
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

On the reliability of large-scale distributed systems – A topological view

Yuan He a,*, Hao Ren b, Yunhao Liu a, Baijian Yang c

a Hong Kong University of Science and Technology, Department of Computer Science and Engineering, Hong Kong
b College of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
c Department of Technology, Ball State University, Muncie, IN 47306, United States

a r t i c l e i n f o

Article history:
Received 12 August 2008
Received in revised form 25 March 2009
Accepted 25 March 2009
Available online 1 April 2009

Responsible Editor: A. Capone

Keywords:
Cut vertex
Peer-to-peer
Reliability
Detection
Distributed method

a b s t r a c t

In large-scale, self-organized distributed systems, such as peer-to-peer (P2P) overlays and
wireless sensor networks (WSN), a small proportion of the nodes are likely to be more crit-
ical to the system’s reliability than others. This paper focuses on detecting cut vertices so
that we can either neutralize or protect these critical nodes. Detection of cut vertices is
trivial if the global knowledge of the whole system is known but it is very challenging
when the global knowledge is not available. In this paper, we propose a completely distrib-
uted scheme where every single node can determine whether it is a cut vertex or not. In
addition, our design can also confine the detection overhead to a constant instead of being
proportional to the size of a network. The correctness of this algorithm is theoretically
proved and the key performance gains are measured and verified through trace-driven
simulations.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale distributed systems, such as Peer-to-peer
(P2P) overlays and wireless sensor networks (WSN) are
proliferating due to their high flexibility, easy implementa-
tion and high autonomy. However, such systems suffer
from node failures because P2P nodes might leave the sys-
tem at any time they want, and sensor nodes may sud-
denly die from running out of energy or being attacked.
Hence, providing reliable services is a very critical and
challenging problem for those systems.

For a large-scale distributed system, it is often not cost
effective to protect all the nodes. Also, nodes in a distributed
system are usually not equally important from the reliability
point of view. For example, Saroiu et al. [1] observed that
after randomly removing 30% of the nodes from a 1771
nodes Gnutella network, 1106 of the remaining 1300 nodes
stayed connected, and were likely to exchange and share
information. In contrast, if 4% of carefully selected nodes

are removed from the system, the overlay was fragmented
into hundreds of pieces. Other researchers also noticed the
existence of critical nodes or critical links in the context of
P2P or sensor network systems [2–4].

Fig. 1a illustrates a topology of a portion of a P2P over-
lay network or a WSN. The dashed arrows depict the ser-
vice/information flow. Clearly, the failure of any white
node in Fig. 1a will not have much impact on the overall
reliability of the system. However, if the red node P fails,
the consequence is serious. The motivation of our work is
to answer the following question: if we cannot afford to
protect every node, will it be effective just protecting the
critical nodes? For example, in a P2P system, if we can
identify node P is critical, we may add edge AB or AC to pro-
tect the network from being partitioned by the crash/
departure of P, as illustrated in Fig. 1b. As a result, the net-
work is still connected and the service will not be inter-
rupted when P leaves. If it is a sensor network, we may
give critical node P a higher priority in competing channels
or release node P from unnecessary sensing jobs to save its
power and hence results in a longer lifetime.

We model a distributed system, such as a P2P or a WSN,
by an undirected graph G ¼ ðV ; EÞ where the vertex set V

1389-1286/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.03.012

* Corresponding author. Tel.: +852 98179865.
E-mail addresses: heyuan@cse.ust.hk (Y. He), renhao1973@gmail.com

(H. Ren), liu@cse.ust.hk (Y. Liu), byang@bsu.edu (B. Yang).

Computer Networks 53 (2009) 2140–2152

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

Author's personal copy

represents units such as hosts or sensors, and the edge set
E represents physical links. Intuitively, all the cut vertices
[5,6] in a graph are critical nodes. For ease of expression,
we use the terms ‘‘node” and ‘‘vertex”, ‘‘edge” and ‘‘connec-
tion” interchangeably in the remainder of this paper.

It is trivial to compute the cut vertices if we have the
complete information of a graph G [6]. However, collecting
global information in a dynamic, large-scale distributed
system is non-trivial. While existing approaches usually
depend on the global knowledge, they usually incur huge
traffic overhead [7] and are impractical in large scale dis-
tributed systems. In this paper, we propose a novel ap-
proach to identify cut vertices in a distributed manner. A
tool is offered for each node to determine whether or not
it is a critical node. Corresponding actions are then pro-
posed to protect those critical nodes to achieve higher
reliability.

The highlights of our proposal are summarized as
follows:

1. Local: without the help of global knowledge, a node can
identify whether it is a cut vertex based solely on local
information.

2. Traffic lightweight: no need to insert any extra traffic
into the network, because in both P2P and WSN sys-
tems, message transmissions are considered more
resource-consuming than local computing.

3. Adaptive-accuracy: use relatively limited information to
estimate the probability of being a cut vertex. We argue
that a 100% precise algorithm is not necessary as long as
all the cut vertices are detected and the number of
wrongly identified cut vertices is small. Furthermore,
we can make corrective decisions by requesting more
information when necessary.

4. Dynamic: as P2P nodes come and leave frequently, and
sensor nodes might run out of energy at any time, the
algorithm is able to run at each node at any time to
identify itself if it becomes a cut vertex at the given
time.

To simplify our discussion, we focus on the P2P systems
in this paper. The remainder of this paper is organized as
follows. Section 2 discusses the related work. Section 3
presents the distributed approach. We then discuss the
properties of our approach in Section 4, and illustrate our
simulation methodology and the results in Section 5. Our
work is concluded in Section 6.

2. Related work

The reliability of a system relies on many aspects, such
as the resilience and stability of network topology, the
availability of the data and service, and the efficiency of
content distribution and transmission etc. The dynamic
and self-organizing nature of large-scale distributed sys-
tems brings more challenges to this issue. Over the past
few years, numerous methods and techniques have been
proposed to monitor, model and detect failures [8–16],
and various schemes and mechanisms have been devel-
oped to improve the availability and the system resilience
to provide more reliable services [17–22].

