
DPLC: Dynamic Packet Length Control in Wireless
Sensor Networks

Wei Dong†, Xue Liu?, Chun Chen†, Yuan He‡, Gong Chen†, Yunhao Liu‡, and Jiajun Bu†

†Zhejiang Key Lab. of Service Robot, College of Comp. Sci., Zhejiang University
?School of Comp. Sci., McGill University

‡Dept. of Comp. Sci. & Eng., Hong Kong University of Science and Technology
{dongw, chenc, chengong, bjj}@zju.edu.cn, xueliu@cs.mcgill.ca, {heyuan, liu}@cse.ust.hk

Abstract—Previous packet length optimizations for sensor
networks often employ a fixed optimal length scheme, while
in this study we present DPLC, a Dynamic Packet Length
Control scheme. To make DPLC more efficient in terms of
channel utilization, we incorporate a lightweight and accurate
link estimation method that captures both physical channel
conditions and interferences. We further provide two easy-to-use
services, i.e., small message aggregation and large message frag-
mentation, to facilitate upper-layer application programming.
The implementation of DPLC based on TinyOS 2.1 is lightweight,
with respect to computation, memory, and header overhead. Our
experiments using a real indoor testbed running CTP show that
DPLC results in a 13% reduction in transmission overhead and
a 41.8% reduction in energy consumption compared with the
original protocol, and a 21% reduction in transmission overhead
and a 15.1% reduction in energy consumption compared with
simple aggregation schemes.

I. Introduction

A fundamental challenge in wireless networks is that radio
links are subject to transmission power, fading, and inter-
ference, which degrade the data delivery performance. This
challenge is exacerbated in wireless sensor networks (WSNs),
where severe energy and resource constraints preclude the
use of many sophisticated techniques that may be found in
other wireless systems [1]. For example, (i) bit rate adaptation
protocols [2] demand special hardware that is not available on
general sensor nodes; (ii) effective forward error correction
(FEC) requires the amount of redundant data transmitted to
be tuned to match the link qualities [3], which is difficult
to achieve in dynamic WSNs; (iii) other sophisticated coding
schemes [4], [5] incur delays and computation overheads that
are only suitable for specific applications.

In this paper, we consider a simple, cost-effective solution
based on the technique of dynamic packet length control to
improve the performance in these varying conditions. A trade-
off exists between the desire to reduce header overhead by
making packet large, and the need to reduce packet error rates
(PER) in the noisy channel by using small packet length [6].

Although there have been several studies on packet length
optimizations in the literature [6]–[11], existing approaches
are not practically applicable to the sensor network scenario.
A packet optimization scheme applicable in sensor networks
must have the following important features.

(i) Dynamic packet length adaptation. Prior work in sensor
networks uses fixed packet length optimization schemes [10],
[11]. These schemes are not preferred due to the spatial-
temporal diversity of link qualities in WSNs.

(ii) Accurate link estimation. The performance improvement
of the packet length adaptation scheme is highly dependent on
the link estimation accuracy. Prior work in wireless systems
does not consider unique characteristics of WSNs, e.g., re-
source constraints of sensor nodes [6], [8], [9], thus leading
to inaccurate link estimation in sensor networks.

(iii) Easy to use. To the best of our knowledge, no prior
work addresses the application programmability issues of
packet length adaptation scheme in sensor networks. Without
substantial programming efforts, there is still a huge gap be-
tween theoretical optimality and practically achievable gains.

This paper presents DPLC, a Dynamic Packet Length Con-
trol scheme that overcomes the limitations of prior work men-
tioned above. Our work is motivated by a recently deployed
sensor network system GreenOrbs, which aims to achieve
large-scale and long-term surveillance in the forest [12], [13].
The temporal-spatial variance in wireless link qualities inspires
us to use a dynamic packet length control scheme to improve
the data delivery performance. First, DPLC utilizes a dy-
namic packet length adaptation scheme that suits the resource
constraints of sensor nodes. DPLC adds only two bytes (at
most) per MAC frame (hereafter, we use frame to refer to
packet sent by the radio, message to refer to packet seen by
application programmers, and packet to refer to both if there is
no ambiguity). Second, DPLC is built upon an accurate link
estimation method based on passive observations of packet
receptions. Both physical channel conditions (due to channel
fading, mobility, or power degradation) and interferences
(from exposed and hidden terminals) can be captured. Third,
DPLC includes two easy-to-use services, i.e., aggregation ser-
vice (for small messages) and fragmentation service (for large
messages), to facilitate upper-layer application programming.

We implement DPLC based on TinyOS 2.1, the standard
sensor network OS in the literature [14]. The current im-
plementation of DPLC on TelosB motes is lightweight. The
computation overhead is at most 0.48 ms per transmitted
or received frame, which is small compared to the packet
transmission time plus MAC backoff time. The RAM and



ROM overhead are 0.37 KB and 4.5 KB respectively, which fit
well in current sensor nodes. The header overhead is only two
bytes (at most) per frame. In addition, we propose techniques
to further optimize for various upper-layer usage models, e.g.,
we aggregate layer 2 (hereafter L2) ACKs to mitigate ACK
overhead for both unreliable transmissions of small messages
and reliable transmissions of large messages; we incorporate
a lightweight and distributed scheme to further optimize end-
to-end data delivery performance of a single flow.

