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Abstract-In spite of the remarkable efforts the community 
put to build the sensor systems, an essential question still remains 
unclear at the system level, motivating us to explore the answer 
from a point of real-world deployment view. Does the wireless 
sensor network really scale? We present findings from a large 
scale operating sensor network system, GreenOrbs, with up 
to 330 nodes deployed in the forest. We instrument such an 
operating network throughout the protocol stack and present 
observations across layers in the network. Based on our findings 
from the system measurement, we propose and make initial 
efforts to validate three conjectures that give potential guidelines 
for future designs of large scale sensor networks. (1) A small 
portion of nodes bottlenecks the entire network, and most of the 
existing network indicators may not accurately capture them. (2) 
The network dynamics mainly come from the inherent concur­
rency of network operations instead of environment changes. (3) 
The environment, although the dynamics are not as significant as 
we assumed, has an unpredictable impact on the sensor network. 
We suggest that an event-based routing structure can be trained 
optimal and thus better adapt to the wild environment when 
building a large scale sensor network. 

I. Introduction 

Recent advances in low-power wireless technologies have 
enabled us to make use of wireless sensor networks, a new 
class of networked systems. Researchers have envisioned a 
wide variety of applications, from environment monitoring [1], 
scientific observation [2], to emergency detection [3], field 
surveillance [4], structure monitoring [5], and etc. In those 
applications, hundreds or even thousands of sensor nodes 
are assumed to be deployed in the target field. Beside many 
algorithmic studies that focus on designing efficient schemes 
or protocols to coordinate the large scale sensor network, there 
are also systematic studies that make efforts in optimizing 
sensor network behaviors in practice, which are usually tested 
on lab-scale testbeds or small scale deployments. An essential 
question, however, remains unclear at the system level, mo­
tivating us to explore from a point of real world deployment 
VIew: 

Does the wireless sensor network really scale to contain 
hundreds or even thousands of nodes that cooperatively work 
without depleting the limited physical resources, just as it 
was expected? 

There have been several large-scale sensor network de­
ployments reported during the past years, including Vigil­
Net for field surveillance [4], Motelab that provides an 
indoor testbed [6], SensorScope for weather monitoring in 
the wild [7], and Trio which enables a large-scale solar­
powered sensor network [8]. Those deployments, however, are 

often highly optimized for specific application needs and not 
fully leveraged as platforms for consistently observing general 
network behaviors. 

In this work, we conduct a measurement study on 
GreenOrbs, which is a consistently operating sensor net-work 
system deployed for the aim of forest monitoring. With up to 
330 nodes deployed in the wild, GreenOrbs provides us an 
excellent platform for observing sensor network behaviors at 
scale. Figure 1 plots the real topology of the sensor network. 
The sink is deployed at the upper left corner. Each sensor 
node is depicted according to its 2-D geographical location. 
We plot all the communicational links through which data 
packets are delivered. Although such lined links together with 
the dotted nodes compose a network-wide topology which 
traditional algorithm or protocol designers used to play with, 
we highlight a subgraph within the network and exhibit that the 
concept of "topology" does vary according to the perspective 
we look at it. Figure l (a) exhibits a much denser topology if 
we take all reachable pairs of nodes into account. Figure l (b) 
exhibits the topology with which the network delivers data 
back. Figure l (c) exhibits a topology if we select all good 
links that have RSSI (Received Signal Strength Index) [9] 
beyond a threshold. Figure l (d) exhibits a topology if we select 
those good links with high LQI (Link Quality Indicator) [10] 
when data packets are transmitted. If we consider different 
conditions or calibrating criterion, there will be more different 
types of "topologies", and such "topologies" vary from time to 
time. Indeed, like many large-scale distributed systems have 
exhibited, in sensor networks, there grow numerous dynamic 
behaviors with the concurrent and interactive operations inside 
the system. Such dynamic behaviors can hardly be fully 
considered before the system is deployed in the field brimming 
of unpredictable and unexpected operating conditions. 

