
Author's personal copy

Receiver-oriented design of Bloom filters for data-centric routing

Deke Guo a,*, Yuan He b, Panlong Yang c

a Key Laboratory of C4 ISR Technology, National University of Defense Technology, Changsha Hunan 410073, China
b Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China
c Institute of Communication Engineering, P.L.A University of Science and Technology, Nanjing Jiangsu 210000, China

a r t i c l e i n f o

Article history:
Received 8 June 2009
Accepted 4 October 2009
Available online 13 October 2009
Responsible Editor: Minglu Li

Keywords:
Bloom filters
Data-centric routing
Receiver-oriented design

a b s t r a c t

Bloom filter (BF) is a space-efficient data structure that represents a large set of items and
supports efficient membership queries. It has been widely proposed to employ Bloom fil-
ters in the routing entries so as to facilitate data-centric routing in network applications.
The existing designs of Bloom filters, however, cannot effectively support in-network que-
ries. Given a query for a data item at a node in the network, the noise in unrelated routing
entries very likely equals to the useful information of the item in the right routing entries.
Consequently, the majority of queries are routed towards many wrong nodes besides those
destinations, wasting large quantities of network traffic. To address this issue, we classified
the existing designs as CUBF (Cumulative Bloom filters) and ABF (Aggregated Bloom fil-
ters), and then evaluate their performance in routing queries under the noisy environ-
ments. Based on the evaluation results, we propose a receiver-oriented design of Bloom
filters to sufficiently restrict the probability of a wrong routing decision. Moreover, we sig-
nificantly decrease the delay of a routing decision in the case of CUBF by using the bit slice
approach, and reduce the transmission size of each BF in the case of ABF by using the com-
pression approach. Both the theoretical analysis and experimental results demonstrate that
our receiver-oriented design of Bloom filters apparently outperforms the existing
approaches in terms of the success probability of routing and network traffic cost.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Bloom filter (BF) [1] is a space-efficient data structure
that represents a large set of items and supports efficient
membership queries. BF outperforms other data structures
such as binary search trees and tries, as the time needed to
insert an item or check whether an item belongs to the fil-
tering set is constant, irrespective of the cardinality of the
set. Hence BF has been widely adopted in database and
networking applications [1,2], such as web cache sharing
[3] and routing [4–6]. Moreover, BF has great potential in
memory management, such as summarizing streaming
data in memory [7], storing the states of a large number

of flows in the on-chip memory of the routers [8], and
speeding up the Bayesian filters [9].

The space efficiency of BF, however, is achieved at the
cost of false positive judgments. False positive judgment
is a unnegligible drawback of BF, which refers to the case
that an item does not belong to a set but the BF makes
the contrary judgment. In many applications, the savings
in storage and computational costs brought by BF out-
weigh such a drawback, on condition that the false positive
probability is sufficiently low. Many efforts have been
made to reduce the probability of false positive in stand-
alone and distributed systems [10–13] during the past
years.

In the last few years, it has been proposed to employ BF
in supporting data-centric routing in overlay networks
[4,5,14–16], wireless sensor networks [17], ad hoc net-
works [18,19], and mesh networks [20]. The common idea

1389-1286/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.10.002

* Corresponding author. Tel.: +86 731 84576603.
E-mail addresses: guodeke@gmail.com, guodeke@ieee.org (D. Guo),

heyuan@cse.ust.hk (Y. He), veron_yang@sina.com (P. Yang).

Computer Networks 54 (2010) 165–174

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet



Author's personal copy

of those proposals is that every node uses a BF to represent
the information of all its data items and broadcasts the BF
to the nodes in its propagation range, i.e. the nodes within d
hops from the node. Correspondingly, a node receives a
number of BFs via each link of it. The link, associated with
the BFs received via it or the union of them, is then main-
tained as a routing entry. The union of BFs is defined as the
logic or operation among their bit vectors [21]. For any
intermediate node routing a query, it forwards the query
through the link whose corresponding routing entry satis-
fies the query. Ideally, a query will be propelled towards its
destination once it enters the propagation range of the des-
tination. For example, a query at node E for a data item at
node A is routed to the right destination node along a sin-
gle path E! C ! B! A, as shown in Fig. 1a.

False positive judgments exist in data-centric routing
with BFs. The necessary condition for the BF-based routing
schemes outperforming the blind routing schemes is that
the false positive probability in the routing entries is suffi-
ciently low. Otherwise, given any query for a data item x at
a node in the network, the noise in unrelated routing en-
tries very likely equals to the useful information of the
item in the right routing entries. The noise in a unrelated
routing entry is defined as the amount of membership
information of x in it, if the node does not receive a BF from
the destination of x via the corresponding link. Being mis-
led, the majority of queries are routed towards many
wrong nodes besides the right destinations, and result in
huge amount of redundant but useless queries in the net-
work. For example, a query at node E for a data item at
node A is routed to both the right destination node and
other two nodes G and H which do not hold the desired
data item, as shown in Fig. 1b. The network in turn pre-
sents poor efficiency of query processing and suffers scala-
bility problem.

In this paper, we reveal through theoretical analysis
that the existing designs of BF cannot satisfy the aforemen-
tioned necessary condition. Specifically, we classified the
existing BF-based routing schemes as CUBF (Cumulative
Bloom filters) and ABF (Aggregated Bloom filters), and then
evaluate their performance in routing queries under the
noisy environments. Based on the evaluation results, we
propose a receiver-oriented design of Bloom filters, with
which the false positive probability of any routing entry
is low enough so that a node can correctly distinguish

the right out-going link from the others. We further con-
duct extensive simulations to evaluate the performance
of the proposed scheme. Both the theoretical analysis and
experimental results demonstrate that our receiver-ori-
ented design of BF apparently outperforms the existing de-
signs in terms of success probability of routing and
network traffic cost, as shown in Fig. 1.