We evaluate DPLC through both simulations and testbed
experiments. The simulation results of TOSSIM [15] validate
our design. Real indoor testbed experiments consisting of 20
TelosB motes, running the CTP protocol [16], show that DPLC
results in a 13% reduction in transmission overhead and a
41.8% reduction in energy consumption compared to the orig-
inal protocol, and a 21% reduction in transmission overhead
and a 15.1% reduction in energy consumption compared to a
simple aggregation scheme (that always transmits the largest
packets supported by the radio).

The rest of this paper is structured as follows. Section II
describes the experiment observations that motivate our de-
sign. Section III presents the design of DPLC. Section IV
introduces the implementation details. Section V shows the
evaluation results. Section VI discusses related work. Finally,
Section VII concludes this paper.

II. Motivation

To better understand how a practical packet length adapta-
tion scheme should be designed, we ran a series of experiments
to provide insights that guide our design.

A. Packet Length Optimization

To see the impact of variable packet length to the system
performance in WSNs, we setup two TelosB motes which
communicate variable packets at a distance of approximately
8 meters with transmission power level 3 in a quiet indoor
environment. We measure the packet reception rate (PRR)
and the transmission efficiency (E , which is defined as the
received useful bytes divided by the overall transmitted bytes)
for each packet payload length. A high E value indicates a
high goodput and a high energy efficiency provided that the
transmission time and the transmission energy consumption
are approximately linear to the packet length. We ran each
experiment 30 times, and Figure 1 shows the mean value
and the standard deviation of PRR and E . We can see that
with the packet payload length increases, PRR decreases while
E reaches its maximum value at packet payload length 30
(bytes). Using the optimal packet length improves approxi-
mately 40% performance in terms of E compared to using the
smallest packet length in this case.

We have also run other experiments at different distances
and transmission powers. Results show that the optimal packet
length varies in different conditions. Therefore, packet length
optimization is beneficial in WSNs.

�� �� �� �� �� �� 	� 
� ��
����

����

����

����

����

����

���

���

���

���

��	

��


��
��

	��
�	�

	�
���

���
��	

���
��

�

���
��

�
��

���
�	



��
�	�

��
���

�

���
�� ������	� �
����� ����
��

� �
� ���

Fig. 1: Impact of packet payload length on transmission
efficiency (E) and packet reception rate (PRR).

Fig. 2: Comparison of RSSI measurements indoor (noisy) and
outdoor (quiet).

B. Dynamic Packet Length Adaptation

Wireless link qualities can be greatly affected by environ-
mental factors at different locations [13]. To see how link
diversity is, we setup one TelosB mote to measure the received
signal strength at a resolution of 1 ms. The experiments are
conducted both indoor (the environment is noisy because of
802.11 interferences) and outdoor (the environment is quiet),
respectively. Figure 2 plots the RSSI (received signal strength
indicator) value read from the CC2420 radio chip. We can
see that the channel conditions vary drastically: in the noisy
environment the RSSI value can be as high as −62 dbm while
in the quiet environment the RSSI value can be as low as
−96 dbm.

This indicates that packet length adaption schemes must be
dynamically adapted to physical channel conditions to deliver
performance gains in WSNs with spatial-temporal diversity in
link qualities.

C. Link Estimation

A common approach to estimate link qualities is to directly
use RSSI or LQI (link quality indicator) provided by the
radio hardware [17]. To see how RSSI and LQI reflect link
qualities, we setup three TelosB motes. Node 1 transmits
normal TinyOS packets to node 2 at an interval of 128 ms with
transmission power level 2. After 60 seconds, we introduce
node 3 as a hidden terminal to node 1 that also transmits
packets to node 2 at an interval of 128 ms. Figure 3 shows
the results. In the measured PRR, we clearly see that the
link quality degrades after 60 s. The RSSI and LQI value



20 30 40 50 60 70 80 90 100

0.5

0.6

0.7

0.8

0.9

1.0

 

P
R

R

Time (seconds)

-92

-90

-88

-86

-84

 

 

R
S

S
I

40

50

60

70

80

90

100

110

 

 

L
Q

I

Fig. 3: Comparison of link estimation methods (PRR-based,
RSSI-based, and LQI-based).

measured at node 2, however, do not see such a degradation.
This indicates that directly measured RSSI and LQI are not
enough for accurately estimating link qualities.

It is also worth mentioning that link estimation using proac-
tive beaconing is also inappropriate in our scenario, because
the data packet length is different from that of beacons, and
it varies with link conditions. Therefore, data-plane PRR
statistics are needed in order to improve the accuracy of link
quality estimations.

III. Design

In this section, we present the design of DPLC, a dynamic
packet length control scheme for WSNs. Below, we identify
the major design goals.
• Dynamic adaptation. DPLC should provide a dynamic

adaptation scheme to achieve performance improvements
in dynamic, time-varying sensor networks.

• Accurate link estimation. DPLC should implement an
accurate link estimation method that can capture both
physical channel conditions (due to channel fading, mo-
bility, or power degradation) and interferences (from
exposed and hidden terminals).

• Ease of programming. DPLC should provide easy-to-
use services to facilitate upper-layer application program-
ming.

• Lightweight for implementation. DPLC should be
lightweight for resource constrained sensor nodes.

We will see how DPLC achieves the first two design
goals, i.e., dynamic adaptation and accurate link estimation
in Section III-C. The remaining two design goals, i.e., ease
of programming and lightweight for implementation, will be
elaborated in Section IV-A and Section IV-B respectively.

