
VOVO: VCR-Oriented Video-on-Demand in
Large-Scale Peer-to-Peer Networks

Yuan He, Student Member, IEEE, and Yunhao Liu, Senior Member, IEEE

Abstract—Most P2P Video-on-Demand (VOD) schemes focus more on mending service architectures and optimizing overlays but do

not carefully consider the user behavior and the benefit of prefetching strategies. As a result, they cannot better support VCR-oriented

services in terms of substantive asynchronous clients or free VCR controls for P2P VODs. To address this issue, we propose VOVO, a

VCR-oriented VOD for large-scale P2P networks. By mining associations inside each video, the segments requested in VCR

interactivities are predicted based on the information collected through gossips. Together with a hybrid caching strategy, a

collaborative prefetching scheme is designed to optimize resource distribution among neighboring peers. We evaluate VOVO through

extensive experiments. Results show that VOVO is scalable and effective, providing short start-up latencies and good performance in

VCR interactivities.

Index Terms—Peer-to-peer, Video-on-Demand, VCR-oriented.

Ç

1 INTRODUCTION

MULTIMEDIA communications and entertainments have
been essential parts of people’s daily life. Video

streaming, attracting extensive attention during the past
years, becomes the most popular activity over the Internet.
Compared to other Internet applications, video streaming
usually supports a large number of concurrent clients and
consumes more network bandwidth. On the other hand, the
dramatic development in Peer-to-Peer (P2P) technologies
presents great scalability and support for millions of users
worldwide.

Video streaming is also boosted by P2P technologies [1],
[2], [3], especially after the application level multicast
(ALM) is proposed. Video streaming can be classified into
two categories: live streaming and video on demand (VOD).
In live streaming systems, the source servers broadcast live
shows or TV programs, and all the clients play the content
at a same progress. As the clients of each program/show
have a common downloading target, they can efficiently
share their buffers, alleviating the server stress and
accelerates the downloading processes. Successful examples
include Narada [1], CoolStreaming [4], and PPLive [5]. VOD
is an interactive multimedia service, which delivers video
content to the users [6]. Differing live streaming, a VOD
user expects to enjoy the video with completely free choices.
Due to the frequent VCR controls from the users such as
play, pause, fast forward, fast search, reverse search, and
rewind, existing approaches either present long latencies on
the user side or incur excessive stress on the server side. In
this work, we focus on the single-video VOD process, where

a peer only transfers the video it is currently playing. For
ease of expression, in the rest of the paper, we use the terms
“client,” “peer,” and “node” interchangeably.

In order to provide “play-as-download” VOD services,
stream reuse techniques such as batching, patching, and
chaining are proposed [7], [8], [9], [10]. Generally, the
overlay construction with those techniques is tightly
coupled with the peers’ playback progresses (“playback”
refers to the usual state when the video is continuously
played by the media player). The stream reusability will be
underutilized unless partnering peers keep persistent
connections with each other. Consequently, user experi-
ences are seriously degraded when they take frequent VCR
controls. To address this problem, prefetching is also
employed. Different strategies are adopted such as sequen-
tial, random, and global rarest strategies [11], but none of
them addresses the content-based associations among
different segments of videos.

Fig. 1 illustrates the sequence of segments in a movie.
Without loss of generality, we assume the VOD clients
prefetch one segment from the next five segments. Hit ratio
is defined as the probability with which the VCR requests
are satisfied by the prefetched content. Suppose most users
are interested in the dotted segments. They probably skip
the blank segments which are the period of prelude. After
the third segment is played, a user takes a VCR control (i.e.,
fast search) to request the seventh segment. For the
sequential prefetching strategy, the fourth segment is
prefetched, hit ratio ¼ 0. For the random prefetching
strategy, a random segment from the fourth to the eighth
is prefetched, hit ratio ¼ 1=5. For the global rarest prefetch-
ing strategy, regardless of the global distribution of the
cached segments, the chance to be prefetched for each
segment is uniform. Thus, hit ratio ¼ 1=5. With such low hit
ratios, the user likely suffers from a long interruption
because the requested segment is not prefetched.

For the prefetching strategy that is aware of associa-
tions inside the video, however, the first segment to be

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009 1

. The authors are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {heyuan, liu}@cse.ust.hk.

Manuscript received 15 Nov. 2007; revised 13 Feb. 2008; accepted 27 May
2008; published online 4 June 2008.
Recommended for acceptance by C.-Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-11-0428.
Digital Object Identifier no. 10.1109/TPDS.2008.102.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

prefetched after the third segment should be the seventh
segment. Thus, hit ratio ¼ 1. The user seldom experiences
any interruption because the requested segment has the
highest priority to be prefetched.

The above example indicates that the experience of VOD
users can be greatly improved with a better prefetching
strategy. Bearing this in mind, we propose VOVO, a VCR-
oriented VOD scheme in large-scale P2P networks, which
can be characterized as follows:

1. VCR oriented. VCR interactivities are efficiently
predicted using the technique of association rule
mining. Requests of VCR controls are efficiently
resolved locally.

2. Scalability. We adopt the combination of batching
and patching. VOVO is able to serve many more
concurrent clients than the original capacity of the
source server.

3. Flexibility. Based on the scheme of patching and the
hybrid caching strategy, VOVO provides abundant
backup resource for asynchronous clients and
frequent VCR requests.

4. Short latency. VOVO adopts an efficient gossip
protocol and a collaborative prefetching strategy.
Both the requests of joining in and the dynamic VCR
controls can be responded with very short latencies.

The rest of this paper is organized as follows: Section 2
discusses the related work. In Section 3, we show some
observations and discuss the basic concepts of this scheme.
Section 4 elaborates the system design of VOVO. In
Section 5, we theoretically analyze the validity, efficiency,
and overhead. Performance evaluation is presented in
Section 6. Section 7 concludes the work.