The rest of this paper is organized as follows. In Section
2, we briefly introduce BF and its traditional design. In Sec-
tion 3, we summarize the state-of-arts designs of BF-based
data-centric routing schemes, and then propose the recei-
ver-oriented design of BF. In Section 4, we further optimize
the transmission and storage strategies of BF, and present
our study on how to ensure that the false positive probabil-
ity of any routing entry does not exceed an upper bound in
practice. Section 5 presents the performance evaluation re-
sults. We concludes this work in Section 6.

2. Preliminaries

A BF for representing a set X of n items is described by a
vector of m bits, initially all set to 0. A BF uses k indepen-
dent hash functions h1; . . . ;hk to map each item of X to a
random number over a range f1; . . . ;mg [1] uniformly.
For each item x of X, we define its BF address as
bfaddressðxÞ consisted of hiðxÞ for 1 6 i 6 k, and the bits
belonging to bfaddressðxÞ are set to 1 when inserting x.
Once the set X is represented as a BF, to judge whether
an element x belongs to X, one just needs to check whether
all the hiðxÞ bits are set to 1. If so, x is a member of X (note
that there is a probability that this could be wrong). Other-
wise, we assume that x is not a member of X. It is clear that
a BF may yield a false positive due to hash collisions, for
which it suggests that an element x is in X even though it
is not. The reason is that all indexed bits were previously
set to 1 by other items [1].

The probability of a false positive for an element not in
the set can be calculated in a straightforward fashion, gi-
ven the assumption that hash functions are perfectly ran-
dom. Let p0 denote the probability that a random bit of
the BF is 0, and let n be the number of items that have been
added to the BF. Then p0 ¼ ð1� 1=mÞk�n � e�k�n=m as n � k
bits are randomly selected, with probability 1=m in the
process of adding each item. We use f BF

m;k;n to denote the

Fig. 1. Illustrative examples of BF-based routing for a query for an item at node A.

166 D. Guo et al. / Computer Networks 54 (2010) 165–174



Author's personal copy

false positive probability caused by the ðnþ 1Þth insertion,
and we have the expression

fBF ¼ ð1� p0Þ
k � ð1� e�k�n=mÞk: ð1Þ

Given the false positive probability and the set cardinal-
ity, we can calculate the filter size of BF and the number of
hash functions according to Formula (1). From [1], we
know that the minimum value of fBF is 0:6185m=n when
k ¼ ðm=nÞ ln 2. In practice, k must be integer, and a smaller
k is preferred so as to reduce the amount of computation
required.

3. Receiver-oriented bloom filters

In this section, we first introduce the state-of-arts de-
signs of BF-based data-centric routing schemes, including
CUBF and ABF. We then propose a receiver-oriented BF,
which is superior to the existing designs with respect to
the false positive probability.

3.1. Background

We start with a brief introduction to the network model
used in this paper. Let n be the average number of data
items at a node in the network. We assume every node
propagates its BF to the nodes within d hops. For any arbi-
trary node, s denotes the average number of BFs received
via any one of its links. Therefore, starting from any link
of a node, let X denote the set consisted of all reachable
data items within d hops in the network. We may calculate
the cardinality of set X as N ’ s � n.

In the case of data-centric routing, a link and the s BFs
received through it may be stored as a single routing entry.
We call a set consisted of the s independent BFs as a CUBF
(Cumulative Bloom filters), as shown in Fig. 2. Alterna-
tively, a link may be stored with the union of the s BFs re-
ceived through it as a routing entry. We call the union of
the s independent BFs as an ABF (Aggregated Bloom filters),
as shown in Fig. 3.

When forwarding a query through a certain link, either
CUBF or ABF may be used to track the data items reachable
within d hops in the network. For example, node A receives

the BF of node B through link B! A, and BFs of nodes
C; D; E; F; G, and H through link B! A as well, as shown
in Fig. 1 where d ¼ 3. Node A may directly use the combi-
nation of the seven independent BFs received through link
B! A as a routing entry. Alternatively, it may use the un-
ion of those BFs as a routing entry. In this paper we assume
homogeneous routing entries in the network, which is the
general case in practice. In other words, we do not consider
that some routing entries use CUBF while the others adopt
ABF.

Rhea and Kubiatowicz proposed a variant of data-cen-
tric routing based on BF [5]. They have each node keep
an array of BFs for every link in the overlay topology. In
the array of BFs for each link, there is a BF for each distance
1 6 i 6 d, so that the ith BF in the array keeps track of files
reachable via i hops through the overlay network along
that link. They call this array of BFs an attenuated Bloom
filter. An attenuated Bloom filter usually finds files within
at most d hops along a single path, but it is likely to find
the shortest path to a file replica if many such paths exist.
It is worth noticing that an attenuated Bloom filter is sim-
ilar to a CUBF, however, every component of an attenuated
Bloom filter is an ABF while that of a CUBF is a BF.

To ensure the inter-operability between individual BFs
in many distributed applications, all nodes are required
to adopt an identical configuration of parameters m; k,
and the hash functions. In the case of CUBF, for a query
of an item x, all individual BFs in a CUBF share the same
Bloom filter address of the item x. Thus it is not necessary
to calculate bfaddressðxÞ for the query in each individual BF,
hence reducing the computational overhead of determin-
ing the right out-going link of the query and in turn
increasing the routing efficiency. In the case of ABF, the un-
ion operation of the BFs require each BF adopt an identical
configuration, too.