In this work, we conduct the measurement study on the 
operating sensor network system deployed in the wild, trying 
to summarize the critical factors that limit the system scale 
out of the dynamics on the surface. We instrument such an 
operating network throughout the protocol stack. We vary 
the system settings, e.g., the network scale, traffic generation, 
transmission power level, and test the system behaviors under 
a variety of conditions. 

We present findings across different layers that the system 
works on. At the physical layer, we present measurements 
on radio signal strength impacted by wild environment. At 
the link layer, we measure packet drop/reception, link quality, 
transmitting rate over the entire network and how they are 
affected by a variety of system settings. At upper layers, we 
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Fig. I: An overlook on the sensor network deployment and the real topology. (a) The topology of reachable links; (b) The topology of data 
delivery link chosen by the upper layer routing protocol; (c) The topology of good quality links with RSSI thresholding; (d) The topology 
of good quality links with LQI thresholding when transmitting data packets. 

present observations on routing dynamic, traffic distribution, 
end-to-end delivery, topological features, and etc. 

Our study reveals that traditional opinions on the "hot area" 
around sink and the instability of links may not be the major 
concern for large-scale sensor network systems. The physical 
resources in such networks may have been underestimated and 
severely underutilized. There is an urgent need to improve 
current methods in company with those emerging critical 
factors when the network scales. Our experimental results also 
suggest us several guidelines that we should carefully consider 
in designing future protocols for large-scale sensor networks. 
In particular, the designers should take special care of the phe­
nomena raised from the inherent contention and concurrency 
of numerous nodes when the sensor network scales, which 
might be underestimated in existing design concept continued 
from traditional Wi-LAN or MANET protocol design. 

The rest of the paper is organized as follows. In Section II, 
we describe related work in sensor network deployment and 
measurement experiences, as well as existing work towards 
making sensor networks scalable. In Section III, we introduce 
the background of GreenOrbs, some details of the system im-

plementation, and the measurement methodology. We present 
our major observations in Section IV. In Section V, we give a 
comprehensive discussion on how the network is bottlenecked 
and give guidelines in mitigating such effect. We conclude this 
work in Section VI. 

II. Related Work 

In this section we summarize the efforts of research commu­
nity in building large-scale sensor networks and corresponding 
measurement studies. 

A number of practical network deployments have been 
reported during the last decade [I], [2], [7], [11]. Although 
the findings from the above deployments are important, the 
measurements at this scale, usually tens of sensors, can hardly 
reveal some network behaviors, such as routing dynamics and 
topology evolution, which exist only in large-scale networks. 
Researchers have designed and developed indoor medium­
scale testbed such as MoteLab [6] and Kansei [12]. Those 
indoor testbeds, however, do not fully capture the nuances in 
realistic environments. 
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Deploying sensor networks at scale is important because 
each order of magnitude increase in network size ushers in a 
new set of unforeseen challenges. VigilNet [4] is designed 
to support long-term military surveillance using a sensor 
network consisting of 200 nodes. ExScal [13] is an attempt 
to deploy a sensor network at "extreme" scale. The system 
consists of about 1000 sensor nodes and 200 backbone nodes, 
covering 1300*300 square meters. Dutta et al. [8] report a 
network deployment "Trio" of 557 solar-powered motes for 
multi-target tracking. SenseScope [7], [14] is a real-world 
deployment that took place on a rock glacier, consisting of 
about 100 sensor nodes. 

Most of above mentioned systems are not clearly proper for 
network measurement due to the following two reasons. First, 
those systems are organized hierarchically. Such hierarchical 
architecture inherently alleviates the negative impact induced 
by large-scales, thus hardly reflecting the performance of 
general and homogeneous ad-hoc sensor networks. Second, 
no single system has integrated large-scale (e.g., hundreds of 
nodes) and long-lifetime (e.g., one year) into a cohesive whole. 
In other words, those deployments have achieved either scale 
or lifetime, but usually not both. 

