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Abstract

 
Recent advances in the application field 

increasingly demand the use of wireless camera sensor 
networks (WCSNs), for which localization is a crucial 
task to enable various location-based services. Most of 
the existing localization approaches for WCSNs are 
essentially interactive, i.e. require the interaction 
among the nodes throughout the localization process. 
As a result, they are costly to realize in practice, 
vulnerable to sniffer attacks, inefficient in energy 
consumption and computation. In this paper we 
propose LISTEN, a non-interactive localization 
approach. Using LISTEN, every camera sensor node 
only needs to silently listen to the beacon signals from 
a mobile beacon node and capture a few images until 
determining its own location. We design the movement 
trajectory of the mobile beacon node, which 
guarantees to locate all the nodes successfully. We 
have implemented LISTEN and evaluated it through 
extensive experiments. The experimental results 
demonstrate that it is accurate, efficient, and suitable 
for WCSNs that consist of low-end camera sensors.  
 
1. Introduction 
 

Wireless sensor networks (WSNs) have spread their 
uses across many different application fields in the past 
few years. More recently, the availability of low-cost 
hardware such as CMOS cameras and flash memory 
has fostered the development of wireless camera 
sensor networks (WCSNs) [1], which provide 
unprecedented advantages in a wide variety of 
applications [2, 3], such as environmental surveillance, 
safety guard, traffic management, battlefield, and 
person locator services. 

Localization is a crucial issue in WCSNs, which 
involves determining the locations and orientations of 
camera sensor nodes. For many location-based services 
in WCSNs, their design correctness and effectivity are 

highly sensitive to the location accuracy of sensor 
nodes. Thus localization in WCSNs demands very high 
accuracy. Previous localization approaches for 
conventional WSNs are not applicable for WCSNs.  

Many WCSN localization approaches have been 
proposed. We find they are all essentially interactive. 
In other words, the localization process largely relies 
on interactions among nodes to be located. Those 
approaches have the following drawbacks.  

First, most existing approaches are hard to realize in 
practice. Some of them require expensive hardware, 
e.g. a robot or mobile objects with featured 
appearances [4, 5]. Some of them have ideal 
assumptions. The work in [6, 7] assume neighboring 
nodes always have overlapping FOVs. But practical 
deployments might be sparse. Nodes’ FOVs do not 
necessarily overlap. Other approaches demand 
complex image processing [8], which are too resource-
consuming to be applicable on low-end sensor nodes.  

Second, interactive localization is vulnerable to 
malicious behavior such as sniffer attack [9]. In the 
mobile-assisted localization scenarios, the information 
of locations where the mobile object receives 
controlling signals from the camera sensors actually 
implies the FOVs (Field Of View) of the cameras. 
When a malicious sniffer masquerades as a normal 
mobile object and sniffs in the network, it is able to 
capture the information of the monitored area of a 
whole WCSN. Note that in many security and military 
applications, the locations of camera sensor nodes and 
their monitored FOVs are highly confidential 
information. Leakage of such information could lead to 
loss of property and even threats to human safety. 

Last but not least, most interactive approaches 
require every node to capture many images in order to 
locate itself. Note that the power consumption of 
image sensing is much higher than that of scalar 
sensing (e.g. to sense temperature or humidity) [10]. 
Interactive localization thus inevitably consumes 
excessive energy, reducing the lifespan of a WCSN. 
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(a) (b) (c) 

Figure 1. (a) FOV of S(x, y, z) based on the pinhole model. vi is the orientation vector of S; f is the 
focal length; � is the angle of view. (b) The 2D pinhole model. h is the depth of view; D is the 

image plane. (c) Comparison betewen the real (transparent) and estimated (blue) FOVs.

Our work is motivated by the need of location 
information of camera sensors in GreenOrbs [11]. 
GreenOrbs is a large-scale sensor network system that 
supports a wide variety of applications [12]. Camera 
sensors are deployed in GreenOrbs to enable fire 
detection and rescue in the wild forest. It is a 
challenging task for GreenOrbs to accurately locate the 
camera sensors. GPS devices fail to work under the 
dense tree canopy. It is also too expensive to equip 
GPS with every sensor node. Besides, conventional 
localization approaches for WSNs yield unsatisfactory 
results in the complex forestry environments, due to 
the signal irregularity and environmental dynamics. 

