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ABSTRACT 
Demands on better interacting with physical world require an 
effective and comprehensive collaboration mechanism among 
multiple heterogeneous sensor networks. Previous works mainly 
focus on improving each single and specific sensor network, thus 
fail to address this newly emerged issue. In this paper, we study 
the issue of collaborative query processing among multiple 
heterogeneous sensor networks and formulate it into an 
optimization problem with respect to energy efficiency, called 
EE-QPS. To the best of our knowledge, we are the first one 
considering the collaborative query processing among 
heterogeneous sensor networks. By utilizing the implications 
among sensor networks, we design a heuristic approach named 
IAP to resolve EE-QPS. The experimental results validate our 
scheme and show that IAP achieves optimized energy efficiency 
under various environments. 

Categories and Subject Descriptors 
C.2.1 [Computer Communication Networks]: Network 
Architecture and Design – Distributed networks; C.2.4 [Computer 
Communication Networks]: Distributed Systems - Distributed 
applications; 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Sensor Network, Collaboration, Query Processing. 

1. INTRODUCTION 
The recent advances in wireless communication and micro-
electronic technologies have boosted the popularization of sensor 
networks. Sensor networks nowadays range from personal to 
mission critical systems including scientific observation, digital 
life, home automation, environment surveillance, traffic 
monitoring, and so on [1, 2, 3, 4].  
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Figure 1. Oil production map in Northeast China 

Meanwhile, we have seen an expansion in the use of various 
sensing devices such as widely equipped cameras for traffic 
monitoring, gas and temperature sensors deployed to ensure safe 
coal mining production, tens of thousands of PDAs and 
smartphones capable of capturing the acoustics or images 
disseminated in publics. They are developed and promoted by 
governments, enterprises, and public organizations, offering 
continuous collection of real-time information, satisfying the 
requirement of people’s daily lives. 

In the foreseeable future, we expect to witness the proliferation of 
sensor networks with a variety of functions that require a 
comprehensive collaboration mechanism among them. Previous 
studies in sensor networks, however, mainly focus on the 
performance and efficiency inside a single sensor network [1, 2, 
3, 4, 5]. In this work, we broaden the research into the scope of 
multiple heterogeneous sensor networks.  

This study is indeed motivated by a practical application of 
Qinhuangdao Oilport [7], which is a hinge city in the oil 
production and transportation of Northeast China. In order to keep 
the whole production and transportation flow safe and efficient, 
timely planning is necessary. And it is related to many factors 
such as oil supplies in oil fields, the flux capacity of oil pipeline 
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transmission, landway traffic, and environments of harbors. 
Formerly, we can only make relatively static decisions based on 
coarse estimations on these factors. The output of decisions often 
suffers from the dynamics of these factors, causing un-redemptive 
loss of profit and even serious accidents. Therefore a number of 
wireless sensor networks (WSNs) are deployed for the application 
to obtain live environmental data, as shown in Figure 1. 

To truly utilize WSNs in the above application, however, many 
challenges need to be addressed. Previous studies mainly 
concentrate on data collection and query processing in a single 
sensor network [6] . Using these approaches, we can only obtain 
isolated and incomplete results, inevitably leading to unilateral 
and even incorrect decisions. The WSNs in the above application 
have heterogeneous sensor motes, functionalities, and are 
dispersedly deployed. It is necessary but challenging to enable 
interoperations and information integration among them. Also, the 
sensor networks continuously generate huge volumes of data with 
various attributes, simply gathering all the data and processing 
them in a centralized manner is obviously infeasible. Distributed 
sensing and collaborative query processing among them are 
indispensable. Moreover, the sensor networks are likely to receive 
substantive complex queries, while the sensors are usually 
energy-constrained and not easily rechargeable. Therefore 
energy-efficient query processing among multiple sensor 
networks is a crucial issue but has never been studied before. 

To address the above challenges, we propose the scheme of 
collaborative query processing among heterogeneous sensor 
networks. The major contributions of this work are as follows. 

 First, we introduce the system model of collaborative sensor 
networks and then formalize the concept of collaborative 
query processing among them.  