A. Overview

The DPLC scheme works as follows. The application passes
an application-level message for transmission. The DPLC

module at the sender decides whether to use the aggregation
service (AS, if the message length is small) or the fragmen-
tation service (FS, if the message length is larger than the
maximum packet length supported by the radio, i.e., 128 bytes
for CC2420). The link estimator within DPLC dynamically
estimates the optimal packet length for transmission. Based
on this, the DPLC module at the sender decides how many
messages should be aggregated (for AS), or how many frames
the message should be fragmented into (for FS). When a
frame is ready for transmission (enough messages have been
aggregated or time is out in AS), we actually send it via the
MAC layer. When the DPLC module at the receiver receives
a MAC frame, it deaggregates or defragments the frame in
order to obtain the original message. When the message is
ready (all frames in the message have received or the receive
buffer is full in FS), the DPLC module at the receiver notifies
the upper layer for further handling.

As mentioned above, the DPLC scheme provides two ser-
vices for upper-layer applications, i.e., the aggregation service
(AS, for small messages) and the fragmentation service (FS,
for large messages).

(i) AS is useful for small data collection, e.g., CTP [16]. AS
provides three distinct mechanisms, i.e., reliable transmissions
(AS∞), unreliable transmissions with fixed number of retrans-
missions (ASn , where n≥ 1 is the retransmission number), and
unreliable transmissions (AS0). Both AS∞ and ASn requires
L2 ACKs provided by the link layer, because packets need to
be retransmitted (at least once) when they are lost. For AS0,
we additionally provide a more efficient ACK scheme called
AggAck that does not rely on L2 ACKs, and thus mitigate the
ACK overhead (we use AS0-L2 to denote AS0 with L2 ACKs
and AS0-AA to represent the one with AggAck afterwards).

(ii) FS is useful for bulk data transmission, e.g., Flush
[18]. FS provides reliable transmissions as a large message is
usually very important for upper-layer applications. FS does
not necessarily depend on L2 ACKs. As mentioned above, we
additionally provide the AggAck mechanism to mitigate the
ACK overhead, and more importantly, to deal with data packet
retransmissions (we use FS-L2 to denote FS with L2 ACKs
and FS-AA to represent the one with AggAck afterwards).

The link estimation method within DPLC dynamically esti-
mates the link quality based on passive observations of packet
receptions [19]. For each outgoing link, the sender keeps a
sliding window in which each bit tracks whether the sent
packet was ACKed. Based on this, it tunes the packet length
for a given link. The link estimation method does not necessar-
ily depend on L2 ACKs. As mentioned above, we additionally
provide AggAck to provide such information. The advantages
of AggAck are three-fold. First, for AS0 and FS, it mitigates
L2 ACK overhead for each transmitted packet. Second, for FS,
it reduces redundant data packet retransmission in asymmetric
links (in which the reverse link quality for ACK is poor).
Finally, in the presence of asymmetric links, it provides an
accurate estimation of directional links which is important to
optimize multi-hop data delivery performance of a single flow.



B. Metrics for Dynamic Adaptation

For dynamic adaptation, we use the metric of transmission
efficiency (E) which is defined as the received useful bytes
divided by the overall transmitted bytes. Generally, as the
transmission time and the transmission energy consumption
are approximately linear to the transmitted bytes, a high E
value indicates a high goodput and a high energy efficiency.
The goal of our dynamic adaptation scheme is hence to
maximize the E value. The calculation of E is described below
for different transmission patterns.

Metric for Single-hop Transmission. For a single-hop trans-
mission link from ni to ni+1, the value of Ei equals to the
single-hop transmission efficiency, denoted as εi . The value
of εi equals to the received useful bytes (at ni+1) divided by
the transmitted bytes (at ni ). It is specified as follows,

Ei = εi (l)=
l · p(l)

l+H +O
(1)

where l is the packet payload length (for MAC transmission),
p(l) is the PRR from ni to ni+1 given packet payload length
l, H is MAC header overhead, and O is the additional
header overhead introduced by DPLC. The strategy for single-
hop transmission is hence to monitor the p(l) (detailed in
Section III-C) and decide the packet length that maximizes
this metric.

Metric for Multi-hop Transmission. For a multi-hop trans-
mission from nk to nk+1 (originated from n1), the value of
Ek , equals to the received useful bytes (at nk+1) divided by
the overall transmitted bytes (from n1 to nk). It is specified
as follows,

Ek =
1

ε−1
k (l)+E−1

k−1
1

drk (l)

(2)

where ε−1
k (l)= 1

εk (l)
is the normalized transmission overhead

from nk to nk+1 (i.e., the transmission overhead at nk divided
by the received useful bytes at nk+1). E−1

k−1 =
1

Ek−1
is the

normalized transmission overhead from n1 to nk . drk(l) is
the data delivery rate from nk at packet payload length l (it
differs from PRR in that retransmissions can improve the data
delivery rate). Note that nk must receive as much as 1

drk (l)
useful bytes to ensure that nk+1 receives 1 byte. We note that
E1 = ε1, which represents the single-hop case. We can see
from Eq. (2) that both drk(l) and E−1

k−1 need to be tracked
in addition to p(l). We first separate two cases to estimate
drk(l) in term of PRR, and then we introduce how to track
E−1

k−1 accurately in Section III-E.