To address the above issues, in this paper we 
propose LISTEN, a non-interactive localization 
approach for WCSNs. LISTEN employs a mobile 
beacon node with very simple appearance. The whole 
localization process does not require any interactions 
among the nodes. When the mobile beacon node 
traverses the deployment area, every node only needs 
to silently listen to the beacon signals and capture a 
few images until successfully locating itself. Our main 
contributions are summarized as follows. 

First, we propose the non-interactive light-weight 
localization approach, LISTEN. To locate itself, every 
node needs only a few times of image sensing and 
light-weight image processing. LISTEN has no 
complicated requirements on hardware or specific 
assumptions on the network deployments. 

Second, we design the trajectory of the mobile 
beacon node, which guarantees successful localization 
of all the nodes. A node to be located only needs to 
receive beacon messages but sends nothing, thus 
avoiding leakage of its location information. 

Third, we have implemented LISTEN on the 
camera sensor nodes produced by ourselves. The 
experimental results demonstrate that LISTEN 
outperforms other approaches with high accuracy and 

consistent performance, using only commercial off-
the-shelf devices. 

The remainder of this paper is organized as follows. 
Section 2 briefly introduces the background of 
localization in WCSNs and discusses the related work. 
Section 3 elaborates on the design of LISTEN, 
followed by the proofs of correctness in Section 4. 
Section 5 presents the implementation and the 
experimental results. We conclude in Section 6. 

 
2. Background and Related Work 
 
2.1 Localization in WCSNs 

 
WCSNs differ from conventional WSNs with some 

distinct characteristics. Generally, multimedia data 
occupy much more memory storage on the sensor 
nodes. The available network bandwidth in a WCSN, 
however, is rather limited. Real-time data collection is 
already a challenging issue in conventional WSNs [13, 
14], not to mention the data collection in WCSNs. 
Besides, the power consumption of sensing once on a 
camera sensor (i.e. capture an image) is much higher 
than that on a scalar sensor, such as thermometer and 
manometer. Such facts necessitate innovative designs 
of localization, sensing control and coordination, data 
collection, routing, and query processing techniques [2, 
3, 15-18]. 

Sensing model. Many existing works in 
conventional WSNs assume disk-based sensing [19], 
while WCSNs employ the directional sensing model. 
The field of view (FOV) of a camera sensor is usually 
based on the pinhole model and shaped as a cone in 3D 
space or a sector in 2D plane, as shown in Figures 1(a) 
and 1(b) respectively. The FOV of a camera sensor is 
determined by the camera’s extrinsic parameters 
(namely location and orientation) and intrinsic 
parameters (including focal length, image format, and 
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principal point, etc.). Generally the intrinsic parameters 
are fixed for the camera sensors.  

Localization of a camera sensor refers to 
determining its location and orientation. In Figure 1(a), 
locating node S means determining its coordinates (x, y, 
z) and unit orientation vector vi. To function effectively, 
camera sensors demand very accurate localization. 
Figure 1(c) shows an illustrative example in the 2D 
plane. The tiny estimation errors of the location (d) and 
the orientation (�) can result in a significant estimation 
error of the FOV. Specifically in Figure 1(c), less than 
80% of the real FOV is covered by the estimated one. 
The relative error is over 20%.  

 
2.2. Related Work
 

As far as we know, conventional localization 
approaches in WSNs yield errors of one meter at least 
[20-22], which is unacceptable for localization in 
WCSNs. GPS-based solutions are too costly and 
mainly function in outdoor environments. Range-based 
approaches like TOA, TODA, and AOA provide better 
accuracy but require extra hardware support [23]. 

