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Abstract—Data collection is a fundamental issue in wireless
sensor networks. In many application scenarios for sensor net-
works, approximate data collection is a wise choice due to the
constraints in communication bandwidth and energy budget.
In this paper, we focus on efficient approximate data collection
with given error bounds in wireless sensor networks. The key
idea of our data collection approach ADC (Approximate Data
Collection) is to divide a sensor network into clusters, discover
local data correlations on each cluster head, and perform a
global approximate data collection on the sink according to
model parameters uploaded by cluster heads. Specifically, we
propose a local estimation model to approximate the readings
of several subsets of sensor nodes, and prove rated error-
bounds of data collection using this model. In the process
of model-based data collection, we formulate the problem of
selecting the minimum subset of sensor nodes into a minimum
dominating set problem which is known to be NP-hard, and use
a greedy heuristic algorithm to find an approximate solution.
We also propose a monitoring algorithm to adjust these subsets
according to the changes of sensor readings.Our trace-driving
simulation results show that our data collection approach ADC
can notably reduce the communication cost with given error
bounds.

Keywords-wireless sensor network, approximate data collec-
tion, minimum dominating set.

I. INTRODUCTION

Recent advances in low-power wireless technologies have

enabled wireless sensor networks (WSNs) to be used in a

variety of applications, such as environment monitoring [5]

and scientific observation [6]. In WSNs, data collection is

a fundamental but challenging task, due to the constraints

in communication bandwidth and energy budget [15, 23].

On one hand, many applications require persistent long-term

data collection, since the gathered data make sense only if

the data collection procedure lasts for months or even years

without interruption. On the other hand, sensor nodes are

often battery-powered and deployed in harsh environments,

hence data collection strategy must be carefully designed to

reduce energy cost of the sensor nodes, so as to prolong the

network lifetime as much as possible.

In many applications, it is often difficult and unneces-

sary to continuously collect the complete data set from a

resource-constrained WSN. From the point of view of sensor

networks, directly sending a large amount of raw data to the

sink node can leads to many serious problems. First, the data

quality may also be deteriorated by packet dropping due to

the limited bandwidth of sensor nodes. Second, intensive

data collection can lead to excessive energy consumption.

It further potentially results in network congestions and in

turn causes severe packet losses, which greatly deteriorate

the data quality. In many practical application scenarios

for sensor networks, the gathered sensor data usually have

spatial-temporal correlations. For example, Figure 1 shows

the temperature readings of five nearby sensor nodes de-

ployed in a garden over ten hours at night. The temperatures

recorded by the five nodes keep decreasing in the first 4

hours, and then become stable in the following 6 hours.

By utilizing compressing techniques based on exploring

these correlations, the obtained data can be within pre-

specified, application-dependent error bounds. The granu-

larity provided by such approximate data collection is more

than sufficient, especially considering the low measuring

accuracy of the sensor devices equipped by sensor nodes.

Approximate data collection is a wise choice for real

WSN applications, e.g., the GreenOrbs project [22, 24].

GreenOrbs is an all-year ecological surveillance sensor

network in the forest motivated by the need of long-term

large-scale sensing for continuous environmental surveil-

lance, precise forestry measurements and forestry research.

GreenOrbs collects various sensory data including tempera-
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Figure 1. Temperature readings of five sensors in a garden over ten hours.

ture, humidity and illumination over an area around 20,000

square meters. This data was never before available to the

forestry research. In this paper, we focus on efficient approx-

imate data collection in WSNs with bounded errors. There

are several factors should be considered when we design

our energy-efficient approximate data collection scheme.

First, such scheme must be adaptive to physical phenomena

changes. Physical phenomena are usually complex and hard

to be modeled in its entirety by a simple estimation model.

Second, we need a simple and effective model to describe

spatial correlations between sensor nodes. In dense-deployed

sensor networks, it is very common that nearby sensor

nodes have similar sensor readings [14]. It is not easy

to find a simple and efficient spatial correlation model to

suppress spatial redundancy.Our goal is to find a simple and

efficient mechanism to suppress both temporal and spatial

redundancy.