2 RELATED WORK

Previous schemes of VOD mainly focus on improving the
client-server model. For example, in [12], a video is divided
into multiple segments and periodically broadcast to the
clients through dedicated server channels. Users joining in
asynchronously may receive the streams from different
channels. In order to provide uninterrupted streaming for
all the users, the server keeps track of all the channels and
ensures no interruptions exist between playing segments,
resulting in heavy overhead. Further, as the requests
randomly come to the server, the numbers of users in
certain channels are limited, and some channels are under-
utilized. Dan et al. [7] propose a pull-based scheme called
batching, in which requests coming to the server are placed
in a waiting queue. When the length of the queue reaches a
threshold, or the earliest client has been kept waiting for a
certain period of time, a multicast video stream is
transmitted to the waiting queue. Nevertheless, early clients
might wait even longer especially when the queue length is

increased to reduce the server stress. The service provided
by the schemes above is actually Near Video on Demand
(NVOD), where the playback on clients is constrained by
the granularity of the server channels. There are also some
schemes proposed with IP multicast for True Video on
Demand (TVOD), in which users have full freedom in VCR
interactivities [10], [13], [14], [15]. Due to the difficulty of
deploying IP multicast, however, many schemes are
extended to adopt ALM [8], [9], [16], [17].

S. Sheu et al. [10] propose to find overlaps among client
buffers and create chains of clients, called chaining. All the
clients hold the latest periods of video content. The early
clients rather than the video server can thus serve the
subsequent clients, so as to alleviate the server stress.
Practically, each single chain occupies one dedicated full
stream of the video, so the chaining scalability actually
depends on the aggregate bandwidth provided by the
distribution network. Besides, the chaining structure pre-
sents unsatisfactory resiliency against churns and link
dynamics. P2Cast [9] is one of the earliest models of P2P
VOD. It adopts cooperative streaming using the patching

technique. In P2Cast, clients are clustered according to their
arrival times and form sessions. Each session, together with
the server, constructs an application multicast tree. Later,
clients can retrieve the missing parts from the server or
other clients. P2VoD [8] divides the clients into generations
according to their requests. Clients in P2VoD always cache
the most recent content of a video, while clients in P2Cast
only cache the initial part. Consequently, only one stream
from an early client is needed to serve a late client in
P2VoD, while two streams, a patching, and a base stream
are necessary for serving a late client in P2Cast. Instead of
deploying a patch server as P2Cast, failures and dynamics
are handled locally in P2VoD, so that the server stress is
further reduced.

Rodriguez et al. [11] focus on improving the VOD user
experiences, such as providing a small start-up latency and
a sustainable playback rate. With observations on prefetch-
ing strategies, they find similar result as revealed by the
example shown in Fig. 1. Some heuristics are proposed to
optimize the global resource distribution in the manner of
centralized scheduling and management. A central tracker
is used to track all the peers, and the peers are forced to
periodically report their progresses to the central tracker.
Such a mechanism incurs considerable control overhead on
the central server. Also, it is vulnerable to targeted attacks.

Different from the above schemes, VOVO serves asyn-
chronous peers with the combination of batching and
patching. The server does not need to record any buffer
information of peers. As we will elaborate in Section 4, the
VCR requests are resolved in a distributed manner. More-
over, VOVO employs a behavior-content-based scheme of
prefetching. We leverage the technique of association rule
mining to find the frequent patterns of VCR interactivities,
based on which neighboring peers conduct collaborative
prefetching. Using this scheme, peers intelligently prefetch
the requested segments before the occurrences of VCR
interactivities. As a result, the response latencies of VCR
interactivities are minimized.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 1. An example to compare prefetching strategies.

3 DESIGN OVERVIEW

3.1 Observations on VOD User Behavior

Our design is based on the following observations [18], [19].
First, VOD users rarely view the movie continuously from
the beginning to the end. As peers with transient life span
account for a large proportion, streaming connections
among peers are unstable and altered often. Second,
accesses to different periods of a video are not uniformly
distributed. Some parts always attract more accesses than
the others. Hot scenes are always appreciated by most
audience and lead to a consensus on the popularity of a
video. Third, VCR interactivities occur frequently, but many
VCR controls are forward-looking aimlessly. This is due to
the user’s skips of the video, directly ignoring a period
uninteresting. Such discoveries reveal that prefetching the
requested content accurately may benefit the performance
of VCR interactivities a lot.

3.2 Policy of Streaming and Caching

A peer in VOVO always conducts two types of down-
loading: urgent downloading and prefetching, as shown in
Fig. 2. Urgent downloading keeps streaming for the content
in the immediate next 2 minutes, which meets the demand
of continuous playback. Besides urgent downloading, a
peer can potentially prefetch more content with its surplus
downloading bandwidth. Considering that the surplus
bandwidth on a peer for prefetching is typically 0-3 times
of the bandwidth used for urgent downloading [6], we set
the size of buffer for prefetching to store 3 minutes of video
at most.

As for the management of buffer, VOVO performs a
hybrid caching strategy, as illustrated in Fig. 2. Every peer
caches the latest 5 minutes of the video played and uses the
Least-Recently-Used (LRU) policy for cache replacement.
Moreover, all the peers hold the initial 5 minutes of video
and never replace this part until they depart from the
system. We will discuss cache settings and costs in Section 5.

3.3 Associations Inside a Video

The technique of association rule mining is used to discover
elements that cooccur frequently within a data set consist-
ing of multiple selections of elements [20]. Association rules
have the general form t1 ! t2 (where t1 \ t2 ¼ �), where t1
and t2 are sets of items. The rule t1 ! t2 holds in the
transaction set T with certain support and confidence. Support
indicates the occurring frequency of t1 [t2 in the transac-
tion set T , while confidence indicates the strength of the
implication from t1 to t2.

Now, we consider the case of VOD. A video program can
be regarded as a sequence of continuous media segments.
Supported by the VCR functionalities, a user may choose to

watch only a subset of the sequence, i.e., several segments.