As we mentioned in Section 1, the existing 
approaches of localization in WCSNs are all 
interactive, which are classified into two main 
categories: collaboration-based and mobile-assisted. 
The collaboration-based approaches borrow the idea 
from the field of computer vision [8, 24]. Nodes locate 
themselves by collaboratively interpreting the common 
visual information in their overlapping FOVs. Mobile-
assisted approaches employ mobile objects (robots or 
beacon nodes) to assist the localization process. It is 
assumed the mobile objects always know their own 
coordinates, have distinctive appearance, and can be 
controlled by other nodes via wireless controlling 
signals.  

D. Devarajan et al. [8] address the issue of 
calibrating distributed cameras. Each node 
independently calibrates itself based on information 
shared by the nodes adjacent to it in the vision graph. 
Nodes with overlapping FOVs collaboratively interpret 
the common view among themselves. It does not 
assume any single node knows the global 
configuration of the entire network. As a result of 
calibration, each node has an estimate of its own 
location and orientation.  

Similar with the above scheme, A. B.-Sweeney et al. 
[6] propose another collaboration-based approach. 
They assume a WSN includes camera sensors and a 
number of normal sensor nodes. The normal sensor 
nodes identify themselves to camera sensors using 
modulated LED emissions. Pairs of camera sensors 
exchange information about the normal nodes 

observed in their FOVs to compute their relative 
rotation and translation matrices. H. Lee et al. [7] 
propose to trigger simultaneous image sensing by 
different camera sensors to capture a passing target. A 
small number of such joint observations may help to 
construct a relative coordinate system among those 
camera sensors. 

The above schemes have apparent limitations in the 
context of WCSNs. For example the scheme in [8] 
requires the nodes to form local calibration clusters, 
each of which has a minimum of three nodes with 
eight common scene points. Schemes in [6] and [7] 
require camera sensors to identify common objects in 
their FOVs. The practical WCSNs, however, are very 
unlikely to satisfy such requirements. Camera sensors 
are often ad-hoc and sparsely deployed, without dense 
clusters or overlapping FOVs among them. As a result, 
many nodes still cannot locate themselves using these 
schemes. The process to extract featured points or 
common objects from the images is also too costly for 
low-end camera sensors motes. 

X. Liu et al. [25] propose a self-calibration protocol 
that does not guarantee successful localization for all 
the nodes in a WCSN. In [4] the authors propose a 
scheme of robot-assisted localization. In their targeted 
scenarios, camera sensors are deployed on the same 
plane (e.g. the ceiling of a room), which is parallel to 
the robot’s motion plane (e.g. the floor). Their solution 
only addresses localization in the 2D plane. The robot 
knows its own coordinates and acts as a reference 
object in the captured images. The sensor network 
topology is modeled as a forest. Camera sensors in the 
same tree collaborate with each other to control the 
patrolling routes of the robots. In this way, every node 
may obtain sufficient observations to localize itself. 
When a tree of sensors is localized, the root node of 
that tree initiates a complicated process to instruct the 
robot to discover other adjacent trees. Both the 
localization and discovery processes incur large 
amount of communication cost on the sensors and the 
robot. The total energy consumption is easily affected 
by the node densities and network topologies. When 
the camera sensors are sparsely deployed and the entire 
network consists of many weakly-connected 
components, energy drains even faster because the 
discovery processes are triggered frequently. 

 
3. Design of LISTEN 
 
3.1 Assumptions 
 

First we assume the intrinsic parameters of all the 
camera sensors are identical, fixed, and known before-  
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(a) (b) 

Figure 2. Localization of node S in the 2D 
plane. (a) The beacon node and its images on 

the image plane. (b) Locate S as the 
intersecting point of two arcs 

hand, because we generally use the same type of 
camera sensors in a WCSN.  

Second, we assume the communication range of the 
sensor node is longer than the depth of the camera’s 
FOV. This is usually true in practice. For example, the 
communication range of CC2420 radio using the 
maximum transmission power is 100 meters in an 
outdoor environment [10], while a distance of 100 
meters is in general longer that what needs to be 
monitored by a single camera sensor. Therefore, a 
beacon node and a camera sensor can communicate 
with each other as long as the former is in the FOV of 
the latter. 