3.2. Receiver-oriented design of Bloom filters

In this subsection, we first present theoretical analysis
on the probability of false positive judgments using CUBF
and ABF. Based on the analytical results, we propose the re-
ceiver-oriented design of Bloom filters.

A CUBF might yield a false positive for a data item x1

which is unreachable within d hops from the current node

Fig. 2. An example of a CUBF consisted of seven BFs, where
m ¼ 33; n ¼ 3; k ¼ 3, and fBF ¼ 0:0136. Note that the false positive
probability of the resulting CUBF is fCUBF ¼ 0:0914.

Fig. 3. An example of an ABF based on seven BFs, where m ¼ 33; n ¼
3; k ¼ 3, and fBF ¼ 0:0136. Note that the false positive probability of the
resulting ABF is fABF ¼ 0:618.

D. Guo et al. / Computer Networks 54 (2010) 165–174 167



Author's personal copy

in the network. The reason is that all bits of bfaddressðx1Þ in
at least one BF of the CUBF have been set to 1 by items of X.
The false positive probability of the CUBF can be calculated
as follows. The false positive probability of each BF of the
CUBF is given by Formula (1). Thus the probability that
not all the bits of bfaddressðxÞ in each BF of the CUBF are
set to 1 is ð1� fBFÞs. The probability that all the bits of
bfaddressðxÞ in at least one BF of the CUBF are set to 1 is

fCUBF ¼ 1� ð1� fBFÞs ¼ 1� 1� ð1� e�k�n=mÞk
� �s

: ð2Þ

It is also possible for an ABF to yield a false positive for
an item x1 R X when all bits of bfaddressðx1Þ in the ABF are
set to 1 by items of X. When calculating the false positive
probability, we first consider an analogous process that
s � k � n balls are dropped into m empty bins randomly.
The location of each ball is independently and uniformly
chosen from the m possibilities. The union operation of s
BFs is equivalent to the ball dropping process. Hence the
probability that a random bit in the ABF is set to 1 is equiv-
alent to the probability that a random bin becomes non-
empty. It can be calculated as follows:

p1 ¼ 1� ð1� 1=mÞs�k�n � 1� e�s�k�n=m:

Thus, the probability that all the bits of bfaddressðx1Þ in the
ABF are set to 1 is

fABF ¼ pk
1 ¼ ð1� e�s�k�n=mÞk: ð3Þ

According to Formulas (2) and (3), we can see that s is
another important parameter besides those well-known
ones and the false positive probabilities of CUBF and ABF
are monotonic increasing functions of s. Even if the false
positive probability of each single BF is low, the false posi-
tive probability of the resulting CUBF or ABF will very
likely increase to an unacceptable level as the value of s in-
creases. For example, node A in Fig. 1 receives seven BFs,
yielding a false positive judgment with very low probabil-
ity of 0.0136. The false positive probabilities of the result-
ing CUBF and ABF, however, are 0.0914 and 0.618, as
shown in Figs. 2 and 3, respectively. Thus, given a query
for an item at an arbitrary node in the network, false pos-
itives very likely arise in unrelated routing entries. In turn
the query is forwarded towards not only the correct desti-
nation nodes but also some wrong nodes with high proba-
bility. None of the existing designs of BF is able to tackle
such a challenging issue, no matter it is based on CUBF or
ABF (see Table 1).

Let r denote an application-specific upper bound of the
false positive probability of a CUBF or an ABF. It is already
known that a traditional BF is optimal when k ¼ ðm=nÞ ln 2,
with respect to the false positive probability. Such an opti-
mal setting, however, cannot be applied to the case of CUBF
or ABF.

To address this issue, we propose a receiver-oriented
design of Bloom filters. The basic idea is to derive the
parameter configuration of homogeneous BFs for a CUBF
or an ABF such that the value of Formula (2) or (3) cannot
be greater than r. That is,

1� ð1� fBFÞs 6 r and ð1� e�s�k�n=mÞk 6 r:

Given r; n and s, we wish to optimize the number of
hash functions and the sizes of homogeneous BFs. In the
case of CUBF, the false positive probability of each BF is
fBF 6 1� ð1� rÞ1=s. According to [1], the optimal number
of hash functions that minimize fBF is k ¼ ðm=nÞ ln 2, and
the minimum value of fBF is 0:6185m=n. Thus, we derive
the lower bound on the optimal filer size as

m P n � log0:6185ð1� ð1� rÞ1=sÞ:

The lower bound on the optimal number of hash functions
is

k P log0:5ð1� ð1� rÞ1=s
:

In practice, k and m must be integers. Smaller k and m are
preferred so as to reduce the computational and storage
overhead. Thus, the optimal size of filters and the optimal
number of hash functions are as follows:

m ¼ n � log0:6185ð1� ð1� rÞ1=sÞ
l m

; ð4Þ

k ¼ dlog0:5ð1� ð1� rÞ1=se: ð5Þ

In the case of ABF, the optimal number of hash func-
tions that minimizes fABF can be easily obtained by taking
the derivative. Note that

fABF ¼ expðk lnð1� e�s�k�n=mÞÞ:

Let g ¼ k lnð1� e�s�k�n=mÞ. Minimizing the false positive
probability fABF is equivalent to minimizing g with respect
to k. Thus we have

ug
uk
¼ lnð1� e�s�k�n=mÞ þ s � k � n

m
e�s�k�n=m

1� e�s�k�n=m
:

Clearly the derivative is 0 when k ¼ ðm
s�nÞ � ln 2. Alterna-

tively, using p0 ¼ e�s�k�n=m, we get

g ¼ � m
s � n lnðp0Þ lnð1� p0Þ;

where g is minimized when p0 ¼ 1=2, namely k ¼ ðm
s�nÞ � ln 2.

