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This paper proposes a novel architecture called KCube. KCube is a compound graph of
Kautz digraph and hypercube. It employs the hypercube topology as a unit cluster and
connects many such clusters by means of a Kautz digraph. It then utilizes the topological
properties of hypercube to realize convenient embedding of parallel algorithms, and the
short diameter of Kautz graph to support efficient inter-cluster communication. KCube
possesses many attractive characteristics, such as modularity, expansibility, and regularity,
while these benefits are achieved at the cost of only increasing the degree of any node
by one, regardless of the network size. The methodology to construct KCube can also be
applied to other compound networks after minimal modifications.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Interconnection networks become popular in digital
systems, offering effective and economical solutions to op-
timize the communication and interconnection among sys-
tem components. In the literature of interconnection net-
works (see [1]), hypercube has been proved to be one of
the most popular architectures, due to its attractive prop-
erties such as strong connectivity, regularity, topological
symmetry, and recursive constructions. The degree of each
node in hypercube, however, increases logarithmically with
respect to the network size. Such a fact makes the direct
use of hypercube prohibitive in large-scale network appli-
cations, e.g. data centers [2–4].

The hierarchical network is a natural way to construct
large networks, where many small basic networks in the
lower level(s) are interconnected at higher level(s). Many
schemes have been proposed to perform various graph op-
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erations on those small networks. The main schemes in-
clude overlay, join, product, composition, compound, and
complete bipartite graphs [5]. Among such operations, the
compound graphs are observed to be suitable for large-
scale digital systems, which possess good regularity and
expansibility. For example, a compound graph requires
only one additional link per node at level 1 to support
communication among the level-2 nodes. This helps to re-
duce the cost of expansion when one intends to increase
the network size.

In this paper we propose a novel architecture of two-
level interconnection networks, called KCube, and the
methodology to construct it. KCube is a compound graph
of Kautz digraph and hypercube. It incarnates the good
characteristics of the Kautz digraph and hypercube. Specif-
ically, it utilizes the topological properties of hypercube to
realize convenient embedding of parallel algorithms, and
utilizes the shortest diameter of Kautz digraph to support
efficient inter-cluster communications.

Among the state-of-arts schemes, dBCube [6] is closest
to our work in this paper. dBCube is a compound graph of
de Bruijn digraph and hypercube, which is obtained by re-
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Fig. 1. K (2,2) and KC(2,2).
placing each node in de Bruijn digraph with a hypercube
cluster. Compared to dBCube, KCube provides a general
construction methodology, which can be applied to other
compound networks, for example dBCube which lacks the
construction methodology in [6]. In addition, KCube gen-
erates a network with smaller diameter under the same
node degree and network size. Moreover, KCube generates
a larger network than dBCube does, under the same node
degree and network diameter.

2. KCube network

In this section, we present the methodology to synthe-
sizing a KCube network. Multiple I/O ports are present at
each node to connect with the other nodes through links.
A link connecting two nodes in the same cluster is called a
local link, while a link connecting two nodes in difference
clusters is called a remote link. The connection topology
inside each cluster is a hypercube, while the interconnec-
tion topology at the level of clusters is a Kautz digraph.

Section 2.1 summarizes the notations and definitions
used in this paper. Section 2.2 presents the methodology to
compose a KCube network. A routing algorithm tailored to
the KCube network is described in Section 2.3. Section 2.4
illuminates the topological properties of KCube.

2.1. Notation and definitions

Let the interconnection network be modeled by an
graph G(V , E), where the set of vertices V , represents the
processors in the network and the set of edges E , repre-
sents the communication links in the network. In the rest
of this paper, we use the terms network and graph, node
and vertex, link and edge, interchangeably.

The m-dimension hypercube graph is denoted by H(m),
where m � 1. The vertex set of H(m) is {xm . . . xi . . . x1},
where xm . . . xi . . . x1 denotes a sequence and xi = 0 or 1
for all 1 � i � m. There is an edge between any two ver-
tices if and only if their labels differ by exactly one bit.
There are 2m vertices in H(m). The node degree and net-
work diameter are m.