Due to the difference in individual interests, the segments

watched by different users vary a lot. However, segments of

a video are not completely independent to each other. In

other words, if the xth and the yth segment of a video are

close associated, users who watch the xth segment will

probably watch the yth segment. Such associations can be

inferred from the history information of VOD users’

behavior.
The aforementioned association rule mining helps to

prefetch corresponding contents. Nevertheless, to collect

the history information is nontrivial in a large-scale VOD

system. Existing schemes include the central server blessed

mechanisms or using an offline data set [19], [21]. Superior

to these schemes, VOVO takes full advantage of the P2P

networks and enables the peers to exchange their history

information in a distributed manner.
Peers in VOVO execute periodical workflows to leverage

the design essentials above, as depicted in Fig. 3: while a

peer is streaming video, it maintains a record (named

playback record) of its playback history. Peers exchange

their records through gossips, so that the states of peers are

efficiently propagated and updated throughout the net-

works. Based on the information collected from other peers

(the list of playback records), a peer dynamically predicts its

future behavior using the technique of association rule

mining. Based on such predictions, neighboring peers

conduct collaborative prefetching to maximize the resource

availability in a local area. As a result, the response latency

for any VCR control is restricted to a fairly low level.

4 SYSTEM DESIGN

VOVO mainly has four components: overlay manager, state

manager, streaming scheduler, and player, as illustrated in

Fig. 4. Section 4.1 introduces the overlay management. The

working mechanism of the state manager is described in

Sections 4.2 and 4.3, including the gossip-based state

propagation and the association rule mining. Section 4.4

focuses on the collaborative prefetching strategy executed

on the streaming scheduler.

HE AND LIU: VOVO: VCR-ORIENTED VIDEO-ON-DEMAND IN LARGE-SCALE PEER-TO-PEER NETWORKS 3

Fig. 2. Urgent downloading, prefetching, and hybrid caching.

Fig. 3. Work flow from gossip to prefetching.

4.1 Batching Plus Patching: Scaling the Service

In the overlay management, VOVO adopts the combination
of batching and patching, as shown in Fig. 5. Such a design
is flexible with substantive concurrent and asynchronous
clients.

The VOD server uses batching to serve asynchronous
peers. Every m minutes the server starts a new batching
session to broadcast the video from the beginning, where m
is a predefined session width. For example, when m ¼ 3,
peers joining in the system from the very beginning to the
end of the third minutes form Session 1. Similarly, later,
joining peers successively become participants of Session 2,
Session 3, etc. Sessions may have unequal numbers of
participating peers, depending on the varying joining rates
of peers.

According to the observed data in [6], a client in a P2P
VOD system is usually able to contribute its bandwidth as
much as it receives from other peers. Therefore, we assume
for every peer in VOVO that the available downloading and
uploading bandwidths are both at least equal to the full
source rate of the video. The server allocates a certain
amount of dedicated outgoing bandwidth for each batching

session. In each session, early joining peers directly become
the children of the server. After the allocated bandwidth is
fully occupied, late peers are redirected by the server and
become the descendants of the early ones. Since the peers in
a session transfer same video content currently broadcast by
the server, the streaming mechanism inside a batching
session is similar with P2P live streaming [2], [4], [22]. Peers
connected with batching connections are called neighboring
peers or neighbors.

Moreover, VOVO reinforces the batching scheme with
patching. The server sends a list of randomly selected peers
to each joining peer. When a peer joins in a session late and
misses the initial part of the video, it picks up a few peers
from the random list as patching sources and immediately
starts to download the missing part from them. Fig. 5 shows
three typical patching connections in VOVO (for clear
display, we do not draw all the patching connections). Note
that patching sources are not necessarily peers in the same
session. They can be peers from the random list or just the
VOD server as long as there is surplus outgoing bandwidth
allocated for the current session.

Consequently, a late peer in VOVO simultaneously
keeps two kinds of connections in the beginning periods
of its life span: batching connections and patching connec-
tions. After it finishes downloading the missing part,
patching connections are ended. Note that a peer without
any VCR interactivity only needs batching and patching
connections. Therefore, streaming through batching and
patching belongs to urgent downloading.

4.2 State Maintenance and Propagation

. Playback record. Every minute of video is called a
segment. A peer in VOVO maintains its playback
record while streaming and playing the video. The
playback record is a string of segment indices, which
is initially empty. When a segment is played, its
index is inserted into the tail of the string. For

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 4. The diagram of a VOVO node.

Fig. 5. Batching and patching in VOVO.

example, suppose the current playback record of a
peer is (1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 7, 8), it
depicts a playback history as follows: the peer first
plays the video from the first to the eighth minute,
fast searches to the 11th minute, plays until the 15th
minute, then reverse searches to the seventh minute,
and plays the eighth minute before the playback
record is last updated.

. Gossip. Peers in VOVO conduct periodical gossips to
exchange their state information. During each
period, a peer generates a state message, including
its latest state information. The format of the state
message is {IP, Incremental playback record, Time
stamp}, where IP is the peer’s IP address, Incremental
playback record refers to the string of segments the
peer plays after it generates last state-message last
time, Time stamp is the time since the peer joins in.
On the other hand, each peer maintains a list of
records. Each entry in the list corresponds to a peer
and records its latest state.

On receiving a state message, a peer performs
relevant operations before it forwards the message to
its neighbors: If peer A receives the state message of
peer B for the first time, it replies to B with a request
for the full playback record. On receiving the
request, B will send its full playback record to A.
If peer A has received the state message before, it
compares two time stamps. If the time stamp of the
state message is greater than that in the entry, the
incremental playback record is inserted into the tail
of the playback record in the entry, and the time
stamp in the entry is updated.

Using the gossip-based state propagation, a peer
is able to accumulate the information of playback
history of all the peers. Furthermore, since the
hybrid caching strategy is well known to all, through
periodical gossips every peer can keep aware of the
global distribution of video data on all the peers.

4.3 Mining the Association Rules

Peers in VOVO take the state information collected through
gossips as the input of mining. The goal of mining is to find
the segments most associated to the segment currently
played.