Our approach, ADC (Approximate Data Collection), ex-

ploits the fact that physical environments frequently exhibit

predictable weak stable state and strong temporal and spatial

correlations that can assist us in inferring the readings of

sensors. The key idea of ADC is to divide a sensor network

into clusters, discover local data correlations on each cluster

head, and perform a global approximate data collection on

the sink according to model parameters uploaded by cluster

heads. ADC consists of two parts: the local estimation

scheme and the data approximation scheme. In the local

estimation phase, each sensor node builds a data model to

estimate its local readings, while in the data approximation

phase, each cluster head maintains the parameters of the data

models in the cluster, and cooperates with the sink to derive

a bounded approximation of all the sensor readings.

In summary, the main contributions of our work are: (1)

By exploiting the spatial and temporal correlations within a

WSN, we propose a local estimation model to approximate

the readings of a subset of sensor nodes. Moreover, we prove

rated error-bounds of data collection using this model. (2)

In the process of model-based data collection, we formalize

the problem of selecting the minimum subset of sensor

nodes into a minimum dominating set problem, which is

NP-hard. And we propose a greedy heuristic algorithm to

find an approximate solution. We also propose a monitoring

algorithm to adjust these subsets according to the changes of

physical environment. (3) We evaluate the proposed scheme

with trace-driven experiments. Simulation results show that

our data collection approach can notably reduce the amount

of communication cost in sensor networks as much as 21%
compared with existing works.

The rest of the paper is organized as follows: Section

II briefly discusses the related works. Section III describes

the local estimation scheme. The details of data approxi-

mation are introduced in section IV. We evaluate ADC by

trace-driving simulations in Section V. Finally, Section VI

concludes the paper.

II. RELATED WORK

There are many works on data collection in wireless

sensor networks. Directed diffusion [11] is a general data

collection mechanism that uses a data-centric approach to

choose how to disseminate queries and gather data. Cougar

and TinyDB [12, 13] provide query-based interfaces to

extract data from sensor networks. None of these works

consider efficient approximate data collection.

Query-based remote continuously approximation data col-

lection in sensor networks is closely related to the prob-

lem we study here. One such approach is approximation

caching [8, 9, 10, 14] which give approximate answers

to queries in distributed environments with a fixed error

bound. The idea is that the sink node uses a constant to

reconstruct a piecewise constant approximation of the real

sensor readings. No updates are sent until a sensor notices

that its value has diverge by more than a given upper bound

from the last reading sent to the sink. CONCH [14] also

provides an simple spatial-temporal suppression technique

to suppress update messages of nearby sensors with similar

sensor readings. Sensor nodes in CONCH do not update

their readings if they hear similar update readings from

their neighbors. These approaches, though simple, ignore

the trend of sensor readings and only offer a narrow range

of predictive capabilities. Approximation caching may also

suffer from large update message transmission when many

sensor readings change dramatically. Our approach further

exploits the temporal correlation by utilizing a linear trend

component which enhances the estimation capability of our

approach.

Several works aim at extracting data from sensor networks

by using statistical models to capture the correlations of

sensor readings, such as BBQ [15]. BBQ samples a small

fraction of the sensor data from the network and utilizes

a correlation model to estimate the non-sampled sensor

readings. BBQ tries to find the best subset of sensors

to sample by using a greedy algorithm. Generally, these

models require an expensive long training phase and their

correctness cannot be guaranteed, since they are base on

the hypothesis that the statistical model obtained during
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the training phase is similar to that during the operation

phase. Actually, this hypothesis cannot be satisfied in long-

term continuous data gathering. Our approach continuously

checks the correctness of the estimated values and auto-

matically adjusts its parameters according to the updates of

the sensor readings. This makes our approach competent for

long-term continuous data gathering applications.

Distributed source coding is a losslessly compression

technique trying to addresses the problem of losslessly

compressing correlated sources that are not co-located and

cannot communicate with each other to minimize their joint

description costs. In [17], Slepian and Wolf show that it is

possible to compress the data at a combined rate equal to

the joint entropy of the correlated source. Distributed source

coding technology requires precise and perfect knowledge of

the correlations between the attributes, and will return wrong

answers (without warning) if this condition is not satisfied.

In practice, the cost of acquire precise and perfect knowledge

of the correlations between the attributes is extremely high.

Our approach smartly utilizes a simple probability model to

depict spatial correlations between sensor nodes at cluster

heads based on rough data from other sensor nodes.