Correspondingly, the false positive probability of ABF is
ð1=2Þk � ð0:6185Þm=s�n. Thus, we derive the lower bound
of the optimal filter size as

m P s � n � �log2r
ln 2

:

The lower bound of the optimal number of hash functions
is

k P �log2r:

Table 1
Summary of main notations.

Term Definition

m Number of bits of a BF
n Average number of data items at a node
k Number of hash functions used by a BF
d Propagation range of a BF
s Average number of BFs received via any link
p0 Probability of a random bit in a BF to be 0
p1 Probability of a random bit in a BF to be 1
fBF False positive probability of a BF
fCUBF False positive probability of a CUBF
fABF False positive probability of an ABF
r Upper bound of the false positive probability

168 D. Guo et al. / Computer Networks 54 (2010) 165–174



Author's personal copy

In practice, m and k must be integers. Smaller m and k are
preferred so as to reduce the computational and storage
overhead. Thus, the optimal size of filters and the optimal
number of hash functions are as follows:

m ¼ s � n � �log2r
ln 2

� �
; ð6Þ

k ¼ d�log2re: ð7Þ

Due to the similar reason mentioned in [1], the fact that
p0 ¼ 1=2 when the false positive probability of ABF is min-
imized, does not depend on the asymptotic approximation
that ð1� 1=mÞs�k�n � e�s�k�n=m.

4. Discussion

To further improve our approach, we address two key
issues, namely to optimize the transmission size of ABF
and storage strategy of CUBF. We then discuss how to en-
sure that the false positive probability of any routing entry
does not exceed an upper bound in practice.

4.1. Optimization of transmission size for ABF

In the case of ABF, Formula (6) denotes the optimal size
of BF implemented by any node to ensure that the false po-
sitive probability of each resulting ABF does not exceed the
threshold r with high probability. In fact, however, the size
of BF is too large. The storage space appears to be under-
utilized. The fraction of bits ‘‘1” in each BF is significantly
less than 1/2. Note that a BF created by each node must
be delivered to other nodes as a series of messages in order
to establish routing entries. The transmission size of each
BF become a critical factor, which significantly affects the
amount of network traffic. To deal with such a problem,
we propose to compress the BFs before transmission.

The authors in [22] show that the uncompressed BF,
which is traditionally optimized by k ¼ ðm=nÞ ln 2 cannot
achieve any gain by compressing it. The reason is that un-
der good random hash functions, each bit of BF is 0 or 1
independently with probability 1/2. On the contrary, the
BF which is optimized according to Formulas (6) and (7)
in the case of ABF can achieve considerable gain with com-
pression. The reason is that under the same assumption
about hash functions, the probability of a bit in a BF to
be 1 is lower than 1/2, namely p1 � 1=2. In theory, a m bits
BF can be compressed down to only m � Hðp1Þ bits, where

Hðp1Þ ¼ �p1log2p1 � ð1� p1Þlog2ð1� p1Þ

is the entropy function. In the case of ABF, a BF with
m ¼ ds � n � log0:6185re bits can be compressed down to only
m � Hðp1Þ bits, where p1 ¼ 1� ek�n=m ¼ 1� ð1=2Þ1=s.

It is worth noticing that the arithmetic coding is a near-
optimal compressor which requires mðHðp1Þ þ eÞ bits for
any e > 0: Such theoretical analysis demonstrates that
compression is a viable method that significantly reduces
the transmission size of BFs and saves network traffic cost
in the case of ABF. The compression and decompression of
each BF can be implemented by using simple arithmetic
coding at each node. Thus their computational cost is very
low and can thus be neglected.

4.2. Storage optimization for CUBF

Since a CUBF does not aggregate the original BFs, those
routing schemes based on CUBF cost large amount of stor-
age space for storing BFs at each node. When a query is gi-
ven at a node, a full scan of all its CUBFs is required. For any
CUBF, it appears to be inefficient to scan all its BFs for seek-
ing a routing decision at the worst case, especially when
the number of its BFs is large. As expect, the long delay
of each routing decision lowers down the concurrency of
transmissions and degrades the network throughput. Such
a problem becomes more serious when the average node
degree is high and the propagation range of BFs is large,
especially in the resource-constrained networks such as
wireless sensor networks [23–25]. Consequently, CUBF-
based schemes probably suffer poor efficiency of routing
and scalability problem due to the inefficient storage of
BFs.

There are two ways for storing a CUBF consisted of s
BFs, namely bit string and bit slice [26].

In the bit string method, the bits matrix in Fig. 2 is
stored in a set of files in a row-wise manner, as shown in
Fig. 4a. Note that the s BFs are sequentially stored, which
is easy to implement. When a query is to be resolved with
such a CUBF, however, a full scan of the s BFs is required.
Therefore, it is usually slow in retrieving the queried result.

As for the bit slice method, the bits matrix is vertically
partitioned into m bit slices. Each bit slice, represented
by a column in Fig. 4b, stores one bit per BF for all the
BFs in the CUBF. When resolving a query, instead of loading
the full BFs in the CUBF for scanning, the bit slice method
only needs to load a few bit slices from the CUBF that are
associated with the query. In this way, the scanning cost
is significantly reduced. The delay for making a routing
decision at a node is decreased as well. In words, the bit
slice method greatly improves the efficiency of routing
and the scalability of CUBF-based routing schemes.