As for the mobile beacon used in LISTEN, it is a 
common sensor mote enabled with mobility. It always 
knows its own coordinates, as many existing proposals 
assume [4, 20]. A featured tag (e.g. LED or a piece of 
colored paper) is attached to the beacon node, so that 
the beacon node is easily identified by camera sensors 
and differentiated from the surroundings. 

 
3.2 2D Localization 
 

A mobile beacon node is employed to assist 
localization, which traverses the deployment area of a 
WCSN, passing a set of beacon positions. At each 
beacon position, it broadcasts a beacon signal that 
includes its current coordinates. On receiving the 
signal, a camera sensor captures an image and then 
tries to extract the featured tag of the beacon node 
from the image. We name the image of the featured tag 
as beacon image. The coordinates of beacon images 
are then used to calculate the angular distances 
between pairs of beacon positions, e.g. PSQ� in 
Figure 2(a). In the next subsections, we elaborate on 
how to utilize such angular information to locate the 
camera sensors. 

 
3.2.1 The Localization Scheme 
 

First we introduce the algorithm of LISTEN when 
all the nodes including the mobile beacon are in the 
same 2D plane. The orientation vectors of the cameras 
are in the plane too. 

As shown in Figure 2, S is a camera sensor. 
Abusing notations, we use S(x0, y0) to denote the 
camera pinhole. O is the projection of S on the image 
plane, i.e. the image center. Suppose points P(x1, y1) 
and Q(x2, y2) are two beacon positions where the 
beacon node broadcasts beacon signals. P’ and Q’ are 
the corresponding beacon images. PSQ� is called the 
angular distance between beacon positions P and Q. 
We have 

1 1

1 1

' ' ' '
| ' | | ' |tan ( ) tan ( )
| | | |
| ' | | ' |tan ( ) tan ( )

QSP Q SP Q SO OSP
OQ OP
OS OS
OQ OP

f f

�

� �

� �

� � � � � � � ��

� �

� �
(1) 

Note that f is known according to the intrinsic 
parameters. |OQ’| and |OP’| can be measured from the 
captured image. �� can be determined. According to 
Theorem 1 (refer to Section 4), S lies on arc�QP  whose 
circumferential angle is �� . Thus we have 

| | | |
iSP SQe

SP SQ
� �

��� ����
 (2) 

Similarly, by introducing a new beacon position R, 
we draw another arc�PR whose circumferential angle 
is �� , as shown in Figure 2(b). Node S lies on�PR .  

| | | |
iSR SPe

SR SP
� �

��� ���
 (3) 

Thus S is located as an intersecting point (the other 
is P) of arcs�QP and�PR . Solving Formulas (2) and (3) 
generally yields the unique coordinates of S.  

In two special cases, however, the coordinates of S 
cannot be uniquely determined: (1) P, Q, R, and S are 
collinear; (2) P, Q, R, and S are concyclic. Any point 
on their common line (or arc) is an eligible solution. In 
Section 3.2.2, we present the design of the mobile 
beacon trajectory to guarantee unique localization. 

Now we continue to calculate the orientation of 
node S, which is denoted by the direction of 
vector OS

����
in Figure 2(a).  Recall that f and the 

coordinates of S and P are already known, while |OP’| 
can be measured from the captured image. Thus the 
unit orientation vector of S is calculated as follows. 

sin 'i P SOOS SP e
OS SP

��
���� ���

where 1 | ' |' tan ( )OPP SO
f

�� �     (4) 
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Figure 3. The mobile beacon trajectory 

 
3.2.2 The Mobile Beacon Trajectory 
 

According to the above scheme of LISTEN, we 
obtain the sufficient and necessary condition for a node 
to be uniquely located in the 2D plane: The node has 
captured three beacon images and the three beacon 
positions are not collinear or concyclic with it.  

Recall that the localization process using LISTEN is 
completely non-interactive. The mobile beacon node 
doesn’t have any prior or posterior knowledge of the 
other nodes’ FOVs. When traversing the deployment 
area, the beacon node doesn’t know whether a beacon 
position is captured by any other node. Hence, it is 
non-trivial to satisfy the above sufficient and necessary 
condition.  