Another technique that is widely used to reduce com-

munication cost in sensor networks is called time-series

forecasting. In [19], Lazaridis and Mehrotra use time-series

method to create piecewise linear approximations of signals

generated by sensor nodes, and send those approximations

to the sink. Their approach gathers a large amount of data

and tries to approximate them, rather than exploiting the

temporal correlations among sensor readings.

In [20], Chatterjea and Havinga describe an adaptive

sensor sampling scheme where nodes change their sampling

frequencies autonomously based on time-series forecasting,

in order to reduce energy consumption. They use time-

series forecasting to predict the future sensor readings.

The sampling frequency decrease against prediction accu-

racy,otherwise increase the sample frequency. The skipped

samples are replaced by prediction values. Compared with

[20], our approach can make sure the error of the gathered

data is below the application specified threshold.

In [1], sink node uses simple linear time series model

that consists of a trend component and a stationary auto

autoregressive component to predict the reading of each

sensor . Each sensor node updates its linear time series

model individually, without considering the similarity of

sensor readings between each sensor node. Their approach

ignores spatial correlations of nearby sensor nodes and

cannot suppress the update messages of nearby sensors with

similar sensor reading.

III. LOCAL ESTIMATION

In this section, we present a local estimation scheme to

reduce the message cost of an individual sensor node and its

Table I
USED NOTATIONS

Notation Meaning

F The sensor readings of the whole network

P The Δ-approximation of F

si A sensor node with node ID i

Fi The readings of sensor node si

k A constant used in local estimation specified by applications

εi The upper bound of the local estimation error of si

vi(t) The reading of si at time t

pi(t) The estimated value of vi(t)

ei(t) The estimation error of vi(t)

mi(t) The linear trend component of si

δi The standard deviation of Gaussian white noise at si

T The time interval of sampling

χi(t) A weakly stationary autoregressive component at si

S A set of partitions of all the cluster heads

Gi A partition of cluster Ci

Wi The ith Θ-similar set

gi,j A Θ-similar set that belongs to Gi

Dij(t) The estimation distance between si and sj at time t

ri The radius of Θ-similar set Wi

Δ The error bound depends on applications

wi The predictor of Wi

cluster head. In this scheme, a sensor node can estimate a

newly-generated reading through a data model learned from

its historic data. The parameters of the data model are sent

to the cluster head, rather than the sensor readings. If the

difference between the estimated value and the original value

is no larger than a given threshold, the sensor node does not

upload the data to the cluster head, hence the message cost

is reduced. In the following part of this section, we present

our data model used in this scheme, and then describe how

to learn parameters and update the data model. The used

notations in this paper are summarized in Table 1, and the

computation procedures on the cluster heads and the sink

are discussed in the next section.

A. Data Model

A sensor network consists of a collection of n sensor

nodes S = {s1, s2, . . . , sn} and a sink node. The data

generated by the whole sensor network can be written as

F = {F1, F2, . . . , Fn}, where Fi (1 ≤ i ≤ n) is a time

series vi(0), vi(1), vi(2), . . . generated by sensor node si
every T seconds. The whole sensor network is grouped into

clusters. Each sensor node belongs to one cluster and sends

its data to the cluster head through a multi-hop path. Each

cluster head processes data from sensor nodes in the cluster,

and sends the result to the sink through a multi-hop path.

Given a fiducial probability, the sink node requires a Δ-

loss approximation of F, denoted as P = {P1, P2, . . . , Pn},
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in which Pi = pi(0), pi(1), pi(2), . . . for 1 ≤ i ≤ n.

∀i, t, |vi(t)− pi(t)| ≤ Δ.

We use the model proposed in [1] to estimate the sensor

readings. The reading vi(t) generated by sensor node si at

time t can be modeled as mi(t) + χi(t), where mi(t) is

a linear trend component that grows over time, and χi(t)
is a 3-degree weakly stationary autoregressive component.