4.3. Practical issues in data-centric routing

The parameter r is dependent on the applications, and
can be determined according to the specific requirement,

5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

The number of hash functions

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Lower bound is 0.005
Lower bound is 0.001

Fig. 4. Illustration of bit-string and bit-slice storage methods of a CUBF
consisted of 7 BFs, where m ¼ 12.

D. Guo et al. / Computer Networks 54 (2010) 165–174 169



Author's personal copy

e.g. the constraint on the error probability in a routing
decision. The parameters n and s should be assigned with
appropriate values based on the topological properties,
data and query distributions among the nodes, popularity
of queried data items, and the propagation range of BFs.
Many efforts have been made to measure the topological
properties (including the number of nodes, the distribution
of node degree, and the network diameter), and to investi-
gate the data distribution and query distribution. For
example, bubbleStorm includes a protocol for measuring
global system state [27]. The propagation range should
be assigned an appropriate value limited by the network
diameter. Thus, it is reasonable to assume that we are gi-
ven n and s, and the design approaches of CUBF and ABF
can be put into practice based on Formulas (4)–(7).

In reality, the following practical issues directly domi-
nate the final effect of CUBF and ABF even if each node
implements its local BF for CUBF or ABF. In the case of
CUBF, the number of reachable nodes within d hops in
the network along any link usually does not equal to s
for the majority of links. Therefore, each node has to record
the number of received BFs along each link, and denies
those BFs behind the first s BFs such that fCUBF of each rout-
ing entry always does not exceed r. In the case of ABF, the
distribution of node degree and the distribution of number
of received BFs along one link are usually not uniform.
Thus, for the majority of links, the number of all reachable
data items within d hops in the network along a link from

an arbitrary node usually does not equal to n � s. Therefore,
each node should monitor the fraction of bits ‘‘1” in each
ABF, and denies other BFs received through a link once
the fraction of 1 bits in a corresponding ABF reaches 1/2
such that fABF always does not exceed r.

5. Performance evaluation

In this section, we first evaluate the performance of
CUBF and ABF in terms of the optimal number of hash
functions, the false positive probability, and the transmis-
sion size. We then conduct experiments to examine the
false positive probability of CUBF and ABF in practice.

5.1. Optimal number of hash functions

Formulas (2) and (3) demonstrate that the false positive
probability is a function of the number of hash functions.
We conduct simulations to evaluate fCUBF and fABF. As
shown in Fig. 5, fCUBF is minimized to 0.005 for 15 hash
functions, and is minimized to 0.001 for 17 hash functions.
On the other hand, according to Formula (5), we can verify
that the optimal number of hash functions should be 15
and 17 when r is 0.005 and 0.001, respectively. As shown
in Fig. 6, using 8 and 10 hash functions can minimize fABF to
0.005 and 0.001, respectively. According to Formula (7), we
find that the optimal number of hash functions should be 8
and 10 when r is 0.005 and 0.001, respectively. Thus, the
simulation results match well with our theoretical analy-
sis. It is worth noticing that the optimal number of hash
functions is a monotonic decreasing function of r, in both
CUBF or ABF, as shown in Formulas (6) and (7) and Figs. 5
and 6.

5.2. False positive probability in theory

We first evaluate the false positive probability of CUBF
and ABF with the traditional designs of BF. In such cases,
each node constructs its local BF with k ¼ ðm=nÞ ln 2 and
m ¼ n � log0:6185r, where r is a given upper bound of false
positive probability. Each node constructs a CUBF or an
ABF as a routing entry for each link based on all BFs re-
ceived through that link. We conduct simulations to evalu-
ate fCUBF and fABF of any routing entry at an arbitrary node.
Fig. 7 plots the simulation results. We can see that fCUBF and
fABF increase as the number of received BFs increases,

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

The number of hash functions

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Lower bound is 0.005
Lower bound is 0.001

Fig. 5. The false positive probability of CUBF as a function of the number
of hash functions used, where s ¼ 100 and n ¼ 30.

Fig. 6. The false positive probability of ABF as a function of the number of hash functions used, where s ¼ 100 and n ¼ 30.

170 D. Guo et al. / Computer Networks 54 (2010) 165–174



Author's personal copy

especially that fABF quickly reaches to almost one even a
small number of BFs are received. Such a result indicates
that the traditional design of BF cannot ensure that the
false positive probability is sufficiently low. Consequently,
as we reiterate in this paper, CUBF and ABF with traditional
designs are not applicable with those data-centric routing
schemes in practice.

We then demonstrate that the proposed receiver-ori-
ented design of BFs in this paper can ensure that fCUBF

and fABF always do not exceed any given upper bound r.
Here, each node designs its local BF with parameters m
and k configured according to Formulas (4)–(7), respec-
tively. The simulation results of fCUBF and fABF are shown
in Fig. 8. As the number of received BFs increases, fCUBF al-
most increases linearly while fABF increases exponentially.
They, however, do not exceed the upper bound r ¼ 0:001
when the number of received BFs does not exceed a given
upper bound s ¼ 100. On the other hand, fABF is always less
than fCUBF when the number of received BFs ranges from 1
to 100. In words, ABF outperforms CUBF in terms of false
positive probability. Furthermore, the storage cost of ABF
is much lower than that of CUBF. Thus ABF is more suitable
than CUBF in the data-centric routing schemes.