 Second, implications among different sensor networks are 
utilized to minimize the total energy cost of query 
processing. We formulate the optimization problem of 
collaborative query processing with respect energy 
efficiency, called EE-QPS, which is proved to be NP-hard.  

 Finally, we propose an efficient approach to schedule the 
pipeline of query processing to achieve optimized energy 
efficiency for the involved sensor networks. 

The remainder of this paper is organized as follows. Section 2 
introduces the background of our study. We elaborate the detailed 
design in Section 3, including the formalization of collaborative 
query processing, the formulation of the EE-QPS problem, and 
the implication-aware heuristic approach to resolve it. Section 4 
presents the methodology and results of experiments. In Section 5, 
we conclude the paper and point out future research directions. 

2. BACKGROUND 
We have seen remarkable success in the research field of sensor 
networks. However, the state of arts mainly concentrates on the 
in-network issues, such as in-network sensing control, data 
processing, and protocol design [9, 10, 11, 12, 13, 14]. There is 
not many existing works concerning the intra-sensor-network 
issues such as exploring mechanisms to manage, share, analyze, 
and understand the data among different sensor networks. As the 
background of our study in this paper, we discuss some related 
models and systems in this section. We also compare some 
mature research fields with collaborative sensor networks, 

showing the special characteristics and challenges we should 
emphasize and address in this emerging area. 

A preliminary model of networking heterogeneous sensors is 
initially proposed by Kevin A. Delin et al [15]. In their proposal 
named Sensor Web, different types of sensing devices owned by a 
common authority, are geographically distributed and connected 
as a unified networking system. The feature of this unified model 
lies in the ability of the individual pieces to act and coordinate as 
a whole. Heterogeneous sensors are contained in the system and 
interact with each other through wireless communications. This 
immediately allows the system to be synchronous throughout, 
unlike many other networks. Data sensed by a sensor are 
delivered to and utilized by some other sensors such that all the 
sensors can act a whole for their common purposes. By definition, 
a Sensor Web is an autonomous, stand-alone, sensing entity, 
which does not address the issue of query processing, nor 
manipulate the collaboration mechanism of multiple sensor 
networks. It differs greatly from collaborative heterogeneous 
sensor networks that we study in this paper.  

The term “SenseWeb” is sometimes used to refer to sensors 
connected to the Internet. S. Nath et al propose SensorMap [16], 
which represents a new class of applications that relies on real-
time sensor data and its mash-up with the geocentric web to 
provide instantaneous environmental visibility and timely 
decision support. The platform also transparently provides 
mechanisms to archive and index data, to process queries, to 
aggregate and present results on the web interface based on 
Windows Live Local. SensorMap adopts a fully centralized 
architecture. Data collection, aggregation, visualization, sensor 
indexing, and query processing are all executed by a central 
server locally. SensorMap works reasonably well currently when 
only a few sensor networks are included and user queries are not 
too frequent. But it will probably be argued that such architecture 
lacks scalability. 

IrisNet proposed in [17] is another software infrastructure for 
worldwide web of sensors that lets users query globally 
distributed collections of high-bit-rate sensors. IrisNet appears 
similarly with SensorMap in the sense that they both adopt tools 
like XML to describe sensor data and provide visualized results 
for queries on a Web portal. But IrisNet differs much from 
SensorMap because it adopts a decentralized architecture. 
Heterogeneous sensors are integrated in IrisNet. Despite 
differences between sensor types, developers need a generic data 
acquisition interface to access sensors. In IrisNet, the nodes that 
implement this interface are called sensing agents (SAs). On the 
other hand, services must store the service-specific data the SAs 
produce in a distributed database. In IrisNet, the nodes that 
implement this distributed database are called organizing agents 
(OAs). In general, SAs take charge of sensing controls and data 
aggregation from sensor networks, while OAs are in charge of 
storing data and resolving queries. They two, together with the 
underlying sensor networks, and a web portal construct the main 
body of IrisNet.  

Another prototype system is SensorNet [18].  SensorNet proposes 
a data architecture and infrastructure that supports plug-and-play 
sensors of various types, archival storage of sensor data, 
standards-based publication of sensor data, and sensor control 
services. It allows for the integration of dissimilar sensor systems 



into one system. It focuses on high speed, reliable access and 
delivery of sensor data inside the infrastructure. 