• The case for reliable multi-hop transmissions. For reliable
transmissions, dri = 1 (1≤ i ≤ k). Hence,

Ek =
1

ε−1
k (l)+

∑k−1
i=1 ε

−1
i

(3)

Maximizing Eq. (3) is equivalent to maximizing Eq. (1)
(i.e., we do not need to track E−1

k−1).
• The case for unreliable multi-hop transmissions with

fixed number of retransmissions. For unreliable transmis-
sion with m number of retransmissions (m ≥ 0), the data

delivery rate relates to PRR as follows,

dri = 1− (1− pi )
m+1 (4)

where pi is the PRR from ni to ni+1 (1 ≤ i ≤ k).
Therefore, drk(l) = 1− (1− pk(l))m+1, i.e., drk can be
estimated from the PRR observed at nk . We still need
to get the value of E−1

k−1, which will be described in
Section III-E.

C. Description of DPLC

We incorporate the link estimation algorithm in [19] to
dynamically control the packet length. The DPLC scheme
has the following features. (i) It passively monitors packet
receptions to dynamically adjust the packet length. For trans-
missions that enable L2 ACKs, this incurs no additional
overhead. In addition, we provide the AggAck mechanism
to mitigate L2 ACKs for unreliable aggregation service and
reliable fragmentation service. (ii) It provides accurate link
estimations that can capture both physical channel conditions
(due to channel fading, mobility, or power degradation) and
interferences (from exposed and hidden terminals). (iii) It is
lightweight for implementation on resource-constrained sensor
nodes. e.g., for each outgoing MAC frame, it adds only two
bytes (at most) header overhead.

DPLC individually tunes the packet length on each outgoing
link. A link is initially set to transmit at its default granularity
(which equals to the message payload length for AS and 10
bytes for FS in our current implementation). DPLC monitors
all packet receptions by keeping a sliding window of size
w. When the window is filling, DPLC stays in the INIT
state. When the window is full, DPLC computes the metric as
described in Section III-B. Then it enters into the TRY state,
increasing or decreasing the packet length by the granularity.
Whether to increase or decrease the packet length depends on
whether a gradient variable is positive or negative (we initially
set the gradient variable to be positive). When α ·w = 2

3w
packet receptions are monitored, DPLC compares the metrics
to see whether the TRY state improves the performance. If
the performance increases, it keeps the state unchanged, and
waits until it transits into the STEADY state. If the performance
decreases, it restores the original packet length and reenter into
the INIT state.

The gradient variable described above decides whether to
increase the packet length or decrease the packet length. When
the gradient is positive, DPLC tries to increase the packet
length while vice versa. DPLC inverts the gradient when it
sees the performance decreases or it has already reached the
minimum or maximum packet length.

D. The AggAck Mechanism

We additionally provide the AggAck mechanism to mitigate
the ACK overhead for unreliable aggregation service (AS0)
and reliable fragmentation service (FS). For AS∞ and ASn
(n ≥ 1), L2 ACK is required because data packets need to be
retransmitted when they are lost.



(i) For AS0, we use a sender-initiated AggAck mechanism,
i.e., the sender requests for an ACK at the end of a sliding
window. The request is piggybacked in the data packet, and
we keep on requesting until an ACK is received. We can do
this because if the transmission is unreliable we can proceed
to send the next data packet (and piggyback the ACK request)
after the previous packet is sent out. We do not change the
packet length until an ACK is received. On receiving an
ACK request, the receiver sends out the ACK without MAC
layer carrier sense assessment (CCA). As indicated in [20],
this synchronous mechanism improves the ACK reliability
significantly. The AggAck carries only one byte information,
i.e., the received packet number in the current window, which
is used by the sender to compute the PRR.

(ii) For FS, we use a receiver-initiated AggAck mechanism.
The reason is that we can not keep on piggybacking the ACK
request in the next data packet when the window is full and
we are not sure whether all packets in the window have been
received. To avoid sending a separate ACK request packet, we
use the timing information at the receiver side to automatically
send an AggAck if no data packets have been received in a
short timeout. Because FS is reliable, the AggAck carries a
bitmap indicating which packets in the current window are
lost. This mechanism is similar to the NACK mechanism
employed in the Deluge protocol [3]. FS can also use L2
ACKs. However, we prefer to use the AggAck mechanism.
The reason is twofold. First, as mentioned above, the Ag-
gAck mechanism mitigates the ACK overhead compared to
L2 ACKs which are transmitted after every data receptions.
Second, in the presence of asymmetric links, L2 ACKs can
be lost. In this case, the data packets will be redundantly
retransmitted.

E. Handling Multi-hop Traffic

As described in Section III-B, we need to obtain E−1
k−1 for

metric calculation at nk in the case of unreliable multi-hop
transmissions. For a single flow originated from n1 to nk+1,
we piggyback Ei calculated at ni to data packets which are
sent to the next hop. ni+1 can thus calculate Ei+1. In this
manner, the E value at each node can be calculated hop by
hop.

It is worth noting that in this case accurate estimation of
PRR is important as an inaccurate PRR value will affect the
calculation of E at downstream nodes, which again impacts the
choice of optimal packet length at these links. This indicates
that in this case the AggAck mechanism is favored over L2
ACKs because of the existence of asymmetric links (in this
case PRR estimation based on L2 ACKs will be inaccurate).
It is also worth noting that in the single-hop case, however,
asymmetric links will not impact the choice of optimal packet
length because the ACK loss rate is irrelevant to the packet
length (i.e., the metric E ′i = εi · P R Rack is equivalent to the
metric described by Eq. (1)).