Dumitriu et al. [18] sort the patterns of Denial-of-Ser-
vice attacks and observe node behavior in P2P file sharing
systems. Misbehaving ”supernodes” and power-law net-
work topology are considered the contributing factors to
the resilience of such systems. Instead of identifying vul-
nerable peers, they propose counter-strategies to provide
immunity to the attacks by sacrificing performance in the
absence of such attacks. In [8,13], novel techniques are
proposed for network anomaly detection and traffic mea-
surement. This school of approaches focuses mainly on
network anomaly and dynamic failure and is not beneficial
to normal cases. Some other recently proposed algorithms
also address the reliability problems of overlay networks
[17–22], but they treat all the nodes equally without dis-
tinguishing ‘‘critical” nodes. Indeed, critical nodes do exist
in all sorts of distributed systems, such as critical nodes in
service [23], in data or resources [18] and in topology. We
believe critical nodes are extremely important to the reli-
ability of network systems.

In this paper, we focus on the critical nodes from the
topological perspective, specifically, cut vertices. Cut ver-
tex is a concept in the classical graph theory which has
been studied extensively. Existing algorithms to find cut
vertices in graph theory include the DFS-based algorithm
and bi-connected component sorting algorithm [6]. Both
algorithms require global information of the network
topology. As we know, it is extremely difficult, if not
impossible, to obtain such topology information in large-
scale distributed systems.

Ahuja et al. [24] propose an algorithm for finding cut
vertices in asynchronous networks, which is based on the
distributed DFS algorithm proposed in [25]. Those two
algorithms share a common feature with our algorithm
in the sense that they also do not require global knowledge
of the network topology. The applied scenarios of them,
however, are static asynchronous networks. Network
dynamics (such as frequent joining in and departure of
nodes, unexpected failure, and changes in network connec-
tions), which are the nature of P2P systems and WSNs
nowadays, are not taken into account. For instance, one
run of the algorithm in [24] costs 2n-2 time steps, where
n is the number of nodes in the network. If there is any
change in the network topology during the running period,
the output of the algorithm might become incorrect. Dif-
fering from the aforementioned proposals, the scheme pro-
posed in this paper addresses the issue of finding cut
vertices in distributed systems like P2P overlays and
WSNs. As demonstrated by our trace-driven simulations

A

B
C

PP

(a) (b)

Fig. 1. Cut vertex in a P2P overlay or a WSN.

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2141

Author's personal copy

in Section 5, our scheme remains accurate in dynamic net-
work topologies. Moreover, its traffic overhead is fairly
low. We will present a comparison analysis in Section 3.5.

Keyani et al. [26] address distributed recovery from at-
tacks in P2P systems. They propose to modify the P2P over-
lay to reduce the number of high degree nodes. High
degree nodes are more vulnerable to attacks, which is sim-
ilar to the role of critical nodes in our paper. Because
detecting high degree nodes is less difficult than locating
cut vertices, their method tries to reduce high degree
nodes and is invoked only when an attack occurs. How-
ever, their method cannot improve the reliability of topol-
ogy for the normal cases when there are no attacks.

Critical nodes in WSNs are studied more than those in
P2P and other distributed systems, probably because they
have limited power energy and communication range.
Keyani et al. [26] propose a node placement algorithm in
WSNs. Their approach focuses on a small portion of critical
nodes to support fault-tolerant communication and the
computation complexity is approximated to O(1). From
the topological point of view, those relay nodes they de-
fined are very likely to be cut vertices. In comparison with
the work in [26], our scheme concentrates more on cut ver-
tex detection and topology optimization. Moreover, our
scheme can be applied to both P2P overlays and WSNs.

Although many studies on optimizing overlay topolo-
gies have been proposed in P2P systems [27–31], the goal
of these studies is mainly to reduce the search overhead in-
stead of improving the system reliability. Ramaswamy
et al. [32] propose a mechanism for detecting and con-
structing clusters in a peer-to-peer system. But their ap-
proach cannot be applied to detect cut vertices. To the
best of our knowledge, the scheme we propose in this pa-
per is the first distributed approach to detect cut vertices in
large-scale distributed systems.

3. The distributed approach

This section describes our distributed approach to iden-
tify the critical nodes in large-scale distributed systems.
We assume the communication between peers/sensors is
mainly by flooding. With the help of information inter-
changed between peers/sensors, we then design a zero-
overhead adaptive detection method to identify critical
nodes. The accuracy of the detection can be reinforced by
an active detection method with a fairly low cost. Both
adaptive and active detection will be executed periodically
to reflect the dynamics of large-scale P2P overlays and
WSNs.

We begin our discussion from essential definitions and
principles, followed by the proposed adaptive detection
and active detection. A straightforward cut vertex neutral-
ization method is then introduced to improve the system
reliability. The last part of this section addresses the over-
head of our scheme.

3.1. Definitions and principles

As stated in Section 1, we model a distributed system,
such as a P2P or a WSN, by an undirected graph G ¼ ðV ; EÞ

where the vertex set V represents units such as hosts or
sensors, and the edge set E represents physical links. The
following are the formal definitions used in this discussion
[5,6].

Component: A component is a maximally connected
subgraph.
Cut vertex: A cut vertex is a vertex of a graph such that
removal of the vertex causes an increase in the number
of connected components.
Bridge: A bridge, or cut edge, is an edge whose removal
disconnects a graph.
K-connected: If it is always possible to establish a path
from any vertex to all others even after removing any
(k � 1) vertices, then the graph is said to be k-
connected.
Block: A block is a maximally connected subgraph hav-
ing no cut vertex. A block in a graph can be either a 2-
connected subgraph or a bridge with its end-vertices.

Because a cut vertex separates one component into
many, we come to the following theorem: a vertex is a
cut vertex if and only if it is the joint of multiples blocks.
The correctness of this theorem is proved in Section 4.

Without loss of generality, three possible cases are illus-
trated in Fig. 2. In Fig. 2a, the cut vertex (red point) is the
joint of a 2-connected subgraph and a bridge; in Fig. 2b,
the cut vertex is the joint of two 2-connected subgraphs;
in Fig. 2c, the cut vertex in the middle is the joint of two
bridges. Indeed, all cut vertices fall into these three cases.

3.2. Adaptive detection

A P2P overlay or a WSN usually adopts the flooding
mechanism where a message is propagated from a node
to the others hop by hop. The forwarding path of a flooding
message also contains the connectivity information from
the starting node to the current node. We propose to utilize
such information to find cut vertices by sorting the neigh-
bors of a node into one or more blocks. According to the
aforementioned theorem, a node is a cut vertex if its
neighbors belong to multiple blocks.

In our scheme, we assume the following characteristics
of flooding in a distributed system.

(1) A node forwards the flooding message it received to
all its neighbors except the node where the message
came from.