First, it is observed that the user behavior in the next few
minutes is closely related with his/her experience during
the last few minutes [19], [21]. The preconfigured sizes of
item sets in the association rules have apparent impact on
the efficiency and accuracy of mining. Thus, we propose to
mine all the rules t1 ! t2, where t1 \ t2 ¼ �, jt1j ¼ jt2j ¼ 3.

Second, the playback history of a VOD user actually
forms a sequence of segments. Input and output of
predictions based on the history information ought to be
order sensitive. For example, a user who plays the segments
(4, 5, 1) will probably continue to watch the second and the
third segments, while a user who plays the segments (1, 4, 5)
will probably go on with the sixth segment. We have
different predictions of their future behavior because they
play the same segments in different orders.

Third, according to the theory of association rule mining
[20], we find all the association rules that have a support and

a confidence greater than the specified thresholds. For
example, we require the eligible association rules to have a
support greater than 10 percent and a confidence greater than
25 percent. Since VOVO serves large-scale P2P networks, a
single peer may keep a large list of records and extract a good
number of substrings during the course of association rule
mining. Setting the thresholds of support and confidence
helps to avoid the impact of random coincidence and
improves the precision and accuracy of mining.

For a particular peer A, its playback history in the last
3 minutes is denoted as an ordinal string ða1; a2; a3Þ. Let L
be the local list of records kept by peer A. Based on the
guidelines above, the process of association rule mining in
VOVO runs as follows: First, the Knuth-Morris-Pratt
algorithm [23] for string searching is used to locate the
substring ða1; a2; a3Þ in each entry of L. Then, peer A
extracts all those segments which simultaneously satisfy the
following requirements: 1) From each record in the list,
three segments (if exist) at most are extracted. 2) They do
not contain the immediate next two segments after the
current progress of playback, because these segments are
downloaded through urgent downloading. 3) They are the
closest segments following the a3th segment in the record.

We take Fig. 6 as an example. Suppose peer A has its
list L, as shown in Fig. 6a, and ða1; a2; a3Þ ¼ ð1; 2; 3Þ. When
peer A searches through the playback record of peer B, the
fourth and fifth segments will not be extracted. Instead,
the substring (6, 7, 8) is extracted, and we get an
association rule (1, 2, 3) ! (6, 7, 8). When peer A searches
through the playback record of peer D, the fourth segment
will not be extracted. The substring (8, 9, 10) is extracted
and we get an association rule (1, 2, 3) ! (8, 9, 10). When
peer A searches through the playback record of peer F , it
extracts nothing because the record of F does not contain
the substring (1, 2, 3).

The extracted substrings are listed in Fig. 6b. They
become the targets that peer A is likely to play in the next
few minutes, so some of them should be prefetched if
possible. After filtering all the association rules with the
specified thresholds of support and confidence, we finally
get two eligible association rules:

ð1; 2; 3Þ ! ð6; 7; 8Þ; support ¼ 2=8 ¼ 25 percent;

confidence ¼ 2=6 ¼ 33:3 percent;

ð1; 2; 3Þ ! ð8; 9; 10Þ; support ¼ 3=8 ¼ 37:5 percent;

confidence ¼ 3=6 ¼ 50 percent:

HE AND LIU: VOVO: VCR-ORIENTED VIDEO-ON-DEMAND IN LARGE-SCALE PEER-TO-PEER NETWORKS 5

Fig. 6. Extract the substrings from the list of records.

The segments to be prefetched are selected from the ones

occurring most frequently in the eligible association rules

(i.e., the segments 6, 7, 8, 9, and 10).
We may notice that the above scheme of association rule

mining does not directly differentiate video segments

according to their playing frequencies. Instead, the predic-

tions of the VCR interactivities are closely related to the

peer’s recent playback behavior. Though different persons

might have different preferences and the individual play-

back behavior might not be predictable, the collection of all

the playback records is still able to reveal the nature

associations among the segments inside the videos. Basing

on such association rules, the collaborative prefetching

introduced in Section 4.4 greatly benefits in the perfor-

mance in VCR interactivities.

4.4 On VCR Interactivities

In this section, we first present the taxonomy of response

latencies of VCR interactivities. The expected response

latency is deduced, based on which we propose the

collaborative prefetching strategy.
Response latencies of VCR interactivities. To minimize

the response latencies of VCR interactivities is a crucial

point of a VCR-oriented design. For a particular VCR

control, the response latency is defined as the duration of

interruption before the playback is resumed. Thus, the

response latencies of VCR interactivities Ti ði ¼ 1; 2; 3; 4Þ
have different forms in the following four cases.

When the current peer has not cached the requested

segment of the VCR control and the location of the segment

is unknown, we have

T1 ¼ Ts þ Tr þ Td; ð1Þ

where Ts is the time to find the location of the requested

segment, Tr is the time to build the streaming connection,

and Td is the time needed to download the requested

segment.
When the requested segment is not cached on the current

peer but located on an unconnected peer, we have

T2 ¼ Tr þ Td: ð2Þ

When the requested segment is not cached on the current

peer but cached on a connected neighbor, we have

T3 ¼ Td: ð3Þ

When the requested segment is already cached on the

current peer, we have

T4 ¼ 0: ð4Þ

Suppose the occurring probability of the four cases above

is respectively p1, p2, p3, and p4. Then, we have

EðT Þ ¼Eðp1 � T1 þ p2 � T2 þ p3 � T3 þ p4 � T4Þ
¼ p1 �EðT1Þ þ p2 � EðT2Þ þ p3 � EðT3Þ þ p4 � EðT4Þ
¼ p1 �EðT1Þ þ p2 � EðT2Þ þ p3 � EðT3Þ
¼ p1 �EðTsÞ þ ð1� p3 � p4Þ � EðTrÞþð1� p4Þ�EðTdÞ:

ð5Þ

Regardless of the variance of EðTsÞ, EðTrÞ, and EðTdÞ, we
must try to maximize p4 so that the expected response
latency EðT Þ can be minimized. Even if the fourth case
cannot be satisfied, the third and second cases must be
either satisfied.