Optimizing the performance for multi-flows in the strict
sense is quite complicated that we believe it exceeds the capa-
bilities of current sensor nodes. This is, however, not a major

interface DMSend {

command error_t send(am_addr_t addr,

void* msg,

uint16_t len);

event void sendDone(void* msg, error_t err);

command void* getPayload();

command void setLinkAck(bool ack);

command void setRetries(uint8_t num);

command void flush(am_addr_t addr);

command void setMaxLen(uint8_t len);

command void setMinLen(uint8_t len);

}

(a) The DMSend interface

interface DMReceive {

event void* receive(void* msg, uint8_t len,

uint16_t pktlen);

command message_t* getAM(message_t* msg);

}

(b) The DMReceive interface

Fig. 4: Two interfaces provided by DPLC: the DMSend
interface and the DMReceive interface.

concern for the following two reasons. First, one can have the
sink schedule the transfers from each node one at a time, in a
round-robin fashion, as suggested in [18]. Second, in practice,
as in the CTP data collection protocol [16], optimizing single
hop transmissions (using the metric described by Eq. (1)) leads
to near-optimal performance because of high data collection
reliability (i.e., dr ≈ 1, hence the metric described by Eq. (2) is
approximately equivalent to the metric described by Eq. (1)).

IV. Implementation

We implement DPLC based on TinyOS 2.1. In this sec-
tion, we describe DPLC’s implementation details. First, we
introduce the programming interface of DPLC to show that
it is easy to use for upper-layer application programming
(Section IV-A). Second, we evaluate DPLC’s implementation
overhead to show that it is indeed lightweight for current
sensor nodes (Section IV-B).

A. Programming Interface

The DPLC module provides two interfaces for application
programming, i.e., DMSend and DMReceive (see Figure 4).
They are very similar to the TinyOS AMSend and Receive
interfaces.

(i) We provide the DMSend interface for message trans-
mission. The send command is used to transmit both a
small message (needs aggregation) and a large message (needs
fragmentation). Whether to aggregate or fragment depends on
the message length. The sendDone event is signaled when
the message is actually sent out by the radio. For AS, the
getPayload command is used to get the payload field of the
internal max_message_t structure (which is used to send
packets of variable length). The setLinkAck command is



used to enable or disable L2 ACKs. The setRetries com-
mand is used to set the retry number for retransmission. The
flush command is used to flush any buffered packets to the
MAC layer. The setMaxLen and setMinLen commands
are used to set the maximum and minimum packet payload
length for transmission.

(ii) We provide the DMReceive interface to receive a
message. The receive event will be signaled which a
message has been received. For FS, the application allocates
a pre-defined message buffer for receiving. When either a
message is received in its entirety or the receiving buffer is
full, the receive event will be signaled. The third parameter,
pktlen, indicates the total packet length (which may exceed
the MAC frame length). The getAM command return a
TinyOS compatible message_t structure for retrieving the
metadata, such as RSSI readings and LQI readings, etc.

Generally, application programming using DMSend is not
much different from that using AMSend. DPLC handles all
specific details about aggregation/deaggregation, fragmenta-
tion/defragmentation such that upper-layer applications need
not care about how to use the optimal packet length in the
MAC layer. Without such a scheme, the message length will
need to be manually changed every time the optimal packet
length changes, leading to time consuming modifications and
cumbersome design. By isolating packet length adaptation
decisions into L2.5, DPLC reduces such cross-layer dependen-
cies, thus leading to a lower cost to application programming.

B. Overhead

This section analyzes DPLC’s implementation overhead in
terms of computation overhead, memory overhead, and header
overhead, respectively.

Computation Overhead. DPLC incurs computation over-
head mainly in send, receive, and decision mak-
ing algorithm (described in III-C) (i) The extra over-
head of DMSend.send is only about 30 µs be-
fore calling AMSend.send. (ii) The extra overhead of
DMReceive.receive is about 170 µs due to deaggregation
or defragmentation. (iii) The extra overhead of the decision
making algorithm is at most 480 µs (at sendDone or AggAck
is received). Overall, we think that this overhead is acceptable.
First, data rate in most sensor network application is low.
Therefore, throughput is not a major concern. Second, a
maximum delay of 0.48 ms per MAC frame is small compared
to the frame transmission time (which is about 1.6 ms for a
normal 40-byte TinyOS packet) plus the backoff time (which
is about 5 ms in average for an initial transmission in TinyOS).

Memory Overhead. DPLC incurs memory overhead on
RAM (data) and ROM (program). (i) DPLC needs about 256
bytes for a sending message buffer and receiving message
buffer. It needs (w/8+6) for each outgoing link. With w = 24
and neighbor number equals to 8, this consumes 72 bytes.
Additionally, DPLC needs 47 bytes local variables. Overall,
this adds up to 375 bytes. This overhead is small compared
to 10 KB RAM in TelosB. (ii) To evaluate DPLC’s ROM
overhead, we compare the RadioCountToLeds benchmark

Count

TE (E)

Typ Ack

1 byte

(a) DPLC header for AS

Offset

Offset (cont.)

Typ S

1 byte

(b) DPLC header for FS

Fig. 5: DPLC data packet headers for AS and FS.

using the default AM message and the same benchmark using
interfaces described in Section IV-A. We have found that the
original benchmark consumes 11528 bytes ROM while the
modified version consumes 16052 bytes ROM. This indicates
the DPLC module consumes approximately 4.5 KB ROM,
which is acceptable compared to 48 KB ROM in TelosB.