(2) Each flooding message is assigned a globally unique
message ID. In real P2P overlays and WSNs, a node is
often assigned a globally unique ID. Without global
knowledge of the network, this can be realized in

Fig. 2. Three cases of cut vertex.

2142 Y. He et al. / Computer Networks 53 (2009) 2140–2152

Author's personal copy

various manners, e.g. by computing a cryptographic
hash of the node’s IP address (in P2P overlays) or its
geographic locations (in WSNs). The message ID can
thus be uniquely assigned, based on the starting
node ID and the time the message is generated.

(3) A node forwards each flooding message only once. If
it receives the same message later, it simply drops
the duplicates.

Now let us examine the example illustrated in Fig. 3. In
this figure, node P is a cut vertex that connects three blocks
(particularly vertex P and vertex R together with the bridge
between them form one block). The removal of node P will
cause the graph to be partitioned into three components,
labeled as Cpnt 1, Cpnt 2 and Cpnt 3, as denoted in the fig-
ure with dotted circles.

In the adaptive detection, each node keeps track of re-
cently received messages. A list of records is cached on
each node, called MsgList, with each entry representing a
message received recently in the format of <Message ID,
ID of the Neighbor where the message comes from>. A node
also keeps the data-structure called BlockSet that records
the block information of its neighbors. At the beginning
of an adaptive detection period, MsgList is empty and all
the neighbors of a node are assumed to be in different
blocks.

During the periodical execution of adaptive detection,
node P receives messages from the nodes in all the three
components. For instance, when node A gets message 1,
it broadcasts message 1 to its neighbors. When nodes X
and Y receive message 1 through disjoint paths and for-
ward it to node P, node P will discover that there exist
two disjoint paths in which message 1 is delivered. Though
node P perhaps does not know which node originally is-
sues the message, it is able to find a cycle ðA;X; P;YÞ con-
taining nodes X;Y and itself. As a result, nodes X and Y
are 2-connected and they are in the same block (refer to
the Theorem 2 in Section 4). Node P merges the blocks con-
taining nodes X and Y into one single block. Similarly, after
receiving message 2 from nodes Y and Z, node P puts nodes
X;Y and Z in the same block (refer to the Lemma 1 in Sec-
tion 4). Nodes S and T are merged into one block after node

P receives message 3. Node R remains isolated in its block.
There is no other node except R that could possibly forward
message 4 to node P.

Fig. 4 provides the pseudo code of the function
On_Flooding(), which explains the actions of a node when
it receives a flooded message.

As more messages arrive, node P keeps merging the
blocks in its BlockSet. At the end of an adaptive detection
period, all the neighbors of node P will probably be merged
into a few blocks. If only one block remains in the BlockSet,
node P is not a cut vertex. Otherwise, an active detection
process is triggered for further determination, which we
introduce in 3.3. Note that the adaptive detection is exe-
cuted passively during flooding search. It does not incur
any additional traffic overhead.

3.3. Active detection

With the adaptive detection, a node knows for sure that
it is not a cut vertex if all the neighbors belong to a single
block. However, having two or more blocks remaining at
the end of adaptive detection does not mean a node is a
cut vertex. For example, a node might not be able to re-
ceive all the flood messages from its neighbors because
the requested item of a search is found or the TTL threshold
is reached. Therefore we believe that an active detection is
necessary to further identify cut vertices. Compared to the
adaptive detection, the active detection achieves shorter
convergence time at the cost of additional but acceptable
traffic overhead.

If the neighbors of a node are sorted into two or more
blocks at the end of adaptive detection, it regards itself
as a candidate of cut vertex and immediately starts an ac-
tive detection process. At first, it randomly selects a neigh-
bor from each block and numbers the connection to each
neighbor with a unique connection-index (e.g. 1, 2, 3. . .).
Then the node sends probe messages along these connec-
tions. The format of the probe message is <ID, timestamp,
TTL, connection-index>, where ID is the candidate’s node
ID, timestamp records the time the probe message is gener-
ated, TTL (time to live) is a pre-configured number of hops
that the message can be forwarded, and connection-index
denotes the index of the connection via which the candi-
date sends the probe message. Each node keeps a connec-
tion list. There is one entry for each candidate in the
connection list with the format of <candidate’s ID, time-
stamp, connection-index 1, connection-index 2. . .>.

Upon receiving a probe message, one of the following
situations may arise.

(1) The node has already received the message, or the
timestamp of the message is older than that stored
in the corresponding connection list entry. The node
just drops the message.

(2) There is no entry for the candidate that issues this
probe message. The node creates a new entry for it.

(3) The timestamp in the received message is newer
than that stored in the corresponding connection list
entry. The candidate replaces the old timestamp and
connection-indexes stored in the connection list with
the new one.Fig. 3. Example of adaptive detection.

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2143

Author's personal copy

(4) The timestamp of the received message is the same
as the one stored in the corresponding connection
list entry but the connection-index of the message
is not the same. The node adds the new connec-
tion-index to the corresponding entry and sends an
arrival message back to the candidate. The arrival
message therefore contains the ID of the current
node, two or more connection-indexes, and the time-
stamp stored in the entry. A node does not send any
arrival messages until it receives at least two probe
messages with different connection-indexes.

For ease of illumination, we still use the previous exam-
ple in Fig. 3 while removing unrelated nodes and symbols,
as shown in Fig. 5. Upon receiving the probe messages
from the candidates, a node takes corresponding actions
according to the information stored in its connection list.
There are mainly four options and the pseudo code is
shown in Fig. 6.

We further assume node X;R, and S are selected from
each block. When other nodes receive the probe messages
originating from candidate P, they compare the probe mes-
sages with the information stored in their connection lists,
and then take corresponding actions as described above.
After that the TTL value is reduced by 1 and the probe mes-
sages are forwarded to the downstream nodes.

In Fig. 5, node V receives two probe messages from the
same candidate P with the same timestamp but through
different connections (connection 2 and connection 3).
According to the algorithm in Fig. 6, node V generates an
arrival message containing node V’s ID, two connection-in-
dexes (2 and 3) where the probe messages come from, and
the timestamp in the corresponding connection list entry
(i.e. the time when the two probe messages are generated).
The arrival message is sent to the candidate P at once,
which is depicted as the green dashed arrow from V to P
in Fig. 5. On receiving the arrival message from node V,

the candidate P is able to find a cycle ðP;R;V ; SÞ containing
nodes R; S and itself. That is, nodes R and S are 2-connected
and they are in the same block (refer to the Theorem 2 in
Section 4). So node P merges the blocks containing nodes R
and S into one block.