The linear trend component mi(t) = ai + bit, where ai and

bi are real constants, and the stationary component χi(t) is

defined as follows:

χi(t) = αχi(t−1)+βχi(t−2)+γχi(t−3)+δiN(0, 1) (1)

where α, β, γ are real constants, and α + β + γ < 1 since

χi(t) is stationary. The function δi is the standard deviation

of the Gaussian white noise N(0, 1). The estimation pi(t)
of value vi(t) is given by the sum of the current trend

mi(t) and the predicator χi(t), which can be rewritten as a

linear combination of the differences of the last three sensor

readings and their trend components:

pi(t) = mi(t) + α(vi(t− 1)−mi(t− 1))+

β(vi(t− 2)−mi(t− 2)) + γ(vi(t− 3)−mi(t− 3))
(2)

Let ei(t)=vi(t) − pi(t) be the estimation error on node

si at time t, the following lemma gives the error bound and

error probability associated with pi(t). The detailed proof

and analysis of Lemma 1 can be found in [1].

Lemma 1. Let εi = kδi, where k is a real constant larger
than 1, the actual value vi(t) is contained in [pi(t) −
εi, pi(t) + εi] with error probability at most 1/k2.

B. Parameter Learning

Each sensor node generates a reading every T seconds and

inserts it into a queue Q of length N . During the parameter

learning phase, each sensor node compute the coefficient

a and b of the trend component based on the N readings

contained in Q by applying least-squares regression [2].

Then it computes the difference between each reading stored

in Q and its estimated trend value χi(t) = vi(t) − mi(t)
and stores all the values in a queue D. After that, the sensor

node uses the data in D to compute the coefficients α, β, γ
by applying least-squares regression. Finally, the variance of

the white noise can be computed using the estimation error

ei(t) by the following equation:

δ
′
i =

(
N∑
i=1

(ej(ti)− ej)
2
/N − 1

)−1/2

(3)

where ej refers to the average value of the items in D of

sensor node sj .

Since the local estimation model can be uniquely identi-

fied by the above mentioned five coefficients, a sensor node

transmits them to it cluster head, and the cluster head can

reconstruct the model to estimate the readings of the sensor

nodes in this cluster.

C. Estimation Updating

In order to maintain the accuracy of the estimation

model, each sensor node periodically checks its readings

and updates its local estimation model when its sensor

readings consistently diverge from its current model. By

Lemma 1, the estimation error measured in absolute value

exceeds εi with probability less than 1/k2. If this happens

for several times continuously, the current model probably

cannot fit for the newly-generated readings. Specifically,

if the generated sensor reading continuously falls outside

[pi(t)−εi, pi(t)+εi] for three times, the sensor node relearns

its local estimation model using the last N readings in

queue Q. Otherwise, we consider sensor readings outside

[pi(t) − εi, pi(t) + εi] as outliers. According to Lemma 1,

the false-estimation probability is less than k−6.

In applying local parameter learning and estimation updat-

ing, the following lemma depicts that the relation between

the real sensor reading vi(t) and the estimated value pi(t)
maintained at the cluster head.

Lemma 2. Let vi(t) be the real reading of sensor node i
and pi(t) be the estimated value of vi(t) at time t stored
at the cluster head, then [pi(t) − εi, pi(t) + εi] with error
probability less than 2/k2.

Proof: According to Lemma 1, the actual value vi(t)
at time t is contained in [pi(t) − εi, pi(t) + εi] with error

probability P1 < 1/k2 at the very beginning. When the

sensor reading distribution changes, the probability, denoted

by P2, that our approach does not detect the sensor reading

distribution change is less than 1/k6. Hence, the probability

P3 that vi(t) �∈ [pi(t) − εi, pi(t) + εi] is P3 = P2 + (1 −
P2)P1 = P1 + P2 − P1P2 < P1 + P2 < 2/k2.

IV. DATA APPROXIMATION

Having the estimation models from the sensor nodes, the

cluster heads cooperate with the sink node to derive a Δ-loss

approximation of F. In this section, we first introduce some

basic definitions, and then present our data approximation

scheme in detail.

Definition 1. The estimation distance between any two
sensor nodes si and sj in S at time t is defined as
Dij(t) = |pi(t)− pj(t)|.

Since sensor readings of nearby sensor nodes within a

short period are probably similar, we can use the local

estimation value of a sensor node to estimate the readings

of nearby sensor nodes. Lemma 3 provides the upper bound

of the estimation error of sensor node si if we use the local

estimation data of sj to estimate the readings of si.