Header Overhead. We add minimal header overhead to both
data packets (at most 2 bytes) and AggAck packets. (i) Data
packet overhead (see Figure 5). For AS, each frame adds the
following header overhead. The Typ field (1 bit) is used to
indicate that it is for AS. The Ack field (1 bit) is used to
indicate whether an AggAck is requested. The Count filed
(6 bits) is used to indicate how many messages are aggregated
in this frame. The TE field (8 bits) is used to carry the E value
of the previous hop. Note that it is only used for optimization
in multi-hop data delivery of a single flow. For FS, each frame
also adds the following header overhead. The Typ field (1 bit)
is used to indicate that it is for FS. The S field (1 bit) is used
to indicate whether it is the start frame of a (large) packet.
The Offset field (14 bits) is used to indicate the offset of
the current received frame within the (large) packet (used to
reassemble the packet at the receiver). (ii) AggAck packet
overhead. For AS, the AggAck payload length is only 1 byte,
which is the received packet number in the current window.
For FS, the AggAck payload length is w/8 (which equals
to 3 bytes in our current implementation). Each bit indicates
whether the corresponding data packet has been received, and
needs to be retransmitted.

V. Evaluation

We evaluate DPLC through both simulation in TOSSIM
[15] and real indoor testbed experiments consisting of 20
TelosB motes running the CTP protocol [16]. TOSSIM simu-
lation results validate DPLC’s design in a controlled manner
while testbed experiments show how DPLC can be utilized
to improve performance of existing sensor network protocols
and applications.

A. Validation

The major goals of the experiments described in this section
is to demonstrate DPLC’s achievable improvements in terms
of the E value, and to validate some important designs within
DPLC (e.g., the AggAck mechanism).

For these simulations, we modify TOSSIM (version 2) to
use the bit error model, i.e., P R R= (1−B E R)L+H+O , where



1 2
BER=8E-4

(a)

1 2
BER=1E-4

3
BER=8E-4

(b)

Fig. 6: Two topologies for validating DPLC’s design. (a):
single hop (symmetric link with median link quality). (b): two
hops (symmetric links in which the quality of the first link is
high and the quality of the second link is median).

������ ������� ����
�� ����� ����� ���
���

���

���

��	

��


���

���

����
�

���

�

���
�	�
	�


�
���

�

� �������� ��	� ��������
� ����� ��	� ��������

(a) Evaluation of AS0 in topology (a)

����� ������ �������
�� ����� �����	 ������
����

����

����

����

��	�

��	�

��
�

����
�

���

�

���
�	�
	�


�
���

�

� �������� ��	� ��������
� ����� ��	� ��������

(b) Evaluation of AS0 in topology (b)

Fig. 7: TOSSIM simulation results. The notation “Fix-<len>”
refers to the scheme using a fixed packet length of <len>. In
Figure 7b, the notation “Fix-<len1,len2>” refers to the scheme
using a fixed packet length of <len1> in the first hop and a
fixed packet length of <len2> in the second hop. The optimal
scheme is labeled “(opt)”.

H = 13 for TinyOS, and O = 1 or 2 for DPLC. Figure 6 shows
the topologies for validation. Basically, we validate DPLC in
both single-hop case and multi-hop case with varying link
qualities (e.g., BER=1×10−4 or BER=8×10−4). We run each
experiment 5 times in each topology.

Figures 7a, 7b show the performance of AS0 in topology (a)
and topology (b) respectively. In Figure 7a, the notation “Fix-
<len>” refers to the scheme using a fixed packet length of
<len>. In Figure 7b, the notation “Fix-<len1,len2>” refers
to the scheme using a fixed packet length of <len1> in the
first hop and a fixed packet length of <len2> in the second
hop. In both figures, the optimal scheme is labeled “(opt)”.

����PP

�
�
�
�
P
P

12m

1
0

m

8

1111012

9 13 7

1514

1716

18 19 20

6 245 3

Fig. 8: Indoor testbed deployment where node 1 is the sink.

We measure the transmission efficiency of each scheme in
two ways: the transmission efficiency without ACK overhead
(in which the ACK overhead is not accounted for), and the
transmission efficiency with ACK overhead (in which the
ACK overhead is also accounted for). We can see that in both
cases, DPLC achieves more than 90% performance compared
to the optimal scheme. We can also see that the AggAck
mechanism mitigates the ACK overhead, leading to about 5%
improvement considering the ACK overhead.

B. Testbed Results

We use a real indoor testbed consisting of 20 TelosB motes
running the CTP protocol [16] to evaluate how DPLC can
improve the performance of state-of-the-art sensor network
protocols and applications. CTP is a data collection protocol
that dynamically selects the best route to the sink according
to a hybrid link estimation algorithm [16].

CTP needs to be slightly modified. The major modification
is located at the data sending logic. We need to use DMSend
instead of AMSend. The changes to CTP keep within approx-
imately 100 lines of code.

We setup 20 TelosB motes in our lab in a Saturday and a
Sunday without human interventions (as shown in Figure 8).
We use the TestNetwork benchmark in TinyOS (trans-
mission power is 3; retransmission count is 4), to evaluate
three schemes, i.e., the original CTP, CTP using DPLC (CTP-
DPLC), and CTP always using the maximum packet length
(CTP-max). Each TestNetwork node sends a packet (of
payload length 15) periodically to the sink at an interval of
20 seconds. We run each scheme at least 2 hours (we do
not analyze data in the first 30 min warmup time) with and
without the use of lower power listening (LPL, in which the
sleep interval is set to 500 ms). After a total of 12 hours,
we collect the statistics to evaluate how our scheme impacts
(i) reliability of data collection, (ii) transmission overhead,
(iii) energy efficiency.