5.3. Transmission size

Considering the fact that the transmission size of BF is a
critical design factor in network applications, we now eval-
uate the transmission sizes of four types of BFs, including
the traditional BF, BF for CUBF, BF for ABF, and compressed
BF for ABF. For a given value of n, the transmission sizes of
the four types of BF are functions of r and s. In this subsec-
tion, we will evaluate the transmission sizes of the filters
under two scenarios. Under the first scenario, the value
of s is fixed while that of r is variable. Under the other
one, the value of s is variable while that of r is fixed.

Figs. 9 and 10 plot the evaluation results under the first
scenario. We can clearly see that all three curves in Fig. 9
follow a similar trend as the value of r increases continu-
ously from 0.001 to 0.1. The filter sizes of traditional BF, BF
for CUBF, and compressed BF for ABF decrease as the value
of r increases. In addition, we find that the compressed BF
for ABF consumes more bits than BF for CUBF and the tra-
ditional BF, irrespective of the value of r. Fig. 10 shows that
the BF for ABF occupies almost 100 times of bits as the tra-
ditional BF does. The compressed BF for ABF consumes less
than 5 times of bits as the traditional BF does. The BF for
CUBF uses less than 3 times of bits as the traditional BF
does. Such results demonstrate that compression is indeed
an efficient way to reduce transmission size of BF in the
case of ABF.

Fig. 11 plots the evaluation results under the second
scenario. The two curves follow a similar trend as the value
of s increases continuously from 2 to 10,000. At the begin-
ning, the two curves go up quickly as the value of s in-
creases, and then slow down ascending. The simulation
results of BF for uncompressed ABF are not shown in the
figure because it almost consumes s times of bits as the tra-
ditional BF does. As s ranges from 2 to 10,000, we find that
the compressed BF for ABF consumes at most 7.5 times of
bits as the traditional BF does, while the BF for CUBF occu-
pies at most 2.5 times of bits as the traditional BF does. On
the other hand, the compressed BF for ABF consumes a bit
more bits than the BF for CUBF does, without respect to the
value of s. Such results again demonstrate that compres-
sion is indeed efficient in reducing transmission size of
BF in the case of ABF.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of received BFs

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

ABF
CUBF

Fig. 7. fCUBF and fABF are functions of the number of received BFs, where
fBF ¼ 0:001; m=n ¼ log0:61850:001, and k ¼ ðm=nÞ ln 2.

2 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
x 10 -4

The number of received BFs

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

ABF
CUBF

Fig. 8. The false positive probability of CUBF and ABF as functions of the
number of BFs, where r ¼ 0:001; n ¼ 30, s ¼ 100, and the parameters m
and k are optimized by Formulas (4)–(7).

0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

The value of 

Th
e 

fil
te

r s
iz

e

Compressed BF for ABF
BF for CUBF
Traditional BF

Fig. 9. The sizes of traditional BF, BF for CUBF, and compressed BF for ABF
as functions of r, where s ¼ 100 and n ¼ 30.

D. Guo et al. / Computer Networks 54 (2010) 165–174 171



Author's personal copy

In summary, the compressed BF for ABF and the BF for
CUBF consume more bits than the traditional BF. The low
false positive probability of CUBF or ABF, however, out-
weighs the high storage cost since the extra bits can be
accommodated by most applications. On the other hand,
ABF outperforms CUBF in terms of false positive probabil-
ity, as shown in Fig. 8, and the delay of each routing deci-
sion. Thus, ABF is more suitable to the data-centric routing
schemes in network applications, despite that it incurs a
bit higher storage cost.

5.4. False positive probability in practice

The hash functions are the key elements that influence
the value of fBF; f CUBF and fABF. Ideally, BFs are assumed to
be realized with hash functions that can map each item
in the unknown universe to a random number over the
range f1; . . . ;mg uniformly. In practice, however, such an
assumption is too strict to realize. As a result, it is extre-
mely difficult, if not impossible, to implement a CUBF or
an ABF which achieves the theoretical results exactly men-
tioned in Formulas (2) and (3). Thus it is necessary to
examine fCUBF and fABF from a practical aspect, under the
scenarios of both the traditional BF and the receiver-ori-
ented design of BF.

As there are no benchmark data sets in the field of BF,
our experiments do not seek particular sets but simply
use a data set from the DBLP as the data stored on the net-
working nodes. We use the distinct author names to ini-
tialize a data set Y with n ¼ 30 items for each peer.
Further, we initialize a common data set Z to be used by
the tests of false positive judgments at any peer, where
Y \ Z ¼ ; and the cardinality of Z is 10 times larger than
that of Y. In each experiment, we sample 100 peers ran-
domly, and let each sampled peer execute a test of false
positives for each routing entry after receiving s BFs
through each corresponding link. We evaluate fCUBF and
fABF from the theoretical and experimental aspects under
two scenarios.

Figs. 12 and 13 plot the evaluation results of fCUBF and
fABF under the first scenario in which each BF is designed
by using the traditional approach. In Fig. 12, the two curves
follow a similar trend as the value of s increases continu-
ously from 1 to 50. Although the experimental results do
not exactly equal to the theoretical results, the difference
between them is small, without respect to the value of s.
Such a result confirms the correctness of Formula (2). On
the other hand, the two curves in Fig. 13 present similar

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100

The value of 

R
at

io
 o

f f
ilt

er
 s

iz
e 

to
 tr

ad
iti

on
al

 B
F 

si
ze

BF for ABF
Compressed BF for ABF
BF for CUBF

Fig. 10. The ratio of filter size to the traditional BF size as function of r,
where s ¼ 100 and n ¼ 30.

2 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,000
1

2

3

4

5

6

7

8

The value of s

R
at

io
 o

f f
ilt

er
 s

iz
e 

to
 tr

ad
iti

on
al

 B
F 

si
ze

Compressed BF for ABF
BF for CUBF

Fig. 11. The ratio of filter size to the traditional BF size as functions of s,
where r ¼ 0:001 and n ¼ 30.