Lemma 3. Let Eij(t) be the estimation error to estimate
vi(t) using pj(t), we have Eij(t) ∈ [0, εi + Dij(t)] with
error probability less than 2/k2.

167



Proof: According to the definition, Eij(t) = |vi(t) −
pj(t)| = |vi(t) − pi(t) + pi(t) − pj(t)| ≤ |vi(t) − pi(t)| +
|pi(t) − pj(t)| = |vi(t) − pi(t)| + Dij(t). By Lemma 2,

vi(t) ∈ [pi(t)−εi, pi(t)+εi] with error probability less than

2/k2. Therefore, it is easy to see that the estimation error

Eij(t) ∈ [0, εi + Dij(t)] with error probability less than

2/k2.

Definition 2. Sensor node si is Θ-similar to sj at time t,
if and only if εi + Dij(t) ≤ Θ, where Θ is a positive real
constant.

Definition 3. Θ-similar set W is a set of sensor nodes that
∃sj ∈ W , ∀si ∈ W − {sj}, εi + Dij(t) ≤ Θ, where Θ
refers to the radius of the Θ-similar set W . We define sensor
node sj as the representation node of Θ-similar set Wi and
D(si,Wj , t) = εi +Dij(t) as the distance between si and
Wj at time t.

Definition 4. The predictor of Θ-similar set Wi at time t,
wi(t), is the local estimation value of Wi’s representation
node sj .

By Definition 3 and Lemma 3, we immediately have the

following lemma.

Lemma 4. The estimation error Eirj (t) ∈ [0,Δ] with error
probability less than 2/k2, if the radius of Θ-similar set Wj

is less than Δ.

Lemma 4 provides an approach to obtain a Δ-loss

approximation of the sensor readings in any given Θ-

similar set. Let Gi be a partition of cluster Ci, denoted

as Gi = {g1,i, g2,i, . . . , gx,i}, where gj,i is a cell of Gi.

Now we can obtain a predictor set of Ci, referred by

Hi = {w1,i, w2,i, . . . , wx,i}, where wj,i is the predictor of

gj,i. For any sensor network, we can obtain a set S = ∪Hi.

By Lemma 4, Hi is a Δ-loss approximation of the data

generated by cluster Ci at time t. It is easy to see that S is

a Δ-loss approximation of F. In order to get such a Δ-loss

approximation, we have the following theorem.

Theorem 1. Let F(t) = {v1(t), v2(t), . . . , vn(t)} be the
data generated by a sensor network at time t, There exists
S which is a Δ-loss approximation of F(t).

Our data approximation scheme is based on Theorem 1

and consists of two algorithms: data approximation learning

algorithm and data approximation monitoring algorithm. In

this scheme, each cluster head maintains a data approxi-

mation model to process the uploaded messages of local

estimation.

The learning algorithm. The data approximation learning

phase starts after the local parameter learning phase ends.

By Theorem 1, each cluster head hi only needs to send Hi

to the sink node, instead of the local estimation of all its

sensor nodes. The cluster head sends one message to the

Algorithm 1 Finding A Dominating Set of Gi(V,E)

1: i = 0;

2: while |V | > 0 do
3: v=FindLargestOutDegree(V );

4: H[i].representation node=v;

5: H[i].similarity set=AllNeighbor(v);

6: V− = {v};
7: V− =H[i].similarity set;

8: i++;

9: end while
10: return H;

sink node for each Θ-similar set. Each message contains all

coefficients of the predictor of a Θ-similar set and the IDs

of the sensor nodes that belong to this Θ-similar set. The

number of messages required by hi is |Hi|. Therefore, at the

end of this phase, the number of messages generated by all

cluster heads is |S|. Since min|S|=min∪|Hi|=∪min|Hi|, the

problem of minimizing |S| can be converted to minimizing

each |Hi|.
For arbitrary cluster Ci, we construct a directed graph

Gi = (V,E). Each vertex in Gi represents a sensor node in

Ci, and ei,j ∈ E is a direct edge from si to sj . ei,j exists if

and only if (εi+Dij(t)) ≤ Θ, where Θ = Δ. Since Hi is a

dominating set of Gi, the problem of minimizing |Hi| can

be transformed into finding the minimum dominating set

of the directed graph, which is known to be NP-hard [3].