Reliability. Figure 9a shows the collection reliability in term
of data delivery rate varied with time. We can see that the



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0.80

0.85

0.90

0.95

1.00

 

D
e

liv
e

ry
 r

a
te

Time (min)

 CTP

 CTP-DPLC

 CTP-max

(a) Delivery rate over time

CTP CTP-DPLC CTP-max

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Schemes

D
e

liv
e

ry
 r

a
te

(b) Delivery rate in average

0 10 20 30 40 50 60 70 80

30000

35000

40000

45000

50000

55000

60000

65000

 

T
ra

n
s
m

is
s
io

n
 o

v
e

rh
e

a
d

 (
b

y
te

s
)

Time (min)

 CTP

 CTP-DPLC

 CTP-max

(c) Transmission overhead over time

CTP CTP-DPLC CTP-max

0

10000

20000

30000

40000

50000

60000

Schemes

T
ra

n
s
m

is
s
io

n
 o

v
e

rh
e

a
d

 (
b

y
te

s
)

(d) Transmission overhead in average

0 10 20 30 40 50 60 70 80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 

D
u

ty
 c

y
c
le

Time (min)

 CTP

 CTP-DPLC

 CTP-max

(e) Duty cycle over time

CTP CTP-DPLC CTP-max

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Schemes

D
u

ty
 c

y
c
le

(f) Duty cycle in average

Fig. 9: Indoor testbed results.

CTP-max scheme is less stable than the other two schemes.
The reason is due to the fact that larger packet are more
suspectable to wireless loss. Figure 9b shows the average
collection reliability in term of data delivery rate for a duration
of 75 min. We can see that CTP-max slightly reduces the
reliability while DPLC remains the high reliability of the
original CTP.

Transmission Overhead. With data collection reliability
almost the same (i.e., with almost the same amount of received
useful bytes), optimizing the E value translates to optimiz-
ing the transmission overhead. We would like to see how
DPLC reduces the transmission overhead. Figure 9c shows
the transmission overhead of 19 nodes every 5 min for a
total of 75 min. We indeed see that CTP-DPLC reduces the
transmission overhead of the original CTP due to smaller
header overhead. We also see that CTP-DPLC reduces the
transmission overhead of CTP-max which looks quite unstable
over time. Figure 9d shows the average transmission overhead
in 5 min for a duration of 75 min. We see that CTP-DPLC
reduces 13% transmission overhead compared to CTP, and
reduces 21% transmission overhead compared to CTP-max.

Energy Efficiency. In order to see the energy efficiency of
different schemes, we test each scheme with default LPL in
TinyOS. Figure 9e shows the duty cycle every 5 min for a
total duration of 75 min. We see that DPLC leads to the
lowest duty cycle. The reason why we improve the energy
efficiency of CTP is easy to understand: first, we reduce the
transmission overhead; second, we also reduce the MAC delay
because of packet aggregation. CTP-max has a higher duty
cycle than CTP-DPLC for most of the time because of more

retransmissions. Figure 9f shows the average duty cycle. We
can see that CTP-DPLC reduces 41.8% duty cycle compared
to CTP, and reduces 15.1% duty cycle compared to CTP-max.

VI. Related Work

Packet length optimization has been studied extensively in
the literature. Spragins et al. discuss optimizing packet length
for a variety of factors, e.g., error in the channel, buffer size,
and ARQ schemes [21]. Siew et al. discuss optimal packet
length under the Raleigh fading channel model [7]. Recently,
WSNs have attracted a great deal of research attentions [22]–
[24]. Sankarasubramaniam et al. extend prior work into WSNs,
where an optimal packet length framework based on energy
efficiency is proposed [10]. Recently, Vuran et al. propose
a cross-layer packet length optimization framework in which
effects of multi-hop routing and the broadcast nature are
captured [11]. The major difference of our work compared to
the abovementioned work is that we allow dynamic adaptation
while all the above work derives a fixed optimal packet length
which is not suitable for dynamic, time-varying WSNs.

Dynamic packet length adaptation has been investigated in
802.11-based wireless systems. Lettierri et al. study the effect
of variable packet length on several metrics, and implement
a dynamic adaptation scheme on custom Linux OS [6]. Je-
lenković et al. propose a dynamic fragmentation algorithm
that adaptively matches channel failure characteristics [9]. The
work of [6] uses a simple independent bit error model for
packet length adaptation. The optimal packet length is calcu-
lated based on an estimated BER which is hard to estimate
accurately in practice. The work of [9] requires the sender to



measure the channel availability period for adaptation. This
method suffers from hidden terminal problems. Our work
differs from the above work in that we employ a lightweight
and accurate link estimation method that is essential to a
packet adaptation scheme.

Link estimation in WSNs has been extensively investigated
in the literature [17], [19], [25]. We incorporate the recent
technique proposed in [19] to passively monitor packet recep-
tions. The work of [19] requires L2 ACKs. We further extend
the work in [19] by proposing the AggAck mechanism which
mitigates ACK overhead, and redundant data retransmissions
in asymmetric links.

Adaptive packet aggregation has been studied in [26], in
which an application-independent L2.5 framework is proposed
to maximize channel utilization. Our work differs from [26]
in three major ways. First, the work of [26] adapts the degree
of aggregation by monitoring MAC delays, which are highly
dependent on the MAC layer. For example, it may not work
correctly with TDMA or LPL in which MAC delays do not
reflect real channel conditions. Second, the work of [26]
only deals with packet aggregation. In contrast, our work
proposes a unified framework that integrates both aggregation
and fragmentation. Third, we conduct real testbed experiments
running the CTP protocol, which is missing in [26].