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

The value of s

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Experimental results
Theoretical results

Fig. 12. The theoretical and experimental values of fCUBF as functions of
the number of BFs. For each single BF, the false positive probability is
0.001, m=n ¼ log0:61850:001, and k ¼ ðm=nÞ ln 2.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The value of s

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Experimental results
Theoretical results

Fig. 13. The theoretical and experimental values of fABF as functions of the
number of BFs. For each single BF, the false positive probability is 0.001,
m=n ¼ log0:61850:001, and k ¼ ðm=nÞ ln 2.

172 D. Guo et al. / Computer Networks 54 (2010) 165–174



Author's personal copy

trend and match well as the value of s increases continu-
ously from 1 to 25. Such a result further confirms the cor-
rectness of Formula (3).

Figs. 14 and 15 plot the evaluation results of fCUBF and
fABF under the second scenario in which the receiver-ori-
ented design of BF is adopted. The two curves in Fig. 14
do not match completely, however, the difference is very
small when s ranges from 1 to 50. The two curves in
Fig. 15 match well, without respect to the value of
1 6 s 6 100. The evaluation results demonstrate that the
optimizations of parameters k and m, as shown by Formu-
las (4)–(7), are correct and effective.

6. Conclusion

BF-based data-centric routing has been widely used and
extensively studied in the field of network applications. In
this paper, we study the false positive problem in the tra-
ditional designs of BFs in data-centric routing schemes.
We disclose that previous data-centric routing schemes
using Bloom filters cannot facilitate in-network queries
correctly, due to the noise in BF-based routing entries.

Based on the evaluation results of previous designs,
namely CUBF and ABF, we propose the receiver-oriented
design of BFs, which guarantees that the probability of
making a wrong routing decision at any given node is suf-
ficiently low. Further, we enhance our proposal by signifi-
cantly decreasing the delay of each routing decision in the
case of CUBF, and reducing the transmission size of each BF
in the case of ABF.

Following this work, we will extend it in several poten-
tial directions. First, we plan to evaluate the impact of the
topological properties, data distribution among the nodes,
and the popularity of queries on the receiver-oriented de-
signs of CUBF and ABF. Second, weak state routing using
decay BFs is another potential research direction [6]. Third,
we will study the impact of the topology mismatch prob-
lem [28–30] on this work.

Acknowledgments

This work is supported in part by NSF China under
Grants Nos. 60903206, 60903225, National Basic Research
Program of China (973 Program) under Grants Nos.
2009CB3020402, 61364, and National High Technology Re-
search and Development Program of China (863 Program)
under Grant No. 2008AA01Z216.

References

[1] A. Broder, M. Mitzenmacher, Network applications of bloom filters: a
survey, Internet Mathematics 1 (4) (2005) 485–509.

[2] J. Mullin, Optimal semijoins for distributed database systems, IEEE
Transactions on Software Engineering 16 (5) (1990) 558–560.

[3] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a scalable wide-
area web cache sharing protocol, IEEE/ACM Transactions on
Networking 8 (3) (2000) 281–293.

[4] J. Li, J. Taylor, L. Serban, M. Seltzer, Self-organization in peer-to-peer
system, in: Proceedings of the 10th ACM SIGOPS European
Workshop, Saint-Emilion, France, 2002.

[5] S. Rhea, J. Kubiatowicz, Probabilistic location and routing, in:
Proceedings of the IEEE INFOCOM, New York, USA, 2004, pp. 1248–
1257.

[6] A. Kumar, J. Xu, E. Zegura, Efficient and scalable query routing for
unstructured peer-to-peer networks, in: Proceedings of the IEEE
INFOCOM, Miami, FL, United States, 2005, pp. 1162–1173.

[7] F. Deng, D. Rafiei, Approximately detecting duplicates for streaming
data using stable bloom filters, in: Proceedings of the 25th ACM
SIGMOD, Chicago, Illinois, USA, 2006, pp. 25–36.

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, G. Varghese,
Beyond bloom filters: from approximate membership checks to
approximate state machines, in: Proceedings of the ACM SIGCOMM,
Pisa, Italy, 2006, pp. 315–326.

[9] K. Li, Z. Zhong, Fast statistical spam filter by approximate
classifications, in: Proceedings of the SIGMETRICS/Performance,
Saint Malo, France, 2006, pp. 347–358.

[10] M. Jimeno, K. Christensen, A. Roginsky, A power management proxy
with a new best-of-n bloom filter design to reduce false positives, in:
Proceedings of the 26th IEEE International Performance Computing
and Communications Conference (IPCCC), Louisiana, USA, 2007.

[11] F. Hao, M. Kodialam, T.V. Lakshman, Building high accuracy bloom
filters using partitioned hashing, in: Proceedings of the SIGMETRICS/
Performance, San Diego, CA, USA, 2007, pp. 277–287.

[12] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, The bloomier filter: an
efficient data structure for static support lookup tables, in:
Proceedings of the Fifth SODA, New Orleans, Louisiana, USA, 2004,
pp. 30–39.

[13] R.P. Laufer, P.B. Velloso, O.C.M.B. Duarte, Generalized bloom filters,
Tech. Rep. Research Report GTA-05-43, University of California, Los
Angeles (UCLA), September 2005.