The de Bruijn digraph [7], D(d,k), has node out-degree
of d and network diameter of k, where d � 1 and k � 1.
The vertex set is {xk . . . xi . . . x1 | xi ∈ {0,1, . . . ,d − 1} for all
1 � i � k}, where xk . . . xi . . . x1 denotes a sequence. There
is an arc from vertex xkxk−1 . . . x1 to vertex xk−1 . . . x1α for
each α ∈ {0,1, . . . ,d − 1}.

The Kautz digraph [8,9], K (d,k), has node out-degree
d and network diameter k, where d � 1 and k � 1.
The vertex set is {xk . . . xi . . . x1|xi ∈ {0,1, . . . ,d} and xi �=
xi+1 for all 1 � i � k}, where xk . . . xi . . . x1 denotes a se-
quence. There is an arc from vertex xkxk−1 . . . x1 to vertex
xk−1 . . . x1α for each α ∈ {0,1, . . . ,d} − x1.

For any node in D(d,k) or K (d,k), the in-degree and
out-degree are the same d. There are dk and dk + dk−1

vertices in D(d,k) and K (d,k), respectively. It is clear that
K (d,k) possesses more vertices than D(d,k), especially for
large d and/or k. In addition, there are d(dk + dk−1) arcs in
K (d,k). Fig. 1(a) is an example of a Kautz digraph, K (2,2).

2.2. Construction methodology of KCube

Definition 1. Given two regular graphs G2 and G1, the
compound graph G2(G1) is obtained by replacing each
node of G2 by a copy of G1 and replacing each link of G2
by a link which connects corresponding two copies of G1.

KCube is the compound graph of a Kautz digraph G2
and a hypercube G1, where the Kautz digraph and hyper-
cube graph have been proved to be regular. It employs the
hypercube topology as a unit cluster and connects many
such clusters by means of Kautz digraph. In the resul-
tant graph, the topology of G2 is preserved and only one
link is inserted to connect two copies of G1. There is an
additional remote link associated with each node in a hy-
percube cluster. For each node in the resultant network,
the degree is identical. A constraint must be satisfied for
the two basic graphs to constitute a compound graph. The
degree of G2 must be equal to the number of nodes in G1.

A KCube is characterized by KC(m,d,k), where m is
the dimension of the hypercube graph, d is the node out-
degree, and k is the diameter of the Kautz digraph. Ac-
cording to the aforementioned constraint of KCube, we can
infer that the degree of each node in the Kautz digraph
should be 2m . We know that the out-degree and in-degree
of each node in K (d,k) are d. Thus, the degree of each
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Fig. 2. The partition and sort of all nodes in H(3).
node in K (d,k) is 2d, and d = 2m−1. For simplicity, a KCube
is characterized by KC(m,k) in the remainder of this paper.

In KC(2,2), each block represents a cluster consisting
of H(2) and the degree of the Kautz digraph connected
those hypercubes equals to the number of nodes in H(2),
as shown in Fig. 1(b). In KC(2,2), the number of H(2) clus-
ters is 2k(m−1) + 2(k−1)(m−1) = 6 and the number of total
nodes is 2km + 2k(m−1)+1 = 24. Note that only one remote
arc is associated with each node in H(2).

Recall that KCube should replace each link of K (2m−1,k)

by a link connecting two nodes that belong to different
copy of H(m). To realize this goal, the following two pre-
conditions must be satisfied in advance.

1. The out-degree and in-degree of each node in K (2m−1,

k) are 2m−1 and each hypercube cluster contains 2m

nodes. Thus, 2m−1 nodes in H(m) need to be selected
as the heads of remote arcs which are incident to cor-
responding nodes in the other clusters. Such nodes
are referred to as output nodes of H(m). The remain-
ing 2m−1 nodes act as the tails of the remote arcs
which are incident from corresponding nodes in the
other clusters. Such nodes are referred to input nodes
of H(m).