The above models and systems (SensorMap, IrisNet, and 
SensorNet) mainly concentrate on the data collection, aggregation, 
and direct exhibition of sensor data from heterogeneous sensor 
networks as well as the query processing based on the collected 
data afterwards. Although different types of sensor networks are 
contained, they are still independent during the process to resolve 
queries, not supporting any intra-network collaborations among 
each other. 

We may also find some similarities between distributed databases  
[19] and collaborative sensor networks. Both these two types of 
systems serve users with distributed data sources. The data in 
distributed databases are less dynamic and often replicated among 
the hosts, while the sensor data are frequently updated and reside 
in different sensor networks. More importantly, the intra-network 
bandwidth consumption is the first concern when we design the 
query processing in a distributed database. On the contrary, we 
must regard the energy costs of sensing and communication inside 
each sensor network as the first concern when we design the 
collaborative query processing among heterogeneous sensor 
networks. Hence it is inapplicable to migrate the existing 
approaches in the field of distributed databases into the context of 
collaborative sensor networks. 

3. DESIGN 
In this section, we first formalize the concept of collaborative 
query processing among heterogeneous sensor networks. We 
elaborate how to utilize the implications among sensor networks 
to save the total energy cost of query processing. The so-called 
EE-QPS problem is then formulated. Due to the NP-hardness of 
EE-QPS, we design a heuristic approach to resolve it. 

3.1 Collaborative Query Processing 
We describe a system supporting collaborative query processing 
among heterogeneous sensor networks as follows: first, it is an 
information system providing live sensing and query processing 
services; second, multiple heterogeneous sensor networks are 
integrated in; third, instead of directly uploading their data for 
aggregation and exhibition at any dedicated server, sensor 
networks in this system collaborate with each other in 
accomplishing the querying tasks.  

A typical system diagram of collaborative sensor networks is 
shown in Figure 2. Generally it consists of the following 
components: sensor networks, data and query processor, and the 
portal for query input and data output. Sensor networks, usually 
via their sink nodes, connect with each other over the Internet. A 
central managing server (CM), which can be web-based or web-
free, is in charge of accepting external queries and outputting the 
queried results. The core component in the middle manages 
sensing control, query scheduling, and data aggregation, which is 
named as data and query processor. 

Our design aims at a mechanism for CM to schedule a complex 
query that involves multiple sensor networks. We look back to the 
motivated application. To retrieve information from those WSNs, 
a straightforward but inefficient method is that we independently 
query every sensor network and gather all corresponding 
information for local analysis. Then each query will potentially   

 

Figure 2. The diagram of a system that integrates 
collaborative sensor networks 

involve all the sensor nodes in each sensor network. Such a blind 
querying scheme incurs excessive energy consumption, which 
obviously ruins the sensor networks for long-term uses. 

Consequently, a crucial yet challenging issue is how to efficiently 
query the sensor networks and obtain the desired information with 
the minimum total energy cost in all the sensor networks. 

Due to the natural interdependence in the physical world, data of 
different sensor networks are usually correlated with each other.  

For example, sensor data of temperature and humidity, Ultra-
violet Index and illumination, the road traffic and the busyness of 
parking lots, the flux of oil pipelines and the available capacity of 
oil tanks. We can partially infer the data of a sensor network 
based on the data of another one, as long as they are correlated. 
Existing data correlations have been validated by both practical 
deployments and theoretical models of sensor networks [2, 3, 8]. 
We call such correlations among sensor networks implication.  

Implications can be utilized to save the total energy cost of query 
processing. Specifically, when we process a query involving 
multiple sensor networks, the data from previously queried sensor 
networks can be used to partially infer the data of the 
subsequently queried sensor networks. Therefore it costs the 
subsequent ones fewer operations (including sensing and 
communication) to obtain the necessary data. The total energy 
cost to process this query is thus reduced. For example in the 
motivating application, when setting a schedule for the oil 
production flow, after we obtain the information from the harbor 
surveillance sensor networks, we may sweep off those harbors 
under infeasible condition. In the subsequent stages, we only 
query the status of traffic and oil pipelines from only a portion of 
sensor networks related to the feasible harbors, saving 
unnecessary operations. Therefore, in the context of collaborative 
sensor networks, it is of great significance to schedule the 
sequence of query processing to achieve the optimized overall 
energy efficiency by fully utilizing the implications among sensor 
networks. 