In other words, we should adopt a proper prefetching
strategy to maximize the hit ratio of requested segments,
which in fact is equal p4. In case the requested segments
are not downloaded, the chance to find it on a neighbor
or a known peer should be maximized, i.e., to maximize
p3 or p2. And, the first case, in which a peer has to search
for the requested segment after the VCR control, must be
avoided.

Collaborative prefetching strategy. VOVO adopts a
collaborative prefetching strategy to fulfill the requirements
above. The pseudocode is shown in Fig. 7, which mainly
consists of three stages as follows:

First, every peer sets up its prefetching set. It sorts up the
segments deduced by the eligible association rules accord-
ing to their occurring frequencies. Every peer sorts out
three most requested segments to prefetch, neglecting
those segments already in the cache. If a peer cannot find
enough segments after such sorting, it directly chooses the
successive unprefetched segments closest to its current
progress. This is because a user is likely to watch the
successive content. A prefetching buffer is allocated to store

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 7. The pseudocode of prefetching.

the prefetched segments. After the prefetched segments
are played in the near future, they will be merged into the
cached content and replaced according to the LRU policy
as well.

Second, in the scope of neighborhood, every peer
respectively keeps counting the copies of each prefetched
segment. For example, when peer A starts to prefetch
segment a1, it broadcasts a message to all its neighbors. On
receiving the message, every neighbor adds 1 to the count
of segment a1. Note that neighboring nodes possibly have
different playback histories in the last few minutes. Their
prefetching set may be similar but different from each other.
Due to the link diversity and dynamic user behavior, peers
usually execute prefeching asynchronously. To keep
counting the copies of prefetched segments helps to
synchronize the state of resource distribution in the
neighborhood.

Third, based on the resource distribution in its
neighborhood, every peer performs prefeching according
to the local-rarest-first strategy. Due to the constraints in
time and bandwidth, a peer is probably unable to
download all the segments in the prefetching set before
they are requested. Using the local-rarest-first strategy,
however, the probability is maximized for a peer to find
the requested segments locally, i.e., either in its prefetching
buffer or on a neighbor.

5 DISCUSSION AND ANALYSIS

5.1 Batching, Patching, and Hybrid Caching

Here, we discuss the features of VOVO in overlay manage-
ment and the hybrid caching strategy.

VOVO combines batching and patching to organize the
overlay. Combinatorial approaches have been adopted in
some existing works. Annapureddy et al. adopt a mesh-
based approach for P2P VOD in [11]. Magharei and Rejaie
[22] also adopt a mesh-based approach called PRIME,
however, mainly for the applications of P2P live streaming.
PRIME combines the schemes of diffusion and swarming to
mitigate the “bandwidth bottleneck” and “content bottle-
neck.” Peers are divided into multiple diffusion subtrees,
which are similar with the structure of batching in VOVO,
only with regard to the overlay topology.

Nevertheless, the existing approaches cannot be directly
migrated and applied in VOVO. We propose the scheme of
batching and patching mainly for the following purposes:

1. To provide scalable service. Using batching, the
bandwidth consumption on the server is limited to
no more than the allocated quota, as elaborated in
Section 4.1.

2. To support asynchronous accesses to the video
content. When the server starts a new batching
session, it need not wait any late peers. The early
peers in a batching session obtain the video content
and become the substitute video sources. Late peers
can make up the missing content using patching
from the early ones. Meanwhile, patching improves
the system flexibility. As observed [18], 37 percent of
all the VOD users watch a video for less than
5 minutes. VOVO provides abundant backup stream

sources for patching by adopting the hybrid caching
strategy, where all the peers keep both the initial
5 minutes and the latest 5 minutes of the video
played. Any late peer can instantly find patching
sources and make up the missing part immediately
after join, no matter if it starts from the beginning or
any other offset of the video. Because the patching
sources are selected randomly, load balance is kept
among the peers.

3. To work in concert with collaborative prefetching.
Neighboring peers have very similar playback
progresses such that their prefetching sets are
similar, too. This feature results in a mutual-
complementary effect for the neighboring peers to
execute collaborative prefetching. Specifically, even
if a peer has not prefetched a requested segment,
with high probability, this segment can be located in
the prefetched content on its neighbors, as we
analyze in Section 5.2.

5.2 Efficiency of Prefetching

We define two types of hit ratios for VCR interactivities.

HR1 is the percentage of requests satisfied by the segments

prefetched on the current peer. HR2 is the percentage of

requests satisfied by the segments prefetched on the

neighboring peers. In Section 4.4, it is illuminated that

higher hit ratios lead to shorter response latencies of VCR

interactivities. Here, we theoretically compare the hit ratios

produced by random prefetching and the scheme proposed

in VOVO. Similar results can be obtained from the

comparisons with other prefetching strategies. Due to the

limit of pages, we just use random prefetching as a

compared target.
Let us consider the scenario when a particular VCR

control occurs. Without loss of generality, we assume a

peer can prefetch d unique segments, while a group of

neighboring peers can prefetch D unique segments before

the VCR control occurs. Actually, the value of D might be

slightly variational with different prefetching strategies.

But, the minor difference has less effect in the comparison,

so we just treat it as a constant value. V ¼ fall the segments

possibly to be requested by the VCR controlg. Vi is the pre-

fetching set of peer i. Let ph be the probability that the

requested segment belongs to the set Vi.
For the collaborative prefetching proposed in VOVO,

we have

HR1 ¼ ph � djVij
; HR1þHR2 ¼ ph �DjVij

: ð6Þ

For random prefetching, we have

HR10 ¼ d

jV j ; HR10 þHR20 ¼ D

jV j : ð7Þ

According to the aforementioned observation results and

the associations inside the video, ph is close to 1. Moreover,

jVij 2 jV j, while |Vij << jV j. Thus, we have

HR1

HR10
¼ HR2

HR20
¼ ph � jV jjVij

� jV jjVij
: ð8Þ

HE AND LIU: VOVO: VCR-ORIENTED VIDEO-ON-DEMAND IN LARGE-SCALE PEER-TO-PEER NETWORKS 7

Because jVij << jV j, this result clearly shows the
advantage of prefetching scheme in VOVO, which is
aware of the associations inside a video. Moreover, based
on the collaborative prefetching (also proved by the trace-
driven experiments in Section 6), a group of neighboring
peers are able to prefetch most of the segments in their
prefetching set. In other words, D � jVij. From (6), we
have HR1þHR2 � 1, which means VOVO is able to
provide near-optimal hit ratios in the scope of neighbor-
ing peers.