In this way, the neighbors of a cut vertex candidate can
be merged into fewer and fewer blocks. If only one block
remains in the BlockSet, node P is not a cut vertex. Other-
wise, node P must be a cut vertex. Since the initial TTL va-
lue of a probe message is usually small, we are able to get
the result of the active detection much sooner than the
adaptive detection. In other words, the active detection
can be applied as a useful complement to the adaptive
detection. It can also be utilized as an independent ap-
proach to identify cut vertices if we value speed over cost.

3.4. Cut vertex neutralization

The goal of cut vertex neutralization is to enhance the
system reliability with respect to topology connectivity.

/* msg: a flooding message;
msg.TTL: a pre-configured number of hops that msg can be forwarded
msg.MID: the message ID of msg;
P: the node receiving msg; */
On_Flooding()
{

if (P receives msg for the 1st time)
{

P creates a new entry for msg in P.MsgList;
if (msg.TTL>0)

P forwards msg; // Forward msg if it is new and not expired yet;
}
else // P has received the same msg before
{

P creates a new entry for msg in P.MsgList
 // Find entries in P.MsgList which have same Message ID with msg;
FindEntries(P.MsgList, msg.MID);
 // Merge the neighbors who forward the same msg to node P into one block
MergeBlocks(P.BlockSet);
// Drop msg after the merging operation.
P drops msg;

}
}

Fig. 4. Pseudo code of function On_Flooding().

Fig. 5. Example of active detection.

2144 Y. He et al. / Computer Networks 53 (2009) 2140–2152

Author's personal copy

Cut vertex neutralization is relatively easy to achieve by
building extra connections between nodes in different
blocks. For example, node P selects a neighbor from each
block, such as Z and T. Then node P sends requests to nodes
Z and T and asks them to connect with each other. After the
new connection is built (depicted as the blue line in Fig. 5),
the two initially independent blocks are merged into one
block. Consequently, all nodes in the graph get 2-con-
nected and node P becomes a normal node.

3.5. Traffic overhead

We evaluate the traffic overhead by counting the mes-
sages delivered due to the cut vertex detection in a P2P
system. Note that flooding is usually adopted in P2P over-
lays and WSNs as the basic mechanism for query and data
dissemination [1,2]. The traffic overhead of flooding does
exist as an element of system running, even if there is no
adaptive detection. Hence the adaptive detection does
not incur any additional traffic overhead because it only
utilizes the information extracted from the existing flood-
ing messages. For the active detection, suppose the system
has n nodes, let c be the average node degree and let t be

the initial TTL value. Compared with the amount of arrival
messages and connection requests, the amount of probe
messages is much more because they are passed in the
fashion of P2P flooding. Therefore the total traffic overhead
of the active detection is dominated by the cost of forward-
ing probe messages.

Note that a node will not forward the probe message if
it has already sent an arrival message back to the corre-
sponding candidate. We define the set of nodes which
are traversed by the same connection number of a candi-
date as the traversal set of that connection. And the tra-
versal sets of different connections of a candidate will
not overlap. As a result, the total traffic overhead of probe
messages is Oðn2c=2Þ, where nc/2 is the number of edges in
the whole graph. On the other hand, the traffic overhead is
also limited by the initial TTL value. It can never exceed
OðnctÞ. Therefore the total traffic overhead of forwarding
probe messages is minðOðnctÞ;Oðn2c=2ÞÞ. For large-scale
distributed systems, the value of c is usually much smaller
than that of n. The inequality ct

6 n holds when the initial
TTL value t is limited to save traffic cost. Thus we can con-
clude that the total traffic overhead of active detection is
OðnctÞ.

/* V: the node receiving a probe message;
list: node V’s connection list;
msg: the probe message node V receives;
msg.ID: the ID of the candidate node that issues msg;
msg.TTL: a pre-configured number of hops that msg can be forwarded;
msg.timestamp: the time msg is generated;
msg.connection-index: index of the connection via which the candidate sends msg;
arr-msg: the arrival message generated by node V.*/

On_Probe()
{

if (msg.ID not in list)
{

V creates a new entry for msg.ID; // Creates a new entry for a new msg;
if (msg.TTL>0)

V forwards msg;
}
else if (V has received the same msg before || msg.timestamp<list.(msg.ID).timestamp)
{

V drops msg; // Drop msg if it is out of date or has been received before;
}

else // msg.timestamp≥list.(msg.ID).timestamp
{

if (msg.timestamp>list.(msg.ID).timestamp)
{

// Update the corresponding connection index entry;
list.(msg.ID).timestamp= msg.timestamp;
Replace list.(msg.ID).connection-indexes with msg.connection-index;
if (msg.TTL>0)

V forwards msg;
}
else // msg.timestamp=list.(msg.ID).timestamp
{

// msg is sent to V via different connection-indexes;
Add (msg.connection-index) into list.(msg.ID).connection-indexes;
// arr-msg is generated and sent back to the probing candidate node;
V generates arr-msg;
arr-msg.ID=V.ID;
arr-msg.timestamp = list.(msg.ID).timestamp;
list.(msg.ID).connection-indexes -> arr-msg.connection-indexes;
V sends arr-msg to msg.ID;

}
}

}

Fig. 6. Pseudo code of the function On_Probe().

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2145

Author's personal copy

For real distributed systems, c is usually fairly small,
such as 3, 4 or 5. We can use a small initial TTL value to lim-
it the overhead of active detection. The simulation results
in Section 5 also demonstrate that a small value of t pro-
vides decent accuracy. Meanwhile, the size of all the probe
messages sent in the active detection is identically 4 bytes.
The per-node traffic overhead of active detection can thus
be confined to a constant. Recall that the adaptive detec-
tion does not incur any traffic overhead. The aggregate
traffic overhead on each node is constant, using the
scheme in this paper. Compared with the algorithm in
[24] which has a maximum total traffic overhead of
4m� n (m is the number of links in the network) and the
length of each message is bounded by 2logn + 2 bits, our
scheme has fairly low traffic overhead while preserves
high accuracy of detection.

4. Correctness

Theorem 1. Two blocks in a graph have at most one common
vertex.

Lemma 1. Let vertices A; B;C and D be four vertices in graph
G:A; B and C are in the same block, while A;B and D are in the
same block. Then A;B; C and D are in the same block, too.