2. There are d(dk + dk−1) remote arcs in KC(m,k). These
arcs need to be mapped to pairs of nodes, where one
end of an arc is an output node of a cluster and the
other end is an input node of another cluster.

To satisfy the first precondition, we need an approach
to divide all nodes of H(m) into two equal parts. We use
an arbitrary node xm . . . x2x1 from H(m) as a reference
node. The set of output nodes of H(m) consists of all nodes
ym . . . yi . . . y2 y1, where

• y2 y1 = x2x1 or y2 y1 = x̄2 x̄1.
• yi = 0 or 1 for all 3 � i � m.

The set of input nodes of H(m) consists of all nodes
ym . . . y2 y1, where

• y2 y1 = x̄2x1 or y2 y1 = x2 x̄1.
• yi = 0 or 1 for all 3 � i � m.

The only property of the cluster-splitting approach used
is that complementary nodes are of the same type. An
approach which randomly selects pairs of complementary
nodes as input nodes would also allow Lemma 1 to hold.
For other random approaches which divides all nodes into
two equal parts, Lemma 1 does not hold. For example,
if nodes 000, 100, 110, and 011 in Fig. 2 are randomly
selected as the input nodes, other nodes are the output
nodes, the largest length of the shortest path between an
input node and an output node becomes m, not m − 1
proved in Lemma 1. Our approach further results in a
shorter path between any two nodes in a KCube digraph
than the random approach.

For ease of presentation, we choose node xm . . . x2x1 as
the reference node where xi = 0 for all 1 � i � m. Thus, the
nodes whose last two bits of label are 00 or 11 constitute
the set of output nodes of H(m), and the nodes whose last
two bits of label are 01 or 10 constitute the set of input
nodes of H(m). All nodes in H(3) as shown in Fig. 2(a) are
partitioned into two equal sets. Those black balls denote
the output nodes, while those white balls denote the input
nodes, as shown in Fig. 2(b). To satisfy the second precon-
dition, we further sort all the output nodes of H(m) in the
ascending order of the node labels and all the input nodes
of H(m) in the same way. For example, the output nodes
of H(m) are sorted in the order of 000, 011, 100, 111, and
sort all the input nodes of H(m) are sorted in the order of
001, 010, 101, 110, as shown in Fig. 2(b).

We then sort all the out-arcs and in-arcs of any node in
K (2m−1,k) in the ascending order with the following ap-
proach. We can infer from the definition of Kautz digraph
that for a node xk . . . x2x1, its out-arc to node xk−1 . . . x1α
for α ∈ {0,1, . . . ,d} − {x1} is denoted as the ith out-arc.
Here, i indicates the clockwise distance from xk to α (if
x1 �= xk) or from xk + 1 to α (if x1 = xk) in a ring consist-
ing of the values 0,1, . . . ,d in the ascending order. It is
worth noticing that the ith out-arc of any node xk . . . x2x1
is also the ith in-arc of a corresponding node xk−1 . . . x1α.
Thus, all 2m−1 out-arcs of each node can be sorted in the
ascending order, and all 2m−1 in-arcs of each node can be
sorted in the same way.

Subsequently, we can constitute a compound graph
KC(m,k) on the basis of multiple hypercubes H(m) and
K (2m−1,k) through the following approach. First, any given
node x in K (2m−1,k) is replaced by a hypercube H(m).
Second, the ith out-arc of the node x is replaced by a re-
mote arc between the ith output node of a hypercube and
the ith input node of another hypercube. Here, the two
hypercubes correspond to the head and tail of the ith out-
arc of the node x in K (2m−1,k). Consequently, any node in
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Algorithm 1 Routing algorithm in KC(m,k)

1: According to the simple self-routing of Kautz digraph [8] and the la-
bels of two hypercube clusters x and x′ , node 〈x, y〉 determine the
next hypercube cluster u the message should be forwarded to. In the
Kautz digraph which connects all hypercube clusters in KC(m, c), we
can derive the order i of the out-arc from node x to node u among all
out-arcs of node x.