In the context of wireless sensor networks, a number of em­
pirical studies present network measurement results in many 
aspects, with emphasis on understanding the complex and non­
ideal behavior of low power wireless communications. Link 
quality is one of the most important indicators for wireless 
communication and thus attracts many research efforts [15]­
[20]. Srinivasan et al. [9] conclude from measurements on 
MicaZ motes with CC2420 radios that RSSI is a good estimate 
of link quality. The authors in [21] study the transition region 
and quantify its influence. Studies such as [22], [23] emphasize 
the temporal performance dynamics of wireless links and 
provide important findings about such phenomenon. The study 
of beta-factor [24] presents a comprehensive study to quantify 
and characterize link burstiness. The authors in [25]- [28] 
investigate radio interference and point out the inaccuracy of 
range-based interference model [25]. 

The results presented in those empirical studies are basically 
obtained from single-purpose and short-lived testbeds of tens 
of sensors. In contrast, the measurements of GreenOrbs are 
fairly comprehensive, from low-level radio signal strength and 
link quality to high-level routing and data traffic issues. 

III. GreenOrbs Overview 

A. System and Applications 

GreenOrbs aims at all-year-round ecological surveillance 
in the forest, collecting various sensory data, such as tem­
perature, humidity, illumination, and content of carbon di­
oxide. The collected information can be utilized to support 
various forestry applications, detailed as follows. 

Canopy closure estimates. Canopy closure is defined as 
the percentage of ground area vertically shaded by overhead 
foliage. It is a widely-used significant forestry indicator but the 
traditional measurement techniques have either poor accuracy 
or prohibitive cost. Based on the readings of illuminance 
sensors and Monte Carlo Theory, GreenOrbs realizes accurate 
and efficient canopy closure estimates of vast forest. Using 
the similar method, another forestry indicator called Leaf 
Area Index can also be measured by GreenOrbs with sensors 
deployed in the three-dimensional space. 

�DalaFlow - - - - . Control Flow 

Fig. 2: The diagram of software modules. 

Research on biodiversity. The sensor readings of temper­
ature, humidity, illuminance, and carbon dioxide, precisely 
characterize the forest microclimate. Those data, which quan­
tify the biological activity and multispecies competition, can 
be utilized to support research on biodiversity. 

Carbon sequestration. To maximize the utility of forest 
carbon sequestration, the capacity of carbon sequestration of 
different tree species need to be accurately measured. This 
can be realized with carbon dioxide sensors in the three­
dimensional forest space. By comparing the sensor readings at 
different heights, the amount of carbon dioxide a tree canopy 
absorbs can be continuously monitored. 

Fire risk prediction. Using the sensor data in the forest, 
namely temperature and humidity, GreenOrbs continuously 
monitors the environmental, supporting fine-grained real-time 
fire risk prediction. 

GreenOrbs employs the TelosB mote with a MSP430 
processor and CC2420 transceiver. The manufactory cost of a 
GreenOrbs node is 50 US dollars. 

The software on the GreenOrbs nodes is developed on the 
basis of TinyOS 2.1. Figure 2 depicts the design diagram of 
the software modules. The system mainly carries bi-directional 
data streams. The mainstream is multi-hop data collection from 
the ordinary nodes to the sink. The Data Collector component 
based on CTP [29] is employed for this purpose. The rest 
transmissions are the configuration packets sent from the sink 
to the ordinary nodes. Hence Configurator component based 
on DRIP [30] is devised to achieve efficient data dissemina­
tions. Meanwhile, the FTSP protocol [31] plays the functions 
of network-wide synchronization, so as to enable the globally 
synchronized duty cycles. The Logger component is in charge 
of data access (read and write) to the measurement serial flash. 
The Status Viewer component merges and encapsulates the 
data from the sensors, network, and flash, according to the 
preconfigured message formats. Such encapsulated messages 
are transmitted via the serial communication port. 

The first GreenOrbs deployment was carried out in July 
2008. Ever since then, GreenOrbs has experienced a num-ber 
of deployments at different places, with different scales, and 
for different durations. 

