilient to Failures," in Proceedings of IPDPS, 2007.
[15] T. Q. Qiu, E. Chan, and G. Chen, "Overlay Partition: Iterative
Detection and Proactive Recovery," in Proceedings of IEEE ICC,
2007.
[16] J. Mirkovic, G. Prier, and P. Reiher, "Attacking DDoS at the
Source," in Proceedings of IEEE ICNP, 2002.
[17] P. Keyani, B. Larson, and M. Senthil, "Peer Pressure:
Distributed Recovery from Attacks in Peer-to-Peer Systems," in
Proceedings of IFIP Workshop on Peer-to-Peer Computing, 2002.
[18] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, "Making Gnutella-like P2P Systems Scalable," in
Proceedings of ACM SIGCOMM, 2003.
[19] C. Tang and P. K. Mckinley, "On the Cost-Quality Tradeoff in
Topology-Aware Overlay Path Probing," in Proceedings of IEEE
ICNP, 2003.
[20] M. Li, W.-C. Lee, and A. Sivasubramaniam, "DPTree: A
Balanced Tree Based Indexing Framework For Peer-To-Peer
Systems," in Proceedings of IEEE ICNP, 2006.
[21] L. Ramaswamy, B. Gedik, and L. Liu, "A Distributed
Approach to Node Clustering in Decentralized Peer-to-Peer
Networks," IEEE Transactions on Parallel and Distributed Systems,
2005.
[22] C. Gkantsidis, M. Mihail, and A. Saberi, "Random Walks in
Peer-to-Peer Networks," in Proceedings of IEEE INFOCOM, 2004.
[23] A. Iamnitchi, M. Ripeanu, and I. Foster, "Small-world File-
sharing Communities," in Proceedings of IEEE INFOCOM, 2001.