2: According to the construction rule of KC(m,k), the message should be
forward from the ith output node in hypercube x to the ith input
node in the hypercube u. If node 〈x, y〉 is not the ith output node
in the hypercube x, it infers the label of the ith output node in the
same hypercube, and routes the message to the ith output node using
the self-routing of hypercube [10]. Otherwise, it forwards the message
directly to the first input node of the hypercube u.

KC(m,k) is labeled 〈x = xk . . . x2x1, y = ym . . . y2 y1〉, where
xk . . . x2x1 is called the Kautz-part-label and ym . . . y2 y1 is
called the hypercube-part-label. Given any node, it has a
remote arc to only one node within different hypercube
clusters referred to as Kautz-part-neighbor. Meanwhile, it
has local arcs to m nodes in the same cluster referred to
as hypercube-part-neighbors. Fig. 1 shows a representation
of the resultant KC(2,2). The black balls and white balls
represent the output nodes and input nodes in each hyper-
cube cluster, respectively. The solid and dot directed edges
are the first and second out-arcs of each hypercube cluster.
As shown in Fig. 1, the ith out-arc of each hypercube clus-
ter interconnects the ith output node and ith input node of
two corresponding hypercube clusters. An undirected edge
interconnects two nodes in the same hypercube cluster.

2.3. Routing in KCube networks

For efficiency of communication, a simple and fast rout-
ing algorithm should ensure that a message can be for-
warded from a source node 〈x, y〉 to a destination node
〈x′, y′〉 along a shortest path. In KCube, routing can be
implemented by Algorithm 1, which systematically inte-
grates the existing routing algorithms for hypercube and
Kautz graphs. For example, a message from node 〈21,11〉
to node 〈20,01〉 is first routed to node 〈21,00〉 which
is the first output node in hypercube 21. It is clear that
there are two candidate paths between the two nodes, i.e.
〈21,11〉 → 〈21,10〉 → 〈21,00〉 or 〈21,11〉 → 〈21,01〉 →
〈21,00〉. The message is then routed to node 〈20,10〉 along
a path 〈21,00〉 → 〈12,01〉 → 〈12,11〉 → 〈20,10〉. Finally,
the message is routed to the destination 〈20,01〉 along one
of the two possible paths 〈20,10〉 → 〈20,11〉 → 〈20,01〉 or
〈20,10〉 → 〈20,00〉 → 〈20,01〉.

In reality, Algorithm 1 cannot derive the shortest pathes
for all pairs of nodes. For example, the shortest path
from 〈21,11〉 to 〈20,01〉 is 〈21,11〉→〈10,10〉→〈10,11〉→
〈02,10〉→〈02,00〉→〈20,01〉. As a result, Algorithm 1 only
ensures that the upper bound on the diameter of Fig. 1(b)
is 7 while the diameter is 6.

2.4. Topology properties

Theorem 1. In a KC(m,k), there is 2k(m−1) + 2(k−1)(m−1) hy-
percube clusters and 2k(m−1)+m + 2k(m−1)+1 vertices.

Proof. From the definition of KC(m,d,k), we know that the
number of hypercube clusters is dk + dk−1 and the num-
ber of vertices in each hypercube cluster is 2m . Theorem 1
holds due to the fact that d = 2m−1. �
Lemma 1. The largest length of the shortest path between an
output node and an input node in the same hypercube H(m) is
m − 1.