B. Data Set 

The data set used for analysis, evaluation, and experiments 
in this paper mainly comes from the operational period of 
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Trace 
No. 
1 
2 
3 
4 
5 
0 
'/ 
!! 
9 
10 
1 1  
12 
13 
14 

TABLE I' Configurations Used in the Data Set 
Network Power 
Scale level 
100 15 
200 15 
330 15 
330 15 
330 15 
330 15 
33U l� 
330 b 
330 3 1  
330 2 1  
330 15 
330 8 
330 15 
330 15 

Data Kate 
(pkts/hour) 
3 
3 
3 
12 
18 
27 
�4 
lu!! 
12 
12 
12 
12 
3 
60 

DuratioJl 
(hour) 
60 
25 
300 
24 
100 
30 
3 
3 
1 
1 
1 
1 
150 
12 

Duty 
cycle 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
8% 
8% 

GreenOrbs in December 2009. It contains data of 29 con­
secutive days, counts 2,540,000 data packets. In order to 
conduct comprehensive observation on the large-scale sensor 
network system, during the abovementioned period we have 
regulated the nodes with different combinations of operational 
parameters. The detailed configurations of the data set are 
shown in Table I. 

Back End Data Set. The back end data set refers to the 
entire data set collected at the sink via multi-hop routing, 
denoted by Dsink' Dsink is made up of three categories of 
traces as follows. (1) Routing trace, denoted by T,outing and 
encapsulated as packet of type 41. It mainly records the routing 
path of a packet, namely the sequence of relaying nodes 
between the source and the sink. The sensor readings, such 
as temperature, humidity, illuminance and carbon dioxide, are 
included in T,outing as well. (2) Link trace, denoted by �ink 
and encapsulated as packet of type 42. It includes the list of 
neighbor node IDs. For each neighbor node, the RSSI, LQI, 
and ETX (Estimated Transmission Counts) [32] are included 
in �ink as well. (3) Node statistics trace, denoted by 1'stats 
and encapsulated as packet of type 45. 1'stats is a large set of 
statistical information on each node, including the cumulative 
time of radio power on, the cumulative number of transmitted 
and received packets, the cumulative number of packet drops 
(due to receive pool overflow, d transmit queue overflow, and 
transmit timeout), the cumulative number of transmissions that 
are not ACKed, retransmissions, received duplicate packets, 
and the parent changes with the CTP. 

Due to the packet losses and various failures in wireless 
sensor networks, the back end data set is far from sufficient 
for characterizing the GreenOrbs system at a full scale. Thus 
we introduce three out-band measurement techniques, namely 
overhearing, beaconing, and local logging. 

Overhearing. We deploy multiple sniffers in the network 
to overhear the network traffic. A sniffer is a TelosB mote, 
which passively listens without sending out any packets. In our 
early attempt we let the sniffers store all the overheard data in 
their serial flash. The IMbytes flash on TelosB mote was soon 
found too limited for durative overhearing, so we connect the 
sniffers to stable and powerful devices, e.g. a laptop, to record 
all the overheard data. The locations of sniffers are carefully 
selected so that the combined communication ranges of the 
sniffers cover the entire network. The data from sniffers are 
denoted by Dsnijfer' 

Beaconing. In many scenarios, we find a number of nodes 
never successfully report data to the sink, making us fail to 
find out the cause by using Dsink only. Therefore, in some of 
the experiments, we let each node actively broadcast beacons 
periodically. The content of the beacon is similar to that in 
1'stats (packet type 45). The broadcast beacons are overheard 
by the nearby sniffers and stored in Dsnijfer. The neighbor nodes 
heard the beacon from a node can also use it to update �ink. 

Local logging. Other than the networking information, the 
fine-grained local events on the nodes are equally important 
for us to understand their behavior and interactions. As a 
necessary complement, every node locally logs events such 
as transmissions, retransmissions, ACKs of packet receptions. 
Each event is recorded with six bytes, where two bytes denote 
the event type and the other four bytes denote the timestamp 
of an event. The data set of local logging is denoted by D,og. 
Since the deployment is still in operation, we do not collect 
all the nodes back to read their logs. D'og is currently used as 
a backup data set for diagnosis on some faulty nodes. 

C. Measures and Derivations 

Yield. We use yield [2] to measure the quantity of the 
collected data. The network yield measures the quantity of 
the entire network while node yield measures the quantity of 
an individual node. Specifically, the node yield is calculated 
by 

Yield. = 
# of data pkts received by the sink from i during w 

I 
# of data pkts sent by i during w 

where i is the node ID, and w is a measurement period. The 
network yield is calculated by 

. 
d 

# of data pkts received by the sink during w 
Ylel = 

. 