This subsection presents the design of the mobile 
beacon trajectory. As long as the mobile beacon 
broadcasts beacon signals at beacon positions along 
the designed trajectory, it is guaranteed that every node 
in the WCSN, no matter where it is, can be uniquely 
located. 

We assume all the nodes as well as their FOVs are 
included in a rectangle area without any obstacle. 
Recall that all camera sensors are assumed to have 
identical intrinsic parameters. We use h and � to 
denote the depth and opening angle of the FOV, 
respectively. Let r denote the radius of the inscribed 
circle of the cameras’ FOV. We have  

(1 1/ sin )
2

hr
�

�
�

 (5) 

 
Figure 4. Calculation of angular distance 

between 3D beacon positions 
 
Figure 3 shows the beacon trajectory in our design. 

Then the deployment area is partitioned into numerous 
equilateral triangles, whose side lengths are all equal to 
r. We select the vertices of the triangles as beacon 
positions. The beacon node starts from the upper left 
corner point, moves along the trajectory, and 
broadcasts its coordinates at those beacon positions.  

Using such a trajectory, every node is able to 
capture at least three beacon images, which correspond 
to three beacon positions on the plane that are neither 
collinear nor concyclic with the node itself. Theorem 3 
in Section 4 presents the proof. 
 
3.3 Extension of LISTEN to 3D Localization 
 

This subsection presents the design of LISTEN in 
3D space. We first explain the calculation of angular 
distances between beacon positions, followed by the 
discussion on the uniqueness of localization. We then 
propose a selection strategy of beacon positions that 
guarantees to locate an entire network of camera 
sensors in 3D space. 

 
3.3.1 Calculation of angular distance 

 
The angular distances between beacon positions in 

3D space can be calculated similarly as that in 2D 
plane. Figure 4 shows an example. P and Q are two 
beacon positions. P’ and Q’ are the corresponding 
beacon images on the image plane of camera sensor S. 
The angular distance between P and Q, i.e. 

PSQ� = ' 'P SQ� . We have 
2 2 2 2 2

2 2 2 2 2

2 2

| ' | | | | ' | | ' |
| ' | | | | ' | | ' |
| ' ' | | ' | | ' | 2 | ' || ' | cos ' '

SQ SO OQ f OQ
SP SO OP f OP
P Q SQ SP SQ SP P SQ

	 � � � �

 � � � ��

 � � � ��

(6) 

Since |OQ’| and |OP’| can be measured from the 
captured image, solving Formula (6) yields ' 'P SQ� . 
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(a) (b) 

Figure 5. (a) Multiple solutions when using 
only three beacon positions; (b) The unique 
solution when using four beacon positions. 

3.3.2 Uniqueness of 3D localization 
 

Suppose PSQ� = �� , then S should be contained 
in a rotating surface in 3D space. This surface satisfies 
the following condition: Using any node K on this 
surface as reference, the angular distance between P 
and Q (namely PKQ� ) is equal to �� . 

Now we examine whether three beacon positions 
are sufficient to uniquely locate a node. Suppose P, Q, 
R are three different beacon positions. According to 
the result in the above paragraph, we have three 
different rotating surfaces. Any intersecting point of 
the three surfaces is a candidate position of sensor S.  

As shown in Figure 5(a), using only three beacon 
positions generally yield more than one solution to the 
coordinates of S, namely S, S1, S2, S3, and their 
counterpoints across the plane PQR (For clear display, 
we do not show all of them). For i=1, 2, 
3, , ,i i iPSQ PS Q PSR PS R RSQ RS Q� � � � � � � � � . 
In other words, three beacon positions in 3D space are 
insufficient to uniquely locate a sensor node. 

At least four beacon positions are required in 3D 
localization. For example in Figure 5(b), there is an 
additional beacon position T on line PR. Based on the 
angular distances among P, T, and R, one can locate 
node S on a circle (denoted by C). Line PR is 
perpendicular to the plane of C, and the center of C is 
on line PR. 

On the other hand, S is located on another two 
rotating surfaces. One of them has PQ as its central 
axis. The other has QR as its central axis. Obviously, at 
least one of the two rotating surfaces does not contain 
circle C. There must be two intersecting points 
between C and the other two rotating surfaces. Let 
point S and its counterpoint S’ denote the intersecting 
points. Now the number of candidate locations is 
reduced to two. 