Proof. In H(m), the largest number of nodes which must
be traversed in order to travel from any node xm . . . x2x1
to node x̄m . . . x̄2 x̄1 is m. The length of the shortest path
between the node xm . . . x2x1 and every node except the
node x̄m . . . x̄2 x̄1 is less than m. According to the aforemen-
tioned approaches, we can infer that the node xm . . . x2x1
is included in the set of output nodes or the set of input
nodes, together with the node x̄m . . . x̄2 x̄1. Thus, the largest
length of the shortest path between an output node and
an input node in the same hypercube H(m) is m − 1. �
Theorem 2. An upper bound on the diameter of KC(m,k) is
2m + (k − 1)(m − 1) + k = m(k + 1) + 1.

Proof. In KC(m,k), the shortest path from an arbitrary
node 〈x, y〉 to any node 〈x′, y′〉 traverses at most k + 1
hypercube clusters, including the source hypercube x, des-
tination hypercube x′ , and other k − 1 intermediate hyper-
cubes. This is guaranteed by the diameter of K (2m−1,k).

In the source hypercube x, the largest length of a short-
est path from the node 〈x, y〉 to any other node is less than
or equal to m, and is only equal to m when the node 〈x, y〉
is an output node and the other node is 〈x, ȳ〉. For any in-
termediate hypercube along the shortest path from 〈x, y〉
to 〈x′, y′〉, it receives a message from one of its input node
and forward the message to one of its output node within
m − 1 hops, as proved in Lemma 1. For the destination
hypercube x′ , it receives a message from one of its input
node and forwards to the node 〈x′, y′〉. The largest length
of a shortest path from that input node to the node 〈x′, y′〉
is less than or equal to m, and is only equal to m when
that input node is 〈x′, ȳ′〉 and the node 〈x′, y′〉 is also an
input node of Hk+1(m). In addition, the shortest path also
traverse k remote links each connects a pair of hypercube
clusters. Thus, a upper bound on the diameter of KC(m,k)

is 2m + (k − 1)(m − 1)+k = m(k + 1)+ 1, hence Theorem 2
holds. �

Table 1 summarizes various parameters of hypercube,
Kautz, and KCube. KCube constructs large networks by con-
necting multiple copies of smaller hypercube networks at
the cost of increasing the degree of each node by only one.

3. Conclusion

This paper presents KCube, a new compound graph of
Kautz digraph and hypercube. KCube employs the hyper-
cube topology as a unit cluster and connects many such
clusters by means of a Kautz digraph. KCube combines the
advantages of hypercube and Kautz graph, and possesses
good modularity, expansibility, and regularity. The method-
ology to construct KCube can also be applied to other com-
pound networks after minimal modifications.
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Table 1
Parameters of the networks of interest.

Graph Network size Number of edges Degree Diameter

H(m) N1 = 2m L1 = m2(m−1) m m
K (2m−1,k) N2 = 2(m−1)k + 2(m−1)(k−1) L2 = 2(m−1)(k+1) + 2(m−1)k 2m k
KC(m,k) N1 × N2 L1 × N2 + L2 = (m + 1)L2 m + 1 m(k + 1) + 1
KCube is a promising architecture for future intercon-
nection networks, such as Peer-to-Peer networks [11–15]
and data centers [3,4]. In recent years, many large data
centers have been built to provide online application and
infrastructure services. A fundamental challenge in data
centers is how to efficiently interconnect an increasing
number of servers so that one does not need to rewire the
existing running servers when adding new servers. KCube
is well modular so that it can be enlarged through small
increments. Such a capability is dependent upon the num-
ber of nodes required at the level of hypercube clusters.
It is the ideal case that one can increase the cluster size
by one node each time. Although outperforming the exist-
ing schemes like dBCube, KCube has a limitation on the
hypercube cluster which cannot be realized with an arbi-
trary size. Actually, to enlarge a hypercube cluster, its size
should be doubled. To enlarge a data center, the number
of new servers should be equal to the number of existing
servers. The new servers are interconnected in the same
way as those existing servers. Besides, the new servers and
existing servers in the same hypercube cluster are inter-
connected according to the constructing rule of hypercube.
We plan to resolve the limitation in our future work.
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