[14] T. Hodes, S. Czerwinski, B. Zhao, An architecture for secure wide-area
service discovery, Wireless Networks 8 (2–3) (2002) 213–230.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10-4

The value of s

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Experimental results
Theoretical results

Fig. 14. The theoretical and experimental values of fCUBF as functions of
the number of BFs, where r ¼ 0:001, n ¼ 30; m and k are optimized by
Formulas (4)–(7).

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

x 10-3

The value of s

Th
e 

fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ilit
y

Experimental results
Theoretical results

Fig. 15. The theoretical and experimental values of fABF as functions of the
number of BFs, where r ¼ 0:001; n ¼ 30, and the parameters m and k are
optimized by Formulas (4)–(7).

D. Guo et al. / Computer Networks 54 (2010) 165–174 173



Author's personal copy

[15] P. Reynolds, A. Vahdat, Efficient peer-to-peer keyword searching, in:
Proceedings of the ACM International Middleware Conference, Rio
de Janeiro, Brazil, 2003, pp. 21–40.

[16] D. Bauer, P. Hurley, R. Pletka, M. Waldvogel, Bringing efficient
advanced queries to distributed hash tables, in: Proceedings of the
IEEE Conference on Local Computer Networks, Tampa, FL, United
States, 2004, pp. 6–14.

[17] P. Hebden, A.R. Pearce, Data-centric routing using bloom filters in
wireless sensor networks, in: Proceedings of the Fourth
International Conference on Intelligent Sensing and Information
Processing (ICISIP), Bangalore, India, 2006.

[18] P.-H. Hsiao, Geographical region summary service for geographical
routing, in: Proceedings of the Second ACM MobiHoc, Long Beach,
CA, USA, 2001, pp. 263–266.

[19] W.H. Yuen, H. Schulzrinne, Improving search efficiency using bloom
filters in partially connected ad hoc networks: a node-centric
analysis, Computer Communications 30 (16) (2007) 3000–3011.

[20] C.F. Chan, Mole: multi-hop object location in wireless mesh
networks, Ph.D. Thesis, Hong Kong University of Science and
Technology, August 2008.

[21] D. Guo, J. Wu, H. Chen, X. Luo, Theory and network applications of
dynamic bloom filters, in: Proceedings of the 25th IEEE INFOCOM,
Barcelona, Spain, 2006.

[22] M. Mitzenmacher, Compressed bloom filters, IEEE/ACM Transactions
on Networking 10 (5) (2002) 604–612.

[23] J. Lian, Y. Liu, K. Naik, L. Chen, Virtual surrounding face geocasting
with guaranteed message delivery for ad hoc and sensor networks,
IEEE/ACM Transactions on Networking 17 (1) (2009) 200–211.

[24] M. Li, Y. Liu, Underground coal mine monitoring with wireless
sensor networks, ACM Transactions on Sensor Networks 5 (2)
(2009).

[25] M. Li, Y. Liu, L. Chen, Non-threshold based event detection for 3d
environment monitoring in sensor networks, IEEE Transactions on
Knowledge and Data Engineering 20 (12) (2008) 1699–1711.

[26] Y.J. Chen, Y.B. Chen, On the signature tree construction and analysis,
IEEE Transactions on Knowledge and Data Engineering 18 (9) (2006)
1–18.

[27] W.W. Terpstra, J. Kangasharju, C. Leng, A.P. Buchmann, Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search, in:
Proceedings of the SIGCOMM, Kyoto, Japan, 2007.

[28] Y. Liu, A two-hop solution to solving topology mismatch, IEEE
Transactions on Parallel and Distributed Systems 19 (11) (2008)
1591–1600.

[29] Y. Liu, L. Xiao, L. Ni, Building a scalable bipartite p2p overlay
network, IEEE Transactions on Parallel and Distributed Systems 18
(9) (2007) 1296–1306.

[30] Y. Liu, L. Xiao, X. Liu, L. Ni, X. Zhang, Location awareness in
unstructured peer-to-peer systems, IEEE Transactions on Parallel
and Distributed Systems 16 (2) (2005) 163–174.

Deke Guo received the BE degree in industry
engineering from Beijing University of Aero-
nautic and Astronautic, Beijing, China, in
2001, and the PhD degree in management
science and engineering from National Uni-
versity of Defense Technology, Changsha,
China, in 2008. He was a visiting scholar in the
Department of Computer Science and Engi-
neering, Hong Kong University of Science and
Technology from January 2007 to January
2009. Currently, he is an assistant professor of
Information System and Management,

National University of Defense Technology, Changsha, China. His current
interests include peer-to-peer computing, pervasive computing, and
wireless multi-hop networks. He is a member of the ACM and the IEEE.

Yuan He received his BE degree in Depart-
ment of Computer Science and Technology
from University of Science and Technology of
China in 2003, and his ME degree in Institute
of Software, Chinese Academy of Sciences, in
2006. He is now a PhD student in the
Department of Computer Science and Engi-
neering at Hong Kong University of Science
and Technology, supervised by Dr. Yunhao
Liu. His research interests include peer-to-
peer computing, sensor networks, and perva-
sive computing. He is a student member of

the IEEE and the IEEE Computer Society.

Panlong Yang received his BS degree, MS
degree, and PhD degree in communication
and information system from Nanjing Insti-
tute of Communication Engineering, China, in
1999, 2002, and 2005, respectively. During
November 2006 to March 2009, he was a
postdoc fellow in the Department of Com-
puter Science, Nanjing University. He is now
an associate professor in the Nanjing Institute
of Communication Engineering. His research
interests include wireless mesh networks,
wireless sensor networks and cognitive radio

networks. He is a member of the IEEE Computer Society and ACM
SIGMOBILE Society.

174 D. Guo et al. / Computer Networks 54 (2010) 165–174