We further introduce a right-hand rule to filter out 
point S’. Specifically, the node decides a counter- 
clockwise sequence of the beacon positions P, T, and R,  

r

l

A

K

BS
 

Figure 6. Beacon positions in 3D space 
simply based on the node’s view of the beacon images. 
In Figure 5(b), the sequence is Q�R�P. When fitting 
a right hand with the sequence, the pollex points to the 
actual position of the camera sensor. 

To sum up, in 3D space, generally a camera sensor 
S can be uniquely located by using four different 
beacon positions together with the right-hand rule. 
Meanwhile, the orientation of S can be calculated 
similarly as the case of 2D localization. We skip this 
part due to the limit of paper length. 
 
3.3.3 Selection of beacon positions 
 

According to the result in Section 3.3.2, we can use 
four beacon positions to uniquely locate a node as long 
as the four positions satisfy the following condition: 
exactly three of them are collinear. Such a condition 
serves as general guidance for selecting beacon 
positions in 3D localization. 

Note that selection of beacon positions actually 
depends on the specific conditions of deployment area. 
Here we just propose an optional selection strategy. 

We assume all the camera sensors and their FOVs 
are included in a cubic deployment area without any 
obstacle. Recall that the FOV of a camera sensor in the 
3D space is a shaped as a cone. As shown in Figure 6, 
let r denote the radius of the inscribed sphere of node 
S’s FOV. We use h and � to denote the depth and 
opening angle of the FOV, respectively. In this case, 
Equation (5) still holds. 

Further, the deployment area is partitioned with 
cubes whose side lengths are all equal to l, such that 
the diagonal length of a cube is r. We have 

3(1 1/ sin )
2

hl
�

�
�

 (7) 

The vertices and the diagonal joins of the cubes are 
selected as beacon positions. It is easy to see that the 
FOV of an arbitrary camera sensor covers at least nine 
beacon positions, namely the eight vertices and the 
diagonal join of a cube. Because every pair of diagonal 
vertices (e.g. A and B in Figure 6) and the diagonal 
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Figure 7. Uniqueness of localization 

join (K in Figure 6) are collinear, there exist four 
covered beacon positions while exactly three of them 
are collinear. Using the beacon images corresponding 
to the four beacon positions, camera sensor S can 
uniquely locate itself. 

 
4. Correctness 
 

Theorem 1: (The Theorem of Circumferential 
Angle) P and Q as two points on the plane and an 
angle ��  ( 0 � � � � ). Then the set of all the points 
S on the plane, which satisfies PSQ� = �� , consists 
of two symmetric arcs where P and Q are the 
endpoints. 

Theorem 1 is a classical geometric theorem. We 
neglect the proof here. � 

Theorem 2: Let P, Q, and R be the three beacon 
positions covered by the FOV of a camera sensor S. 
When P, Q, R, and S are not collinear or concyclic, the 
coordinates of S can be uniquely determined by using 
LISTEN in the 2D plane. 

Proof: Suppose there is a point S’ other than S 
which satisfies all the angle constraints. As the 
precondition of the proposition says, P, Q, R, and S are 
not collinear. Hence according to the scheme of 
LISTEN in 2D plane, S’, S, P, and Q are concyclic 
because 'PSQ PS Q� � � . Likewise, S’, S, P, and R are 
concyclic. Note that two different circles have at most 
two intersecting points, so S’, S, P, Q, and R are 
concyclic. Obviously that is contradicted with the 
precondition “P, Q, R, and S are not concyclic.”  

Theorem 2 is proved. � 
Theorem 3: Using the beacon trajectory proposed 

in Section 3.2.2, every camera sensor in the 2D plane 
can be uniquely located. 

Proof: According to Theorem 2, proof of Theorem 
3 is to prove a node’s FOV covers three different 
beacon positions that are not collinear or concyclic 
with the node itself. 