Theorem 2. If there are two disjoint paths between two ver-
tices in a graph, the two vertices are in the same block.

Proofs of the above theorems and lemma [5,6] are easy
and omitted.

Theorem 3. A vertex is a cut vertex if and only if it is the joint
of multiple blocks.

Proof. The theorem to be proved is separated into two
propositions. We prove them respectively. h

(1) A vertex is a cut vertex if it is the joint of multiples
blocks.Without loss of generality, we assume that
vertex P in graph G is the joint of two blocks: block
1 and block 2. Suppose vertex A is in block 1 and ver-
tex B is in block 2. Thus vertex A and vertex P are
connected, so are vertex B and vertex P. A;B and P
are in the same component of graph G. By removing
vertex P and its incident edges from G, we get a
graph G0. In G0, vertex A and vertex B are no longer
connected. Otherwise, A and B are 2-connected in
the G (one path including P and the other excluding
PÞ, which indicates that A and B are in the same
block of graph G. Hereby we come to the contradic-
tion. Consequently, A and B are in different compo-
nents of graph G0:P is a cut vertex. Proposition (1)
is proved.

(2) If a vertex is a cut vertex, it is the joint of multiples
blocks.

First, a vertex with 0 or 1 degree cannot be a cut vertex.
So a cut vertex must have at least two neighbors.

Suppose vertex P is a cut vertex in graph G. Without loss
of generality, we assume the removal of vertex P generates

two components – cpnt1 and cpnt2. According to the defi-
nition of cut vertex, vertex P has at least one neighbor in
each component. Suppose vertex A is a neighbor of P in
cpnt1 and vertex B is a neighbor of P in cpnt2. A and B are
in different blocks. Otherwise A and B are 2-connected
which contradicts that they belong to different connected
components.. Thus P is the joint of two blocks. One block
contains A and the other contains B. In addition, vertex P
is the unique joint of the two blocks according to Theorem
1. Proposition (2) is proved.

From (1) and (2), Theorem 3 is proved. –

Consider an undirected graph G ¼ ðV ; EÞ to represent an
overlay network, where V is the set of overlay nodes and E
is the set of the edges of the overlay network. We illumi-
nate the correctness of our distributed approaches.

Assume that the network topology is static and the ini-
tial TTL value of each flooding message is set to infinity. As
long as there is a path between two nodes, the path will be
detected by the adaptive detection. Similarly, the active
detection will always detect the path if the initial TTL of
each probe message is set to infinity. Therefore the overlay
topology can be sketched if the detection lasts for a long
enough period of time. According to Theorem 3, if the
neighbors of a node are finally merged into one single
block, the node is not a cut vertex; otherwise, the node is
a cut vertex. Thus the correctness of our distributed ap-
proaches is proved.

As for the accuracy of our approach, it is well known
that given an appropriate topology construction, a query
from one node to another in the overlay could be achieved
in O(lnN) hops, where N represents the size of the overlay
[33–35]. Moreover, it has been widely recognized that
most practical networks appear to be small-world or
power-law networks, where the complexity of search is
O(lnN) or even O(ln(lnN)) [36–38]. Therefore, the length
of a path between two nodes is usually within the logarith-
mic order of the size of the overlay. Through the real trace
simulations in the next section, we also show that setting
the initial TTL value to a small constant is sufficient to ob-
tain a fairly high accuracy.

On the other aspect, without global information in our
scheme, a tiny portion of nodes might be falsely identified
as cut vertices. This is mainly because these nodes lie in
very long cycles in the graph while such cycles are not de-
tected by our distributed approaches with limited TTLs.
However, such nodes are rare and those neglected long cy-
cles probably make no sense in practical applications. Even
if these nodes are falsely identified as cut vertices, execut-
ing cut vertex neutralization to them will not generate any
harm to the system.

Moreover, our scheme can be applied to both P2P over-
lays and WSNs which adopt flooding as the basic mecha-
nism for query and data dissemination [1,2]. According to
the analysis in Section 3.5, the total number of messages
is OðnctÞ. The average number of messages processed by
each node is OðctÞ while c (the average node degree)
and t (the initial TTL value) are usually very small
constants. Thus the storage and processing cost on each
node is confined to a constant, which is acceptable for
both resource-constrained wireless sensor motes and
powerful PCs.

2146 Y. He et al. / Computer Networks 53 (2009) 2140–2152

Author's personal copy

5. Performance evaluation

We evaluate the impact of cut vertices, the accuracy of
detection, the traffic overhead and the effect of cut vertex
neutralization through a number of real trace experiments.
Further experiments are carried out on the correlation be-
tween the accuracy of detection and overlay dynamics. The
experimental results demonstrate that our scheme is
highly accurate, lightweight and can greatly enhance the
reliability of large-scale distributed systems.

5.1. Experimental methodology

The overlay topology in our experiments is generated
with the DSS Clip2 traces [39] that were collected from
December 7th 2000 to June 15th 2001. We can provide
the traces upon request. Altogether we have 60 traces,
and 13 of them are neglected because they contain small
quantities of nodes and scarce connections. Nodes in the
other 47 traces vary from around 8000 nodes to more than
45,000 and the average node degree varies from 2.4 to 6.7.
We select 5 traces as the representative for the subsequent
experiments, as listed in Table 1. Relevant information of
all 60 traces is illustrated in Figs. 7–9.

5.2. Impact of cut vertices

We first take a look at the impact of losing the critical
vertices in terms of query efficiency and connectivity. In
Fig. 10, we measure the success rate of flooding-based que-
ries, setting the TTL value at 5. It is well known that query

efficiency largely relies on how well the nodes in the overlay
are connected. Though cut vertices usually account for less
than 10% of the overlay, deleting them often badly reduce

Table 1
Information of selected traces.

Trace Size Average degree Number of cut vertices

1 10101 2.41 1315
2 13086 6.7 1865
3 15142 5.1 2075
4 25702 4.9 4169
5 40036 3.88 6448

5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Trace index

N
um

be
r o

f n
od

es

Fig. 7. Size of traces.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Trace index

A
ve

ra
ge

 n
od

es
 d

eg
re

e

Fig. 8. Average node degree.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Trace index

P
er

ce
nt

ag
e

of
 c

ut
 v

er
tic

es

Fig. 9. Proportion of cut vertex.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cut Vertices deleted

Q
ue

ry
 S

uc
ce

ss
 R

at
e

trace 1
trace 2
trace 3
trace 4
trace 5

Fig. 10. Impact on query efficiency.