For a complex query, the involved sensor networks are correlated 
with each other. The cost reduction in a subsequently queried 
sensor network is an accumulative effect caused by all the 
previously queried ones. Thus it is a natural choice to process a 
complex with a pipeline of all the involved sensor networks. 
Suppose a query Q concerns a subset of sensor networks, say 
{W1, W2 ...WN}. As shown in Figure 3, we denote a sensor 
network as a node, ignoring the concrete structures. The pipeline 
to resolve a complex query can be depicted as a directed cycle in 
the graph, starting and ending at CM. At the beginning, query Q is 
received from the web portal and interpreted. Then CM selects 



sensor network W1 to forward query Q. After corresponding 
operations (data sensing and transmission etc.), W1 passes query 
Q as well as the filtered sensor data to W2. Similarly, after W2 
finishes its work, it passes query Q and the accumulative filtered 
sensor data to W3. The process continues until all the N sensor 
networks have been accessed by query Q one by one. In the end, 
the complete result of query Q is returned from the last sensor 
network WN to CM, and then output to the user. 

 
Figure 3. The pipeline of collaborative query processing 

3.2 The Query Optimization Problem 
We address the issue of query optimization by emphasizing the 
implication-aware collaboration among the sensor networks. 
Instead of digging into the concrete operations (such as data 
sensing, filtering, aggregation, and caching) and correlation 
patterns of sensor data, we focus on the impact of implication and 
the methodology to utilize it, so that we can minimize the total 
energy cost of query processing We name the query optimization 
problem as EE-QPS (Energy-Efficient Query Processing among 
heterogeneous sensor networks). 

The EE-QPS problem can be modeled with a directed weighted 
graph G=(V, E). Suppose we have N sensor networks involved. V 
is the set of nodes. Let nodes v1, v2 ... vN represent the sensor 
networks W1, W2 ... WN. E is the set of edges representing 
implications. Edge eij is the edge from vi to vj, and sij is the weight 
of eij (i≠j). We define sij as the index of implication from Wi to Wj. 
It denotes the proportion of information in Wj that remains 
uncertain when the data of Wi are known. Note that, sij is not 
necessarily equal to sji. When Wj is completely independent from 
Wi, sij=1; when Wj can be completely inferred from Wi, sij=0. We 
use information entropies to quantify the indices of implications 
from sensor network X to sensor network Y. 
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We directly use X and Y to represent the data sets of X and Y 
while xi, yj are the corresponding sensor data respectively. H(Y) is 
the original entropy, denoting the original uncertainty of data set 
Y. H(Y|X) is the conditional entropy, denoting the uncertainty of 
data set Y when data set X is already known. The conditional 
probability P(yj|xi) is calculated with those xi and yj falling into 
the same Period of validity. For instance, P(yj=m|xi=n) is the 
probability of yj to be m, given the current value of xi to be n. 
We define Ci as the original energy cost in sensor network Wi 
(measured by nJ) incurred by a query, when no information of Wi 
is inferred from other sensor networks. It can be quantified as 

follows: Ci=Unit cost×Scale of Wi, where Unit cost is the cost for 
a single sensor to respond to a query and Scale is the number of 
sensors in Wi. 

It is difficult to accurately estimate the cumulative effect of 
implications among sensor networks, especially in dynamic and 
unpredictable environments. As a simplified case, we assume all 
sij are independent from each other. Thus the aforementioned 
accumulative effect can be quantified by multiplying the indices 
of implications from all the upstream sensor networks along the 
pipeline to the current one.  