Figure 7 shows a camera sensor S and a part of the 
deployment area with selected beacon positions (i.e. P, 
Q, R, M, and N). Recall that the distance between 
adjacent beacon positions is r, which is equal to the  

  
Figure 8. Camera sensor in implementation 

radius of the inscribed circle of a FOV (red circle). 
Therefore, no matter where the center of the inscribed 
circle is, the circle covers an equilateral triangle whose 
vertices are three beacon positions. Without loss of 
generality, we suppose the covered triangle is �PQR. 

First, P, Q, and R are obviously not collinear, so P, 
Q, R, and S are not collinear. Second, we draw the 
circumcircle of �PQR (blue circle). As long as S is not 
on the circumcircle, P, Q, R, and S are not concyclic. 
Hence P, Q, and R satisfy the constraints stated in 
Theorem 2 and S can be uniquely located. 

Otherwise, S is on the circumcircle of �PQR. 
Without loss of generality, we suppose S is at the 
position shown in Figure 7. 120RSQ� � � . Clearly MR 
is tangent to the circumcircle of �PQR. Therefore, the 
FOV of S covers M if |SM|�h. From Equation (5), we 
have r<h/2. According to the triangular inequality, 
|SM|<|SR|+|MR|<|QR|+|MR|=2r<h. Thus we prove M is 
covered by the FOV of S. 60RSP� � � , so P, M, R, and 
S are not concyclic. Hence the three beacon positions P, 
M, and R satisfy the condition stated in Theorem 2 and 
S can be uniquely located. 

To sum up, in all instances S can be uniquely 
located. Theorem 3 is proved. � 

As for 3D localization, we have illuminated in 
Section 3.3.3 that a network of camera sensors can be 
uniquely located by using the selected beacon 
positions. We omit the detailed proof here. 

 
5. Implementation and Experiments 
 

We have implemented LISTEN on our own-
produced camera sensor motes. The hardware design 
conforms to the paradigm of CMUcam3 [3]. Every 
camera sensor is connected with a TelosB mote [10], 
as shown in Figure 8. For all the cameras, the depth 
and the opening angle of FOV are configured as 6 
meters and 52º, respectively. The mobile beacon node 
(a TelosB mote) is mounted on top of a bracket. The 
red (or green) LED of the mote is kept on, which 
serves as the featured tag of the mobile beacon. We 
use three such beacon nodes simultaneously to speed 
up the localization process. As we observe, LISTEN
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Table 1. Summary of the Experimental Results 
Location Error 

(mm) 
Orientation 

Error (º) 
Relative FOV

Error (%)  
Avg. S.D. Avg. S.D. Avg. S.D.

PI 1,173 301.2 N/A N/A N/A N/A
LISTEN 

(classroom) 28.82 12.08 0.42 0.18 1.00 0.45

LISTEN 
(corridor) 38.73 20.03 0.62 0.50 1.31 0.77

LISTEN 
(webcam) 23.31 7.57 0.45 0.13 N/A N/A

has satisfactory performance in both 2D and 3D cases. 
In order to compare it with the conventional 
localization approaches that work in the 2D case, only 
results in the 2D case are shown here. 

 
5.1 Comparisons 
 

The first experiment compares LISTEN with PI 
[20], a state-of-arts mobile-assisted approach for 
localization in conventional WSNs. Instead of using 
the absolute values of RSSI, PI utilizes only the 
comparison relationship of the measured RSSI values 
between the mobile beacon and the other nodes to do 
localization. The resulting accuracy of PI is better than 
most existing localization approaches, as demonstrated 
in [20]. 

We conduct the experiments in a 12m�12m 
classroom. 10 sensor nodes are randomly deployed and 
located using LISTEN and PI, respectively. The results 
in Table 1 demonstrate that LISTEN apparently 
outperforms PI with much lower location error and 
more consistent accuracy. Moreover, the accuracy of 
RSSI-based localization is sensitive to various factors, 
such as signal fading, multipath, interference, and 
environmental dynamics. Image-based localization 
using LISTEN performs stably against such factors. 