An approximate minimum dominating set can be obtained

in O(|V |2) time using the greedy algorithm proposed in

[4]. The greedy heuristic algorithm finds a Θ-similar set in

each iteration and stops when all nodes are removed from V
(Algorithm 1). In each iteration, the cluster head finds a node

v with largest out degree and sets v as the representation

node of Wi (line 3-4), and then adds all neighbors of v to Wi

(line 5). Then, all the nodes in Wi are removed from vertex

set V (line 6-7). The algorithm stops when V is empty. At

the end of this phase, each cluster head sends its predictor

set Hi to the sink.

The monitoring algorithm. Our data approximation

monitoring algorithm makes sure that the predictor S is

a Δ-loss approximation. Each cluster head starts the data

approximation monitoring algorithm immediately after the

data approximation learning algorithm ends. During this

phase, each cluster head checks the estimation errors of its

Θ-similarity sets every T seconds. If the error of any set

exceeds Δ, the cluster head will adjust its local Θ-similarity

sets and send the changes to the sink node. The sink node

then updates S accordingly.

The details of the monitoring algorithm are illustrated

in Algorithm 2. The algorithm first updates all local

estimations at the cluster head by invoking procedure

UpdateMessagePrc(M ) (line 1), in which M are the local

estimation update messages. Line 2-12 search each Θ-
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Algorithm 2 Monitoring at A Cluster Head

1: UpdateMessagePrc(M);

2: for all g ∈ G do
3: for all s ∈ g do
4: if D(s, g, t) > δ then
5: C = C ∪ {s};
6: g− = {s};
7: end if
8: end for
9: if g = then

10: G− = g;

11: end if
12: end for
13: for all s ∈ C do
14: flag=Join(n);

15: if flag==0 then
16: g=CreatNewSet(n);

17: G = G ∪ g;

18: end if
19: end for
20: SendUpdatemsg();

similar set at the cluster head and find out all sensor nodes

that are no longer Θ-similar to their representation nodes,

then add them into C. The algorithm removes all empty

Θ-similar sets. Each sensor node in C tries to find a Θ-

similar set to join in by invoking the procedure Join(), as

shown in line 14. If there is no such a set, a new Θ-similar

set will be created for this node by invoking the procedure

CreatNewSet(), as shown in line 16. Line 20 sends the

update messages to the sink.

There are two kinds of messages sent from a cluster head

to the sink: Θ-similar set creating message and Θ-similar set

updating message. The former creates a new Θ-similar set at

the sink node, while the latter is used to update the predictor

of a Θ-similar set or add new sensor nodes into it. Note that

there is no need to explicitly send a message to remove

a sensor from a Θ-similar set, because no sensor node can

belong to two or more Θ-similar sets simultaneously. Adding

a node into a Θ-similar set means removing it from another

set.

The details of update message processing algorithm for

the sink are shown in Algorithm 3. After receiving an

updating message, the sink node first checks its message

type. If it is a Θ-similar set creating message M , it first

removes all the nodes listed in M from current Θ-similar

sets, then invokes CreatNewSet() to create a new Θ-similar

set and adds all these nodes listed in M into the set (line

2-4). If M is a Θ-similar set updating message, the sink

node first removes all the nodes listed in M from current Θ-

similar sets, then invokes SetUpdate() to update the predictor

of the specified Θ-similar set or add all the node listed in

M into the specified Θ-similar set (line 6-9).

Algorithm 3 UpdateMsgProcessing(M )

1: if msgtype is Θ-similar set creating message then
2: Remove(M );

3: g =CreatNewSet(M);
4: G = G ∪ {g};
5: end if
6: if msgtype is Θ-similar set updating message then
7: Remove(M );

8: SetUpdate(M );

9: end if

V. PERFORMANCE EVALUATION

In this section, we present an extensive performance

evaluation of our approximation data collection approach

using real-world data. Our goal is to demonstrate that the

proposed approximation data collection approach ADC can

notably reduce message cost compared with SAF [1].

A. Experimental Setup

We conduct trace-driven simulations to evaluate the per-

formance of our scheme using the data traces collected from

a real-world GreenOrbs deployment. We deploy 88 TelosB

sensor motes in a garden and collect sensor readings of

temperature generated every thirty seconds for 10 hours at

night. We also collect the topology information of our sensor

network, including the neighbor sets of the sensor nodes and

the packet loss rates of the links.