Taking Figure 3 as an example, we process a query through the 
pipeline (W1→ W2→... ...→WN). The total cost P incurred in all 
the N sensor networks is calculated by: 
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For convenience, we set sii =1. Clearly, we have N! options to 
schedule the pipeline of query processing. Meanwhile, due to the 
natural heterogeneity, the indices of implications probably vary a 
lot with different pairs of sensor networks. Therefore different 
pipelines present great difference in the total energy costs. 
Towards the same queried result, there exists an optimal pipeline 
scheduling, which incurs the minimum total energy cost. 
Formally, the EE-QPS problem is formulated as follows: 

INSTANCE: A sequence of positive constants (C1, C2 ... Cn), 
where Ci denotes the normalized original cost in sensor network 
Wi incurred by a query. Correspondingly, there is an implication 
matrix 
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where 0≤sij≤1, sii=1 for all integers i and j in [1, N]. 

SOLUTION:  
(a1, a2 ... aN), which is a permutation of (1, 2 ... N). 

MEASURE: 
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which is the total cost of all the involved sensor networks. The 
optimal solution of the problem minimizes the value of P, i.e., 
achieves the best energy efficiency. The optimization problem of 
EE-QPS is NP-hard, so we need to design a heuristic approach to 
resolve it. Due to the limit of pages, we do not present the detailed 
proof here. 

3.3 The Heuristic Approach 
First of all, sensor networks periodically exchange their latest 
sample data with each other so that the implications among them 
can be quantified. The updated indices of implications are 
reported to CM. Thus, CM obtains a global view of implications 
while needs not collect the detailed sensor data. 

We design a greedy approach called IAP (Implication-Aware 
Processing) to find a close-to-optimal scheduling, the temporal 
complexity of which is only O(N2). Given an instance of EE-QPS  
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Figure 4. Comparison of approaches (1) 

with N sensor networks (W1, W2 ...WN), we suppose (V1, V2 ...VN), 
a permutation of (W1, W2 ...WN), is the final scheduled pipeline. 
Then the process of scheduling can be divided into N+1 states T0, 
T1 ...TN, where Ti refers to the state when the first i sensor 
networks of the pipeline have been selected. Correspondingly, we 
define two sets R and R’. Given state Ti, R contains the first i 
sensor networks that have been determined in the pipeline, while 
R’ contains the (N-i) unselected ones. We define a heuristic 
function as follows to select the (i+1)th sensor network of the 
pipeline. 

' { }
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∈ −∈ ∈
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The parameters Cv, Cx and Cy are the original costs, which can be 
known from the basic information of the sensor networks. sxv, sxv 
and svy are the indices of implications quantified as above. U(v) is 
the sum of two parts. The first part is the energy cost in v if it is 
selected as the (i+1)th sensor network. The second part is the 
upper bound of total energy cost in the remaining (N-i-1) 
unselected sensor networks, if v is selected as the (i+1)th sensor 
network. U(v) denotes the maximal energy cost incurred in the 
remaining (N-i) sensor networks if v is selected as the (i+1)th 
sensor network of the pipeline. 

Therefore the (i+1)th sensor network of the pipeline should be 
sensor network v which minimize U(v), expressed as follows: 

1 'argmin ( )i v RV U v+ ∈=  
Subsequently, Vi+1 is removed from R’ and added into R. After N 
rounds of selection, the pipeline is finally decided. As soon as the 
pipeline is scheduled, the query is passed from CM to sensor 
network V1, then V1 to V2, then V2 to V3 and so on. In the end, the 
query is finished on VN. The final result is then returned to CM 
and output to the user. 

4. PERFORMANCE EVALUATION 
We conduct several groups of simulations to evaluate the 
performance of the proposed IAP approach based on the data we 
collected from the prototype system. The parameters used in the 
simulations are listed below: 

NW: Total number of sensor networks; 

NQ: Total number of queries injected; 

c[1..NW]: Original costs in each sensor network, measured by nJ; 
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Figure 5. Comparison of approaches (2) 

s[1..NW][1..NW]: Indices of implications; 

n[1..NW]: Number of sensor networks involved in each query. 

The following basic settings apply to all the simulations: NW=30. 
NQ=1000. The sensor networks involved in each query are 
randomly chosen from the 30 simulant sensor networks. Other 
relevant parameters are varied in the simulations for comparisons. 