# of data pkts sent by all nodes dunng w 

Packet Reception Ratio / Loss Ratio. We use packet recep­
tion ratio (PRR) to measure the quality of a link. Throughout 
this paper, we use two-way link PRR, i.e., we consider a 
successful transmission only if the sender receives an ACK. 

PRR = 
# of ACKed data pkts 

# of sent data pkts 

The packet loss ratio is PLR = 1 - PRR. 
Packet Delivery Ratio (PDR). PDR is defined as the ratio 

of the amount of packets received by the destination to those 
sent by the source. Since the transmissions are reinforced with 
retransmissions, PDR can be higher than link PRR in practice. 

End-to-end delay. The end-to-end delay of a packet is the 
time difference between the sending time at the source node 
and the reception time at the sink. We stamp each data packets 
when it is first transmitted from the source node and when it 
is received at the sink. The FTSP protocol is used to ensure 
time synchronization. 

Correlation Coefficient. Correlation coefficient is a statisti­
cal measure of association between two variables, e.g. the ETX 
value and the packet delivery ratio. The range of correlation 
coefficient is [-1, 1]. The sign denotes whether two variables 
are positively or negatively related and the absolute value 
corresponds to their correlation strength. For example, the 
correlation coefficient equals to 1 when two variables are 
in positive linear relationship, -1 in the case of a negative 
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Fig. 3: Network yield and PRR v.s. (a) different network scales, and 
(b) different traffic loads. 

linear relationship, and 0 when two variables are completely 
independent. 

IV. Basic Observations 

In this section, we present a set of basic observations on the 
operation of the system. Our observations range from the high 
level system performance down to the detailed behaviors at the 
link level. From those basic observations, we summarize the 
network characteristics and explore the reasons that bottleneck 
the performance when the network scales. 

A. Network Characteristics 

The network yield, the ratio of packets successfully received 
at the sink side to the total number of packets generated by 
all the nodes, is a primary metric that evaluates the system 
performance. It provides us a global indication on how com­
plete the network-wide data are collected. Another metric is 
link PRR that estimates the percentage of successfully ACKed 
packets over all the transmissions plus retransmissions, giving 
us a microscopic indication on how the transmissions perform 
on the links. 

Figure 3(a) exhibits the system performance when the 
network scales from 100 nodes to 200 nodes, and then to 
330 nodes. During the measurement, the data generation rate 
at each node is three packets per hour. There is not apparent 
trend of changes on the network yield, partially because the 
traffic inserted into the network is relatively low. On the other 
hand, the average link PRR across all the links does not exhibit 
apparent difference when the network scales. 

We then measure the same metrics while exerting different 
traffic load over the network, keeping the network scale as 330. 
Letting each node generate three packets per cycle, we increase 
the traffic load in a stepwise manner by shortening the cycle 
lengths, namely 3600, 400, and 200 seconds. As Figure 3(b) 
shows, the increasing traffic load severely degrades the system 
performance. As depicted in Figure 3(b), the network yield 
rapidly drops from over 60% to less than 10%. 

A natural question raised from the above observation is: 
whether the degradation in terms of network yield is due to the 
throughput bottleneck around the sink? Indeed, the "hot area" 
around the sink has recently been widely reported in a number 
of literatures. The research communities also propose a variety 
of protocols to mitigate such a problem [33], [34]. However, 
if we carefully analyze the data provided by Figure 3(b), we 
notice that the highest network throughput occurs when the 
cycle length is set at 400 seconds. The average packet size in 
GreenOrbs is 100 bytes. The goodput of data reception from 
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Fig. 4: System performance for different categories of nodes. 

'[7' u.. 0.6 
o 
U o. 