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2147

Author's personal copy

the success rate of queries. For a typical example, trace 3, in
Fig. 10, the original query success rate is 90%. When the cut
vertices are deleted step by step, the query success rate rap-
idly drops. And after all the cut vertices are deleted ðx ¼
100%Þ, the query success rate drops to only 10%.

Losing cut vertices also results in many isolated compo-
nents in each overlay. As shown in Fig. 11, deleting a small
portion of those vertices significantly increases the number
of components. In other words, removal of cut vertices
causes the overlay to be fragmented. For example, when
half of the critical nodes leave, an overlay can break into
thousand of disconnected components. Fig. 12 depicts the
affected scope of cut vertices. The Y-axis represents the
percentage of nodes in the fragmented components to all
the nodes with connections in the original overlay. Clearly,
each cut vertex will affect many other normal peers in the
system.

5.3. Accuracy of detection

As stated in Section 2, all the cut vertices in a graph can
be found by the traditional sequential DFS algorithm intro-
duced in [6]. Based on the results of the DFS algorithm, we

evaluate the accuracy of our proposed adaptive and active
algorithm. Accuracy here refers to the percentage of real
cut vertices in the output. For the adaptive detection, the
output is the set of nodes identified as cut vertices after
all the nodes have issued a flooding-based query. For the
active detection, the output is the set of nodes identified
as cut vertices after all the nodes have executed the active
detection once. The preset TTL value in the experiment cor-
responds to the scope of flooding in the adaptive detection,
and it limits the range of probe messages in the active
detection.

Curves in Fig. 13 demonstrate that both the adaptive
and the active detection have high efficiency even when
the initial TTL value is as small as 4. More exciting to us,
the adaptive detection always performs very close to the
active detection but incurs zero traffic overhead. Such re-
sults encourage us to adopt hybrid strategies (a combina-
tion of two kinds of detection) when identifying cut
vertices. As a result, we can achieve high accuracy with
low traffic overhead at the same time.

Additional experiments are conducted on trace 3. Set-
ting the initial TTL value to 5, we change the proportion
of nodes that do flooding-based queries in an adaptive
detection period. The curve in Fig. 14 shows that as long
as a small portion of nodes issue flooding-based queries,
the adaptive detection can be precise enough. For example,
when only 3% of nodes issue flooding-based queries, the
resulting accuracy is as good as 90%. Considering the factor
of traffic overhead, this result further demonstrates the
advantage of adaptive detection over active detection.

5.4. Traffic overhead

The major workload in the adaptive detection is infor-
mation processing on each node. Considering the powerful
processing capacity of modern processors, the computation
overhead is negligible. Hence, this discussion focuses on the
traffic overhead incurred by the active detection, as shown
in Fig. 15. Note that in our design, active detection is re-
quired only after a node cannot determine whether it is a
cut vertex through adaptive detection, especially when

N
um

be
r o

f n
od

es

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.5

1

1.5

2

2.5

3
x104

Cut Vertices deleted

trace 1
trace 2
trace 3
trace 4
trace 5

Fig. 11. Impact on connectivity (1).

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

Cut Vertices deleted

P
er

ce
nt

ag
e

of
 n

od
es

 a
ffe

ct
ed trace1

trace 2
trace 3
trace 4
trace 5

Fig. 12. Impact on connectivity (2).

1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial TTL value

A
cc

ur
ac

y
o

f d
e

te
ct

io
n

trace 2 adaptive

trace 2 active

trace 3 adaptive

trace 3 active

Fig. 13. Accuracy of detection (1).

2148 Y. He et al. / Computer Networks 53 (2009) 2140–2152

Author's personal copy

we adopt hybrid identification strategies. According to the
previous experiment results, most of the cut vertices can
be identified by the adaptive detection. Therefore, only a
tiny portion of nodes have to execute the active detection.
For each node that runs active detection, the average cost
is also very limited. For example, when TTL = 5 in trace 1,
the active detection has an accuracy higher than 90% while
the average traffic overhead is around 100 messages per
node, without regard to the preceding fact that adaptive
detection has already identified most of the cut vertices.

5.5. Effect of cut vertex neutralization

We evaluate the effects of cut vertex neutralization
through two groups of experiments.

In the first group of experiments, we measure the num-
ber of components increased after deleting a certain
amount of cut vertices, as shown in Fig. 16. Comparing
the curves in Fig. 16 with those in Fig. 11, we find a
remarkable benefit of cut vertex neutralization. With cut

vertex neutralization, the destructive effect of deleting
cut vertices is reduced to only 20–30% of the original level.

In the second group of experiments, we measure the
query success rate after cut vertex neutralization. Ran-
domly taking 4 (the blue1 bar) or 6 (the red bar) nodes as
the query targets, Fig. 17 depicts the amplitude by compar-
ing the query success rates before and after cut vertex neu-
tralization. As we can see from the histograms, cut vertex
neutralization improves the query efficiency by 20–90%.

From the experiment results above, we conclude that
cut vertex neutralization greatly improves the reliability
of large-scale distributed systems.

5.6. Accuracy vs. dynamics

Since the information processed by the adaptive detec-
tion is periodically extracted from the flooding messages,
the accuracy of the adaptive detection should have some

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of flooding nodes

A
cc

ur
a

cy
 o

f d
e

te
ct

io
n

trace 3

Fig. 14. Accuracy of detection (2).

1 2 3 4 5 6 7
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Initial TTL value

M
e

ss
a

g
es

 d
e

liv
er

e
d

trace 1

trace 3

trace 5

Fig. 15. Message incurred by active detection.

Fig. 16. Effect of neutralization (1).

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trace index

A
m

p
lit

u
d

e
 o

f q
u

e
ry

 s
u

cc
e

ss
 r

a
te
4 nodes
6 nodes

Fig. 17. Effect of neutralization (2).

1 For interpretation of color in Figs. 1-3,5,7-23, the reader is referred to
the web version of this article.

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2149

Author's personal copy

correlation with the overlay dynamics. In the last two
experiments, two metrics are adopted to measure the
accuracy of the adaptive detection with dynamic overlay:
the number of false negatives and the number of false pos-
itives. False negatives represent nodes which are cut verti-
ces but not identified as cut vertices. False positives
represent nodes which are not cut vertices but identified
as cut vertices. Both numbers are counted as errors in the
output but have different impacts. When false negative
nodes exist, the adaptive detection will inevitably miss
some cut vertices (i.e. false negative nodes) and the overlay
connectivity after cut vertex neutralization is still vulnera-
ble. Nevertheless, false positive nodes cause no harms to
the system reliability. They only require additional connec-
tions than necessary.