 
5.2 Evaluation in Different Environments 

 
In this group of experiments, we evaluate LISTEN 

in two different environments.  Other than the first 
deployment in the classroom, we further conduct 
another experiment with 12 nodes in a long corridor 
(6m�30m) in an office building. Due to the relatively 
long and narrow space in the corridor, the beacon 
positions used for locating a node are relatively far 
from the node. The resulting angular distances between 
beacon images are thus relatively small, which in turn 
results in larger relative errors. 

We measure the location error, orientation error, 
and relative FOV error (the percentage of the real FOV 
that is missing in the estimated FOV) for all the nodes. 
Figures 9 and 10 plot the comparison results.  
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(a) Classroom experiment (b) Corridor experiment 

Figure 9. Location and orientation errors in two experiments 
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Figure 10. Relative FOV errors in two experiments 
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We can see that results in the classroom are more 
accurate and consistent than those in the corridor 
(please note the difference in Y-axis scales). This is 
mainly due to the difference in the angular distances 
between the beacon images, as we mentioned in the 
first paragraph of Section 5.2. 

Moreover, the resulting averages of the relative 
FOV errors are only 1% and 1.31%, respectively. In 
other words, LISTEN is capable of supporting 
location-based services of WCSNs with very accurate 
localization. 

It is also interesting to see that nodes 5, 6, 7 in the 
classroom and nodes 3, 4 in the corridor are more 
accurately located than the other nodes. We then go 
through and compare the images captured by all the 
nodes. The finding is that the beacon images captured 
by those five nodes are all near to the center of the 
image. Such beacon images correspond to lower 
distortions than the beacon images captured by the 
other nodes, hence resulting in smaller location errors.  

The above finding indicates that using different 
subset of beacon images yields localization results with 
different accuracies. It may be feasible and beneficial 
to design a refining procedure with LISTEN, which 
intelligently selects the most appropriate subset of 
beacon images to achieve the best localization results. 
We will address this issue in our future work. 

 
5.3 Impact of Image Quality 
 

Figure 11 shows two pictures. The right one taken 
by a 300K-pixel webcam has obviously higher quality 
than the left one taken by our camera sensor. It could 
be a major concern that the low image quality of 
camera sensors might degrade the performance of 
localization using LISTEN. To further evaluate the 
impact of image quality on the localization accuracy of 
LISTEN, we have ported it to run over the webcam 
pictures. 

 

  
Figure 11. Images captured by  

camera sensor (left) and webcam (right) 
We deploy a webcam at exactly identical locations 

and orientations as those camera sensors in the 
classroom and corridor experiment. Figure 12 
compares the experimental results. Due to the page 
limit, we only present the detailed location and 
orientation errors in the classroom experiment, as 
shown in Figures 12(a) and 12(b). Interestingly, we 
find the accuracy of LISTEN is almost not affected by 
the image quality. The results on the webcam are only 
slightly better than those on the camera sensors. 

Now we briefly summarize the experiments. 
LISTEN realizes very accurate localization in WCSNs. 
Compared to a conventional RSSI-based approach, 
LISTEN performs apparently better and more stably 
under various environmental settings. Moreover, the 
performance of LISTEN is robust against the impact of 
image quality. Thus it is suitable to localization of low-
end camera sensors. 

 
6. Conclusion 
 

WCSNs present novel application fields of the 
WSN technology. Localization, although being well 
studied in the literature of WSNs, remains a 
challenging issue in WCSNs. Various approaches have 
been proposed but are all essentially interactive. Those 
approaches suffer vulnerability to malicious attacks, 
poor applicability, and excessive overhead.  

This paper proposes LISTEN, non-interactive 
localization for WCSNs. LISTEN is energy-efficient 
and easy to implement in practice. By employing a 
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Figure 12. Comparisons between the results on camera sensors and webcams 
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mobile beacon with simple appearance to assist 
localization, every node to be located only needs to 
passively listen to the beacon signals and does not send 
any packet throughout the whole localization process. 
By calculating the angular distances between beacon 
positions, a node needs as few as three times of image 
sensing to locate itself.  

In our future work, we will address the issue of 
location refining, as we mention in Section 5.2. We 
also plan to carry out large-scale implementation of 
LISTEN with our own-produced camera sensors in the 
GreenOrbs deployments. 
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