It is worth noticing that the scheme of association rule
mining in VOVO is applicable for many other P2P VOD
frameworks. The mining process is based on the collective
behavior of VOD clients. As long as a peer has an effective
way to record and share the playback history, it is obviously
realizable for the peer to mine the association rules inside a
video.

5.3 Miscellaneous

In this section, we analyze miscellaneous costs and
efficiency of VOVO.

Memory cost. The memory cost on a peer in VOVO
mainly consists of three parts. The first part is the memory
cost to cache the initial 5 minutes and the latest 5 minutes of
video played. The second part is the memory cost of
prefetching buffer, usually not more than three segments,
i.e., 3 minutes. The third part is the memory cost to store the
list of records, which are collected through gossips with
other peers. Suppose the bit rate of the video is 700 kilobytes
per second (Kbps), which is generally playback of high
quality. The memory cost of all cached video content will be
at most ð700 Kbps=8Þ�60 seconds�13 minutes�68 Mbytes.
The size of an entry in the list is determined by the size
of a playback record. As we know, the playback record is a
string of segment indices. Each index in the string costs
1 byte. As we observed in the real VOD data set [24],
no video is longer than 120 minutes. Since a VOD user
seldom stays in the system longer than the length of the
video, we assume the playback record always contains not
more than 120 characters. Therefore, the size of a single
record is less than 1 byte� 120 � 0:12 Kbytes. The size of
the list is at most 1.2 Mbytes even if a peer maintains at
most 10,000 records. In total, the memory cost of a peer in
VOVO is less than 70 Mbytes. It is obviously acceptable for
normal PCs.

Propagation delay. The propagation delay is defined as
the time needed to propagate the state information of a peer
throughout the system. Let m be the number of neighbors
selected for gossip in each hop. Let t be the average
transmission delay of gossip in one hop. Let N be the
system size. Then, the expected propagation delay is
T ¼ t� logmN . When m ¼ 2, t ¼ 3 seconds, and N ¼ 106,
we have T ¼ 60 seconds. In other words, setting the period
of gossip as one minute sufficiently satisfies the timing
requirement of state propagation.

Traffic cost. The traffic cost is defined as the cost for a peer
to update all the entries in its local list. Note that the size of the
state message generated in each period of gossip is the sum of
the following items: the IP address, the incremental playback
record, and the time stamp. That is, 4 bytesþ 1 byteþ
1 byte ¼ 6 bytes. To update at most 10,000 entries in the list,

the average traffic cost per peer in each period of gossip is
6 bytes� 104=103 ¼ 60 Kbytes. Since a period of gossip lasts
for 1 minute, the traffic cost on a peer is 1 Kbps, which is
almost negligible compared to the traffic of video streaming.

Overhead of mining. We have analyzed the memory
cost on a peer to store the video content and the list of
playback record. As shown in Section 4.3, there is hardly
any additional memory cost in mining the association
rules, except a few variables used to count and filter the
association rules. And, it is well known that the temporal
complexity of the Knuth-Morris-Pratt algorithm is
OðnþmÞ, where n is the length of main string, and m
is the length of the substring to search for. In the case of
association rule mining in VOVO, m ¼ 3 while n is the
length of a playback record, which usually varies in
[1, 120]. Moreover, we observe a real VOD data set [24]
and find that three-quarters of all clients play not more
than 50 percent of a video, as means that the values of n
must be even smaller in practical scenarios. Therefore, we
may regard association rule mining in VOVO as a
procedure with constant temporal complexity. Actually
data mining through several thousands of records is
trivial to the powerful computing capability of PCs. It
takes less than 1 second in our experiments to execute the
corresponding procedures.

6 PERFORMANCE EVALUATION

6.1 Experimental Methodology

For comparison, we simulate a system called SBR which
adopts simple batching and random prefetching strategy.
We compare VOVO with SBR in groups of experiments.
We take a movie of 50 minutes as a test video and
simulate 1,000 peers. The accumulated playing frequency
of segments in the video conforms to the distribution in
Fig. 8, which is collected from a real deployed VOD
system [24]. Then, we generate a playback record for each
of the 1,000 peers. According to the record, the playback
procedure of a peer can be determined. For example, a
peer with playback record (1, 2, 3, 6, 7, 8, 15, 16, 17, 18,
19, 20, 45, 30, 31, 32, 33, 34, 35, 45, 46, 47, 48, 49, 50) has a
lifetime of 25 minutes and takes five VCR controls in
total. Fig. 9 shows the numbers of VCR controls taken by

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 8. Playing frequency of the video.

1,000 peers with a curve of cumulative distribution. We

assume that the aggregated join rates of peers conform to

a Poisson process with parameter �. In the order of

joining, peers are assigned with 0-based IDs. The session

width of batching is set at 1 minute. For the source

server, the allocated bandwidth per session is denoted by

the parameter �. We set the full source rate of the video

as S ¼ 800 Kbps to represent high quality videos. The

outgoing bandwidth capacity of the source server is

200 times the full source rate, i.e., 200S ¼ 160 Mbps. The

total available downloading bandwidth of each peer is

randomly distributed in ½1:5S; 5S�. The end-to-end band-

width for transmission is uniformly equal to S. The play-

out buffer size is 30 seconds� S. In other words, a peer

has to fill the buffer with 30 seconds video before it starts

playback. Without loss of generality, the time needed to

locate a segment and build a connection varies from 5 to

15 seconds.