We count the number of false negatives and the number
of false positives as we regulate the degree of overlay
dynamics and the detection frequency. As we can see in Figs.

18 and 19, the average life span varies from 100 to 4000 s
while the period length of the adaptive detection varies from
1 to 40 s. Fig. 18 shows that the number of false negatives has
close correlation with both the detection frequency and the
degree of overlay dynamics. Especially when the average life
span is short, the detection accuracy becomes much more
sensitive to the detection frequency. On the contrary,
Fig. 19 shows that the overlay dynamics have little impact
on the number of false positives. And the latter keeps at a
fairly low level unless we execute detection too frequently.

As an observation result, we find it is reasonable to set
relatively low frequency of the adaptive detection. The out-
put is highly accurate unless the overlay gets extremely
unstable. More frequent detection is necessary in more dy-
namic environments. However, since the adaptive detec-
tion incurs zero traffic overhead, our distributed approach
achieves a good balance between efficiency and accuracy
under a number of scenarios.

0

2000

4000
0 10 20 30 40

0

500

1000

1500

2000

2500

3000

A
verage L

ife

Period length

N
nu

m
be

r
of

 f
al

se
 n

eg
at

iv
e

Fig. 18. Accuracy vs. dynamics (1).

0

2000

4000

010203040

0

200

400

600

800

1000

1200

A
verage Life

Period length

N
um

be
r

of
 fa

ls
e

po
si

tiv
e

Fig. 19. Accuracy vs. dynamics (2).

2150 Y. He et al. / Computer Networks 53 (2009) 2140–2152

Author's personal copy

6. Conclusion

The connectivity among nodes basically determines the
reliability of large-scale distributed systems. It is observed
that a small portion of nodes are often more critical to the
system reliability than others. Removal of cut vertices, i.e.
critical nodes in the network topology, destroys the topol-
ogy connectivity and incurs substantive extra traffic within
the systems.

We propose a distributed approach to identify cut ver-
tices. The proposed scheme is composed of three parts:
adaptive detection, active detection and cut vertex neutral-
ization. The adaptive detection utilizes the common flood-
ing messages and achieves zero-overhead detection. As a
complement to the adaptive method, the active detection
is conducted to further improve the detection accuracy. It
is also feasible to solely adopt the active method for fast
and lightweight detection. Based on the results of detec-
tion, cut vertex neutralization builds additional connec-
tions among nodes and enhances the system reliability.
We prove the correctness of our scheme and evaluate the
performance with trace-driven simulations.

Acknowledgement

This work is supported in part by NSF China Grants No.
60673166, 60736013, 60673179, and NSFC/RGC Joint Re-
search Scheme N_HKUST614/07.

References

[1] S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-
peer file sharing systems, in: Proceedings of Multimedia Computing
and Networking (MMCN) San Jose, CA, USA, 2002.

[2] F. Stann, J. Heidemann, R. Shroff, M.Z. Murtaza, RBP: Robust
broadcast propagation in wireless networks, in: Proceedings of
ACM SenSys, Boulder, Colorado, USA, 2006.

[3] Xun Wang, Sriram Chellappan, Phillip Boyer, Dong Xuan, On the
effectiveness of secure overlay forwarding systems under intelligent
distributed DoS attacks, IEEE Transactions on Parallel and
Distributed Systems 17 (7) (2006) 619–632.

[4] W. Zhang, G. Xue, S. Misra, Fault-tolerant relay node placement in
wireless sensor networks: problems and algorithms, in: Proceedings
of IEEE INFOCOM, Arizona State University, Tempe, USA, 2007.

[5] F. Harary, Graph Theory: Addison-Wesley, Reading, 1969.
[6] F. Buckley, M. Lewinter, A Friendly Introduction to Graph Theory,

Prentice-Hall, New Jersey, 2002.
[7] X. Liu, L. Xiao, A. Kreling, Y. Liu, Optimizing overlay topology by

reducing cut vertices, in: Proceedings of ACM NOSSDAV, Newport, RI,
2006.

[8] B. Krishnamurthy, S. Sen, Y. Zhang, Y. Chen, Sketch-based change
detection: methods, evaluation, and applications, in: Proceedings of
ACM SIGCOMM Internet Measurement Conference (IMC), Miami
Beach, FL, USA, 2003.

[9] G. Liu, C. Ji, Scalability of network-failure resilience: analysis using
multi-layer probabilistic graphical models, IEEE/ACM Transactions
on Networking 17 (1) (2009) 319–331.

[10] K. Xu, Z. Duan, Z. Zhang, J. Chandrashekar, On properties of internet
exchange points and their impact on AS topology and relationship,
Lecture Notes in Computer Science 3042 (2004) 284–295.

[11] J. Liu, X. Zhang, B. Li, Q. Zhang, W. Zhu, Distributed distance
measurement for large-scale networks, International Journal of
Computer and Telecommunications Networking 41 (2003) 177–193.

[12] L. Xiao, K. Nahrstedt, Reliability models and evaluation of internal
BGP networks, in: Proceedings of IEEE INFOCOM, Hong Kong, 2004.

[13] S. Kim, A.L.N. Reddy, Image-based Anomlay detection technique:
algorithm, implementation and effectiveness, IEEE Journal on
Selected Areas in Communications 24 (2006) 1942–1954.

[14] F. Xing, W. Wang, Modeling and analysis of connectivity in mobile ad
hoc networks with misbehaving nodes, in: Proceedings of IEEE ICC,
Istanbul, Turkey, 2006.

[15] D. Leonard, Z. Yao, V. Rai, D. Loguinov, On lifetime-based node failure
and stochastic resilience of decentralized peer-to-peer networks,
IEEE/ACM Transactions on Networking, 15(5), (2007).

[16] N. Hu, L.E. Li, Z.M. Mao, P. Steenkiste, J. Wang, Locating internet
bottlenecks: algorithms, measurements, and implications, in:
Proceedings of ACM SIGCOMM, Portland, Oregon, USA, 2004.

[17] S. Birrer, F.E. Bustamante, Resilience in overlay multicast protocols,
in: Proceedings of the 14th IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, Monterey, CA, 2006.