4.1 Comparison among Approaches 
Let n[1..NW] conform to a uniform distribution on [3, 15]. c[1..NW] 
conform to a uniform distribution on [10, 50]. The first group of 
simulations is divided into two rounds. In round 1, s[1..NW][1..NW] 
conform to a uniform distribution on [0, 1]. In round 2, 
s[1..NW][1..NW] conform to a uniform distribution on [0.7, 1]. 

We compare IAP with two other approaches for query processing. 
One of them is the naive approach, which broadcasts a query to 
all the involved sensor networks simultaneously and all the sensor 
networks process the query independently. Obviously the total 
energy cost of that approach should be the sum of original costs in 
all the involved sensor networks. The other is the random 
approach, which processes a query in a pipeline and the pipeline 
is randomly scheduled. The random approach partially utilizes the 
implications among sensor networks but does not optimize the 
pipeline scheduling.  

Figures 4 and 5 plot the energy costs of all 1000 queries using 
three different approaches. The statistical result says:  

1) Compared with the naive approach, the percentage of cost 
saved by the random approach has mean 51.3% and standard 
deviation 19.6% in round 1, and has mean 38.9% and standard 
deviation 17.1% in round 2. This shows the benefit of 
transinformation among sensor networks on improving the energy 
efficiency of query processing. It also supports the necessity of 
the implication-based sink-overlay construction, as introduced in 
Section 3.3. 

2) Compared with the random approach, there is a further save of 
cost in IAP. The percentage of cost saved by IAP has mean 37.6% 
and standard deviation 17.2% in round 1, and has mean 41.6% 
and standard deviation 19.1% in round 2. IAP always outperforms 
the random approach in all instances. This validates the rewarding 
effect of IAP, which optimizes pipeline scheduling by fully 
utilizing the implications among sensor networks. 
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Figure 6. Performance gain vs. sensor network heterogeneity 

It is worth noticing that in the two rounds of simulations, we 
conduct the comparisons using different settings of implications. 
The experimental results suggest that as long as the sensor networks 
are correlated with each other, it is always necessary and beneficial 
to utilize the implications among sensor networks. 

4.2 Performance Gain vs. Heterogeneity 
In this group of simulations, we evaluate the performance gain of 
IAP when the original energy costs of sensor networks become 
heterogeneous. Here s[1..NW] [1..NW] conform to a uniform 
distribution on [0, 1]. n[1..NW] conform to a uniform distribution on 
3, 15]. In order to simulate sensor network heterogeneity, we let 
c[1..NW] respectively conform to a uniform distribution on [10, 15], 
[10, 500] and [10, 10000]. Since c[1..NW] is uniformly distributed, a 
larger interval of c[1..NW] leads to stronger heterogeneity. 

As we can see from Figure 6, the performance gain of IAP, 
compared with the random approach, apparently increases as the 
sensor networks become more and more heterogeneous. The mean 
percentages of saved cost are respectively 33.1%, 43.7%, 55.5%. 
Consider the practical applications, which generally integrate many 
heterogeneous sensor networks, the cost of sensing in the sensor 
networks must be quite diverse. The simulation result reveals that 
IAP is especially suitable and efficient in such environments. 

5. CONCLUSION 
Demands on better interacting with physical world require an 
effective and comprehensive collaboration mechanism among 
heterogeneous sensor networks. In this paper we formalize the 
concept of collaborative query processing and study the issue of 
query optimization among heterogeneous sensor networks. 
Accordingly we design a heuristic approach IAP to minimize the 
energy costs by utilizing the implications among sensor networks. 
The simulation results validate our design, which show that IAP 
greatly enhances the energy efficiency of query processing. Further 
compared with the random approach, the performance gain of IAP 
keeps consistent with various types of queries and becomes even 
greater in heterogeneous environments. 

Unified systems of web and sensor networks present a promising 
direction for integrating various sensor networks to achieve 
powerful and intelligent functionalities. In the next step, we plan to 
progress the research in both theoretical and systematical aspects 
based on our OceanSense [10] project. We also consider the user-
oriented optimization as a potential direction of our future work. 
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