6.2 Experimental Results

Hit ratio. Let � ¼ 20, � ¼ 6S=minutes. Fig. 10 plots the sums

of HR1 and HR2, the two hit ratios defined in Section 5.2.

We can see that the accumulated hit ratios (sum of HR1 and

HR2) of most peers are over 70 percent. This figure implies

the conclusion: a peer cannot prefetch all the requested

segments ahead of the occurrence of VCR controls; the

majority of the requests of VCR controls, however, can be

resolved within its neighborhood using the collaborative

prefetching strategy. Fig. 11 plots the HR2 of VOVO and

SBR. We can see VOVO improves HR2 by 90 percent-

120 percent, indicating the high accuracy and efficiency of

the collaborative prefetching strategy.
Impact of join rate. Let � ¼ 6S=minutes, we tune the

value of � to measure the impact of join rates. Fig. 12 shows

the server stress over time with different join rates. The

server stress is denoted as percentage to the total

bandwidth capacity of the source server.
As we see from the curves, there is not apparent

correlation between the server stress and the join rates.

During the first 25 minutes, the server stress presents nearly

linear increase as peers join in. After the 30th minute, the

server stress keeps steady at around 70 percent. This fact

should be explained as follows: during the initial stage of

the experiment, the peers join the system in succession and

consume the allocated bandwidth from the server. Early

peers obtain and cache the video content in their buffers.

Afterwards, they become the substitute video sources and

alleviate the server stress, despite that the number of peers

keeps increasing.

HE AND LIU: VOVO: VCR-ORIENTED VIDEO-ON-DEMAND IN LARGE-SCALE PEER-TO-PEER NETWORKS 9

Fig. 9. VCR behavior of 1,000 peers.

Fig. 10. Accumulated hit ratio.

Fig. 11. Comparison of hit ratio.

Fig. 12. Impact of join rate.

Note that for any of these experiments, VOVO can serve
much more concurrent users than the capacity of the source
server. For example, when � ¼ 20, the observed peak
number of concurrent users is 531; when � ¼ 40, the
observed peak number of concurrent users is 1,248; but
the server can directly serve 200 clients at most.

Impact of allocated bandwidth per session. Let � ¼ 20,
we tune the value of � to measure the impact of allocated
bandwidth per session.

Fig. 13 plots the cumulative distribution of start-up
latencies with different settings of �. As can be seen from the
figure, VOVO offers shorter start-up latencies as the
allocated bandwidth per session increases.

Meanwhile, Fig. 14 shows the server stress over time. We
find the maximum server stress is determined by �. First,
the server stress increases as the allocated bandwidth per
session increases. This is because more peers obtain the
video content directly from the server when the allocated
bandwidth per session increases. Second, with different
settings of �, the server stress presents similar increasing
trends over time. Third, the server cannot be overloaded
until � ¼ 9S=minutes. According to the results in Fig. 13, it is
viable to allocate bandwidth as much as possible for each
session so that the start-up latencies are expected to be even
shorter.

Performance comparison. In this section, we compare
VOVO with SBR in start-up latencies and response latencies.

Related parameters are set as � ¼ 20, � ¼ 6S=minutes. The
corresponding server stress is shown in Fig. 14. Since VOVO
adopts batching to allocate outgoing bandwidth on the
server, the server stress is almost same with that of SBR in
various scenarios.

Fig. 15 compares the cumulative distribution of start-up
latencies for peers in VOVO and SBR. In SBR, the start-up
latencies are distributed uniformly from 10 seconds to
90 seconds with an average of 50 seconds. But, the start-up
latencies in VOVO are typically ranging from 8 seconds to
30 seconds with an average of 18 seconds. In comparison,
VOVO improves the start-up speed by 10 percent-
200 percent. Moreover, VOVO offers more equitable start-
up speed for all the peers.

With the same parameter settings, Fig. 16 compares
VOVO and SBR in terms of response latencies in VCR
interactivities. The response latencies in VCR interactivities
are improved by 30 percent-140 percent, because VOVO
achieves higher accuracy and efficiency by using the
collaborative prefetching strategy.

We plot the response latencies of all the peers in
VOVO in Fig. 17. Interestingly, we find that the response
latencies of early peers are a bit longer than that of the
late peers. The reason lies in two aspects: First, early peers
cannot find abundant source to download when they take
VCR controls. Second, the precision and accuracy of
predictions depends on the size of data set collected
through gossips.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 13. Impact of allocated bandwidth per session (1).

Fig. 14. Impact of allocated bandwidth per session (2).

Fig. 15. Comparison of start-up latencies.

Fig. 16. Comparison of response latencies.

7 CONCLUSIONS

Enabling large-scale VOD service in wide area Internet is

crucial for many commercial applications. In order to

provide a VCR-oriented VOD service in large scale P2P

networks, we propose VOVO scheme. VOVO combines

batching and patching as the basic service architecture and

reinforces it with a hybrid caching strategy. Based on the

observations on user behavior and VCR interactivities, we

adopt the technique of association rule mining to exploit

the associations within videos. The segments requested in

VCR interactivities are thus accurately predicted according

to the information collected through gossips among peers.

Moreover, a collaborative prefetching strategy is designed

to optimize the resource distribution on the neighboring

peers. We evaluate VOVO through comprehensive simula-

tions and compare it with previous schemes. In the next

step, we are going to work on the in-session topology

optimization with VOVO. The incentive mechanisms and

economic issues in P2P VOD systems are also being

studied.

ACKNOWLEDGMENTS

The authors thank Hongliang Yu of Tsinghua University

for providing a valuable data set, covering 219 days and

more than 150,000 users in a real VOD system [24]

deployed by China Telecom. This research was supported

in part by the National High Technology Research and

Development Program of China (863 Program) under

Grant 2007AA01Z180, NSF China Key Project 60736016,

NSF China Grant 60573140, Hong Kong RGC Grants

HKUST6169/07E and N_HKUST614/07, and HKUST

Nansha Research Fund NRC06/07.EG01.