[18] D. Dumitriu, E. Knightly, I. Stoica, W. Zwaenepoel, Denial of service
resilience in peer-to-peer file sharing systems, in: Proceedings of
ACM SIGMETRICS, Banff, Alberta, Canada, 2005.

[19] K.T. Law, C.S. Lui, K.Y. Yau, You can run, but you can’t hide: an
effective methodology to traceback DDoS attackers, in: Proceedings
of the 10th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, Fort Worth, TX, USA, 2002.

[20] Y. Lin, B. Liang, B. Li, Data persistence in large-scale sensor networks
with decentralized fountain codes, in: Proceedings of IEEE INFOCOM,
Anchorage, AK, USA, 2007.

[21] S. Lee, Y. Yu, S. Nelakuditi, Z.L. Zhang, C.N. Chuah, Proactive vs.
reactive approaches to failure resilient routing, in: Proceedings of
IEEE INFOCOM, Hong Kong, 2004.

[22] B.Y. Zhao, L. Huang, J. Stribling, A.D. Joseph, J.D. Kubiatowicz,
Exploiting routing redundancy via structured peer-to-peer
overlays, in: Proceedings IEEE ICNP, Atlanta, GA, USA, 2003.

[23] J. Mirkovic, G. Prier, P. Reiher, Attacking DDoS at the source, in:
Proceedings of IEEE ICNP, Paris, France, 2002.

[24] M. Ahuja, Y. Zhu, An efficient distributed algorithm for finding
articulation points, bridges, and biconnected components in
asynchronous networks, in: Proceedings of the Ninth Conference
on Foundation of Software Technology and Theoretical Computer
Science, Bangalore, India, 1989.

[25] Y.H. Tsin, Some remarks on distributed depth-first search,
Information Processing Letters 82 (2002) 173–178.

[26] P. Keyani, B. Larson, M. Senthil, Peer pressure: distributed recovery
from attacks in peer-to-peer systems, in: Proceedings of IFIP
Workshop on Peer-to-Peer Computing, Pisa, Italy, 2002.

[27] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker,
Making Gnutella-like P2P systems scalable, in: Proceedings of ACM
SIGCOMM, Karlsruhe, Germany, 2003.

[28] C. Tang, P.K. Mckinley, On the cost-quality tradeoff in topology-
aware overlay path probing, in: Proceedings of IEEE ICNP, Atlanta,
GA, USA, 2003.

[29] S. Ratnasamy, S. Shenker, S. McCanne, Towards an evolvable internet
architecture, in: Proceedings of ACM SIGCOMM, Philadelphia, PA,
USA, 2005.

[30] A. Ali, A. Mathur, H. Zhang, Measurement of commercial peer-to-
peer live video streaming, in: Proceedings of Workshop in Recent
Advances in Peer-to-Peer Streaming, Waterloo, Ontario, Canada,
2006.

[31] X. Liao, H. Jin, Y. Liu, L.M. Ni, D. Deng, AnySee: peer-to-peer
live streaming, in: Proceedings of IEEE INFOCOM, Barcelona, Spain,
2006.

[32] Lakshmish Ramaswamy, Bugra Gedik, Ling Liu, A distributed
approach to node clustering in decentralized peer-to-peer
networks, IEEE Transactions on Parallel and Distributed Systems
16 (9) (2005) 814–829.

[33] H. Wang, T. Lin, On efficiency in searching networks, in: Proceedings
of IEEE INFOCOM, Miami, FL, USA, 2005.

[34] S. Servetto, G. Barenechea, Constrained random walks on random
graphs: routing algorithms for large scale wireless sensor networks,
in: Proceedings of the First ACM International Workshop on Wireless
Sensor Networks and Applications, Atlanta, GA, USA, 2002.

[35] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer
networks, in: Proceedings of IEEE INFOCOM, Hong Kong, 2004.

[36] A. Iamnitchi, M. Ripeanu, I. Foster, Small-world file-sharing
communities, in: Proceedings of IEEE INFOCOM, Anchorage, AK,
USA, 2001.

[37] S. Milgram, The small world problem, Psychology Today 1 (1967)
61–67.

[38] T. Bu, D. Towsley, On distinguishing between internet power law
topology generators, in: Proceedings of IEEE INFOCOM, New York,
USA, 2002.

[39] DSS Clip2 Traces, <http://dss.clip2.com>, 2005.

Y. He et al. / Computer Networks 53 (2009) 2140–2152 2151

Author's personal copy

Yuan He received his BE degree in Depart-
ment of Computer Science and Technology
from University of Science and Technology of
China in 2003, and his ME degree in Institute
of Software, Chinese Academy of Sciences, in
2006. He is now a PhD student in the
Department of Computer Science and Engi-
neering at Hong Kong University of Science
and Technology, supervised by Dr. Yunhao
Liu. His research interests include peer-to-
peer computing, sensor networks, and perva-
sive computing. He is a student member of

the IEEE and the IEEE Computer Society.

Hao Ren received his BS degree, MS degree,
and PhD degree in Department of Computer
Science and Engineering from the National
University of Defense Technology (NUDT)
China, in 1996, 1999, and 2007, respectively.
Currently he works in the Department of
Computer Science and Engineering at NUDT.
His research interests include peer-to-peer
computing and grid computing.

Yunhao Liu (SM’06) received his BS degree in
Automation Department from Tsinghua Uni-
versity, China, in 1995, and an MA degree in
Beijing Foreign Studies University, China, in
1997, and an MS and a PhD degree in Com-
puter Science and Engineering at Michigan
State University in 2003 and 2004, respec-
tively. He is now an assistant professor in the
Department of Computer Science and Engi-
neering at Hong Kong University of Science
and Technology. He is also an adjunct pro-
fessor of Xi’an Jiaotong University and Ocean

University of China. His research interests include peer-to-peer comput-
ing, pervasive computing and sensor networks. He is a senior member of
IEEE and a member of ACM.

Baijian Yang received his BS and MS degree in
Department of Automation from Tsinghua
University, China, in 1995 and 1998, respec-
tively. He received his PhD degree in Com-
puter Science from Michigan State University
in 2003. He is currently an assistant professor
in Department of Technology at Ball State
University, Indiana, US. His research interests
include distributed system, mobile computing
and networking security. He is a member of
IEEE and a member of ACM.

2152 Y. He et al. / Computer Networks 53 (2009) 2140–2152