Note that the used data set includes a large number of

missing readings due to unreliable wireless multi-hop trans-

missions. We use linear interpolation to infer the missing

sensor readings and drop the data of 20 sensor nodes that

cannot be recovered, in which 8 sensor nodes have 100%
packet loss rate, 8 sensor nodes have packet loss rate lager

than 90%, and 4 sensor nodes encounter sensor device errors.

The topology used in our simulation is the same as the

real topology of the sensor network deployed in the garden

and we discard the links with packet loss rates larger than

90%, so that the routing can be built on relatively reliable

links. We divide the whole sensor network into two clusters

according to the locations of the sensor nodes. One cluster

contains 29 sensor nodes and the other one contains 39

sensor nodes.

B. Message Cost and Data Error

We evaluate the performance of ADC in terms of total

message cost and data error, and compare ADC with SAF

[1], which aims reducing message cost by exploiting time-

series forecasting techniques. In the simulations, the length

of the learning phase in SAF and that in ADC are set to 10

minutes.

Message Cost. We begin with investigating the message

costs of the two approaches, which is defined as the sum of

the messages sent by the sensor nodes. As shown in Figure

2, the message costs of ADC and SAF decrease against the
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Figure 2. Message cost v.s. estimation error bound Δ.
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Figure 3. Average error v.s. estimation error bound Δ.

error bound Δ, and both the two decreasing trends become

smooth as Δ increases. Compared with SAF, ADC has less

message costs when Δ > 0.4, and ADC achieves more

message saving as Δ increases. When Δ = 0.8, the message

cost of ADC is only about 79% of that of SAF.

It should be noted that when Δ = 0.4, the message cost

of ADC is bigger than that of SAF. The main reason lies

in that ADC brings in exorbitant message cost on informing

the sink the updates of the Θ-similar sets when Δ is small.

Specifically, when Δ is small, the radius of Θ-similar sets

is small and the number of Θ-similar sets increases. Hence

more messages are required to update the changes of the Θ-

similar sets. Moreover, it is more likely that a sensor node

may frequently leave or join in a Θ-similar set with small

radius, because its expected estimation error is more likely to

exceed the given error bound Δ. This increases the number

of messages required to inform the sink node the updates of

the Θ-similar sets.

Data Error. Next we compare the data errors (measured

in absolute value) introduced by SAF and ADC. Figure

3 illustrates the average data errors of SAF and ADC

for varying data error bounds. Recall that the data error

introduced by ADC can be divided into two parts: local

estimation error and data approximation error. The former

depends on the Gaussian white noise N(0, 1) and k, while

the latter is the difference between the local estimation of the

readings of a sensor node and that of its representation node.

Since the radius of the Θ-similar sets is set to Δ in ADC,
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Figure 4. CDFs of the data errors of SAF and ADC for varying Δ.

the increase of Δ allows the Θ-similar sets to contain sensor

nodes with larger estimation errors. As a consequence, the

data error of ADC increases with Δ, as shown in Figure 3.

Although the average data error of ADC is larger than that

of SAF, the difference between the two is very small: it is

always less than 0.1◦C and decreases slowly against Θ.

Figure 4 depicts the CDFs of data error in the two

approaches under variant Δ. We can see that as Δ increases

from 0.5 to 0.8, the distribution of data error in SAF is

more balanced than in ADC, i.e., more sensor nodes have
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a small data error in SAF, which is in accordance with the

results in Figure 3. These results imply that ADC achieves

efficiency in message cost at the expense of data error, and

more importantly, the error bound can be adjusted by users.

VI. CONCLUSION

In this paper, we propose a novel approximate data

collection strategy ADC in wireless sensor networks. ADC

can approximate the readings of the whole sensor network

by exploiting the fact that physical environments frequently

exhibit predictable weak stable state and strong temporal and

spatial correlations between sensor readings. Our work de-

tects data similarities among the sensor nodes by comparing

their local estimation models rather than their original data.

The simulation results show that our approach can greatly

reduce the amount of messages in wireless communications

by as much as 21% compared with existing works. In the

future, we plan to implement and evaluate our work in real

sensor networks.
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