VII. Conclusion

This paper presents DPLC, a dynamic packet length control
scheme for WSNs. We introduce a lightweight and accurate
link estimation method that captures both physical channel
conditions and interferences. Moreover, we provide two easy-
to-use services, i.e., small message aggregation and large
message fragmentation, to facilitate upper-layer application
programming. We implement DPLC based on TinyOS 2.1.
Real indoor testbed experiments running the CTP protocol
show that DPLC results in a 13% reduction in transmis-
sion overhead and a 41.8% reduction in energy consumption
compared to the original protocol, and a 21% reduction
in transmission overhead and a 15.1% reduction in energy
consumption compared to a simple aggregation scheme. We
are now examining the effectiveness of this scheme in our
ongoing project, GreenOrbs [12].

Acknowledgments

This work is supported by the National Basic Research Pro-
gram of China (973 Program) under grant No. 2006CB303000,
and in part by NSERC Discovery Grant 341823-07, NSERC
Strategic Grant STPGP 364910-08 and FQRNT Grant 2010-
NC-131844.

References

[1] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, “Packet Combining in
Sensor Networks,” in Proceedings of ACM SenSys, 2005.

[2] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-Layer Wireless
Bit Rate Adaptation,” in Proceedings of ACM SIGCOMM, 2009.

[3] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemi-
nation Protocol for Network Programming at Scale,” in Proceedings of
ACM SenSys, 2004.

[4] M. Yang and Y. Yang, “A Hypergraph Approach to Linear Network
Coding in Multicast Networks,” IEEE Transactions on Parallel and
Distributed Systems, 2009, to appear.

[5] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Data Gathering with
Tunable Compression in Sensor Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 2, pp. 276–287, 2009.

[6] P. Lettierri and M. B. Srivastava, “Adaptive Frame Length Control for
Improving Wireless Link Throughput, Range, and Energy Efficiency,”
in Proceedings of IEEE INFOCOM, 1998.

[7] C. K. Siew and D. J. Goodman, “Packet Data Transmission Over Mobile
Radio Channels,” IEEE Transactions on Vehicular Technology, vol. 38,
no. 2, pp. 95–101, 1989.

[8] E. Modiano, “An adaptive algorithm for optimizing the packet size used
in wireless ARQ protocols,” Wireless Networks, vol. 5, no. 4, pp. 279–
286, 1999.

[9] P. R. Jelenković and J. Tan, “Dynamic Packet Fragmentation for
Wireless Channels with Failures,” in Proceedings of ACM MobiHoc,
2008.

[10] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. Mclaughlin, “Energy
Efficiency based Packet Size Optimization in Wireless Sensor Net-
works,” in Proceedings of IEEE Internal Workshop on Sensor Network
Protocols and Applications, 2003.

[11] M. C. Vuran and I. F. Akyildiz, “Cross-layer Packet Size Optimization
for Wireless Terrestrial, Underwater, and Underground Sensor Net-
works,” in Proceedings of IEEE INFOCOM, 2008.

[12] GreenOrbs, “Available: http://www.greenorbs.org.”
[13] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X.-Y. Li, and G. Dai, “Canopy

Closure Estimates with GreenOrbs: Sustainable Sensing in the Forest,”
in Proceedings of ACM SenSys, 2009.

[14] TinyOS, “Available: http://www.tinyos.net.”
[15] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications,” in SenSys, 2003.
[16] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-

tion Tree Protocol,” in Proceedings of ACM SenSys, 2009.
[17] K. Srinivasan and P. Levis, “RSSI is Under Appreciated,” in Proceed-

ings of EmNets, 2006.
[18] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,

S. Shenker, and I. Stoica, “Flush: A Reliable Bulk Transport Protocol
for Multihop Wireless Networks,” in Proceedings of ACM SenSys, 2007.

[19] G. Hackmann, O. Chipara, and C. Lu, “Robust Topology Control for
Indoor Wireless Sensor Networks,” in Proceedings of ACM SenSys,
2008.

[20] L. Sang, A. Arora, and H. Zhang, “On Exploiting Asymmetric Wireless
Links via One-way Estimation,” in Proceedings of ACM MobiHoc, 2007.

[21] J. D. Spragins, J. L. Hammond, and K. Pawlikowski, Telecommunica-
tions: Protocols and Design. Addison Wesley Publishing Company,
1991.

[22] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: A survey,” Computer Networks, vol. 38, pp. 393–
422, 2002.

[23] X. Liu, Q. Wang, W. He, M. Caccamo, and L. Sha, “Optimal real-
time sampling rate assignment for wireless sensor networks,” ACM
Transactions on Sensor Networks, vol. 2, no. 2, pp. 263–295, 2006.

[24] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M. B. Srivastava,
and D. Ganesan, “Estimating clock uncertainty for efficient duty-cycling
in sensor networks,” IEEE/ACM Transactions on Networking, vol. 17,
no. 3, pp. 843–856, 2009.

[25] H. Zhang, A. Arora, and P. Sinha, “Learn on the Fly: Data-driven Link
Estimation and Routing in Sensor Network Backbones,” in Proceedings
of IEEE INFOCOM, 2006.

[26] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “AIDA:
Adaptive Application-Independent Data Aggregation in Wireless Sensor
Networks,” ACM Transactions on Embedded Computing Systems, vol. 3,
no. 2, pp. 426–457, 2004.