REFERENCES

[1] Y. Chu, S.G. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. ACM SIGMETRICS, 2000.

[2] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
Feasibility of Supporting Large-Scale Live Streaming Applications
with Dynamic Application End-Points,” Proc. ACM SIGCOMM,
2004.

[3] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-Resilient Load-
Balancing Algorithms in Structured Peer-to-Peer Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, 2007.

[4] X. Zhang, J. Liu, B. Li, and T.S.P. Yum, “Donet/Coolstreaming: A
Datadriven Overlay Network for Live Media Streaming,” Proc.
IEEE INFOCOM, 2005.

[5] Y. Huang, T.T.J. Fu, D.M. Chiu, J.C.S. Lui, and C. Huang,
“Challenges, Design, and Analysis of a Large-Scale P2P VoD
System,” Proc. ACM SIGCOMM, 2008.

[6] C. Huang, J. Li, and K.W. Ross, “Can Internet Video-on-Demand
Be Profitable,” Proc. ACM SIGCOMM, 2007.

[7] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies for
an On-Demand Video Server with Batching,” Proc. Second ACM
Int’l Conf. Multimedia (Multimedia), 1994.

[8] T. Do, K. Hua, and M. Tantaoui, “P2VoD: Providing Fault
Tolerant Video-on-Demand Streaming in Peer-to-Peer Environ-
ment,” Proc. IEEE Int’l Conf. Comm. (ICC), 2004.

[9] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-Peer
Patching Scheme for VoD Service,” Proc. 12th Int’l Conf. World
Wide Web (WWW), 2003.

[10] S. Sheu, K.A. Hua, and W. Tavanapong, “Chaining: A Generalized
Batching Technique for Video-on-Demand Systems,” Proc. Int’l
Conf. Multimedia Computing and Systems (ICMCS), 1997.

[11] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,
and P. Rodriguez, “Is High-Quality VoD Feasible Using P2P
Swarming?” Proc. 16th Int’l Conf. World Wide Web (WWW),
2007.

[12] A. Hu, “Video-on-Demand Broadcasting Protocols: A Compre-
hensive Study,” Proc. IEEE INFOCOM, 2001.

[13] K. Hua, Y. Cai, and S. Sheu, “Patching: A Multicast Technique for
True Video-on-Demand Services,” Proc. Sixth ACM Int’l Conf.
Multimedia (Multimedia), 1998.

[14] S. Sen, L. Gao, J. Rexford, and D. Towsley, “Optimal Patching
Schemes for Efficient Multimedia Streaming,” Proc. 11th Int’l
Workshop Network and Operating System Support for Digital Audio
and Video (NOSSDAV), 1999.

[15] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel,
“Scalable On-Demand Media Streaming with Packet Loss Recov-
ery,” Proc. ACM SIGCOMM, 2001.

[16] L. Pinho and C. Amorim, “Assessing the Efficiency of Stream
Reuse Techniques in P2P Video-on-Demand Systems,” J. Network
and Computer Applications, vol. 29, pp. 25-45, 2006.

[17] S. Rollins and K. Almeroth, “Pixie: A Jukebox Architecture to
Support Efficient Peer Content Exchange,” Proc. 10th ACM Int’l
Conf. Multimedia (Multimedia ’02), Dec. 2002.

[18] H. Yu, D. Zheng, B. Zhao, and W. Zheng, “Understanding User
Behavior in Large-Scale Video-on-Demand Systems,” Proc.
EuroSys Conf., 2006.

[19] C. Zheng, G. Shen, and S. Li, “Distributed Prefetching Scheme for
Random Seek Support in Peer-to-Peer Streaming Applications,”
Proc. Workshop Advances in Peer-to-Peer Multimedia Streaming,
2005.

[20] T. Menzies and Y. Hu, “Data Mining for Very Busy People,”
Computer, vol. 36, pp. 22-29, 2003.

[21] C. Huang and T. Hsu, “A User-Aware Prefetching Mechanism for
Video Streaming,” Proc. 12th Int’l Conf. World Wide Web (WWW),
2003.

[22] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-
drIven MEshed-Based Streaming System,” Proc. IEEE INFOCOM,
2007.

[23] D. Knuth, J.H. Morris, and V. Pratt, “Fast Pattern Matching in
Strings,” SIAM J. Computing, vol. 6, pp. 323-350, 1977.

[24] PowerInfo Co., Ltd., http://www.sjdd.com.cn/english/
englishindex.htm, 2007.

HE AND LIU: VOVO: VCR-ORIENTED VIDEO-ON-DEMAND IN LARGE-SCALE PEER-TO-PEER NETWORKS 11

Fig. 17. Response latencies in VOVO.

Yuan He received the BE degree from the
Department of Computer Science and Technol-
ogy, University of Science and Technology of
China, in 2003 and the ME degree from the
Institute of Software, Chinese Academy of
Sciences, in 2006. He is currently a PhD student
in the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, supervised by Dr. Yunhao Liu.
His research interests include peer-to-peer

computing, sensor networks, and pervasive computing. He is a student
member of the IEEE and the IEEE Computer Society.

Yunhao Liu received the BS degree from the
Automation Department, Tsinghua University,
China, in 1995, the MA degree from Beijing
Foreign Studies University, China, in 1997, and
the MS and the PhD degrees in computer
science and engineering from Michigan State
University in 2003 and 2004, respectively. He is
currently with the Department of Computer
Science and Engineering, Hong Kong University
of Science and Technology. He is also an

adjunct professor of Xi’an Jiaotong University, Jilin University, and the
Ocean University of China. His research interests include wireless
sensor network, peer-to-peer computing, and pervasive computing. He
is a senior member of the IEEE and a member of the ACM. He received
the Grand Prize of Hong Kong ICT Best Innovation and Research Award
in 2007.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