0.2 
- Transmit Timeout 
+Receive Pool overflowi 
-e- Total Packet Dro� 

5 10 20 50 100 200 500 
# of Packet Drops 

Fig. 5: CDF of the nodes with different numbers of packet drop 
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the network can be calculated by: 3 x 330packets x 100bytes x 
8 x 31 % /400s = 0.61 Kbps. Such a goodput is far less than 
250Kbps (the upper bound data rate of TelosB mote) that the 
sink can provide as a gateway of the networked nodes. This 
huge gap clearly suggests that the network is far from being 
bottlenecked before the sink bandwidth is used up. Hence, 
the follow-up question is: Now that the area around the sink 
receives relatively high traffic load and severe transmission 
contentions, is it the place where a large portion of the packet 
losses occur? 

In Figure 4, we present a close look at the system behaviors, 
using Trace No. 6. We categorize the sensor nodes in the 
network according to their hop counts to the sink. Note that 
a node sometimes switches its parent, resulting in dynamic 
routing paths to the sink of different hop counts. In the 
statistics, we use a precise granularity to categorize the nodes 
with such behavior. The packets sent from the same node 
with different hop counts are separately counted into different 
categories. Figure 4(a) depicts the packet reception ratio from 
the nodes of different hop distances to the sink. There is a 
clear trend that the nodes farther from the sink have a lower 
PDR to the sink. Nevertheless, Figure 4(b) depicts the link 
PRR according to links' hop distances to the sink. There 
are apparent differences among all the links. This is direct 
evidence, which reveals that the area around the sink is not the 
rendezvous of packet losses. Otherwise, the packet reception 
ratios of different categories of nodes should not deviate in the 
manner of Figure 4(a). All the packets are likely to be equally 
dropped around the sink, due to the contention or congestion. 

To investigate the cause of packet losses, we further classify 
the packet losses into three categories: 

• TransmiCTimeout: the packet is (re)transmitted 30 times 
and dropped due to not receiving the ACK signal. Such 
packet drops are mainly due to the poor quality of the 
wireless channels or severe collisions during wireless 
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transmission . 
• Receive_Pool_Overflow: the packet is successfully re­

ceived at the receiver end but immediately dropped due to 
the forwarding queue overflow. This type of packet drop 
is mainly caused by the excessively heavy data congestion 
at the receiver. 

• Send_Queue_Overflow: the packet fails to be inserted 
into the forwarding queue, mainly due to the mismatch 
between sensor processing capability and the high rate of 
packet arrival. 

We examine all packet losses in Trace No. 5. Among all 
packet losses, TransmiCTimeout accounts for 61.08% and 
Receive_PooLOverfiow accounts for the rest 38.92%. No 
Send_Queue_Overfiow is detected. 

We further investigate the distribution of packet drop oc­
currences among the nodes, as shown in Figure 5. The packet 
drops due to TransmiC Timeout are evenly distributed across 
different intensities. Nearly 90% nodes have less than 20 times 
of TransmiC Timeout and no node has more than 50 times 
of TransmiCTimeout. Surprisingly, we find that over 95% 
nodes do not have any Receive_PooLOverfiow drop. All the 
Receive_PooLOverfiow drops (38.92% of all packet drops) 
occur on less than 5% nodes. Such a finding implies that 
there exist a very small portion of nodes in the network which 
play critical roles, taking excessively high traffic load, and 
responsible for the major portion of packet losses. 

B. Investigating Critical Nodes/Links 

We take a deep look into the network and investigate the 
node level behavior. Figure 6 exhibits the individual node 
performance according to their hop distances to the sink. An 
intuitive impression is that the nodes near the sink take more 
traffic load and hence have apparently poorer performance. 
However, we still cannot conclude that the critical nodes 
mainly lie near the sink, as Figure 6 only gives us the 
aggregated performance of many nodes. 

Those critical nodes need to be individually identified within 
the network. For this purpose, Figure 8 plots all the 330 nodes. 
In total, eight snapshots of eight consecutive operational 
periods are included. Each node is colored according to the 
traffic load it takes. A deeper color indicates higher incoming 
traffic load at a node. The figure sequence clearly shows that 
there exist a very small portion of nodes that take excessive 
traffic. It is worth noticing that they are distributed across the 
entire deployment area instead of concentrated near the sink 
(the black node in the figures). Further we index the nodes 
according to their traffic load and find that less than 10% 
critical nodes commit 80% traffic load and thus 61.06% of 
the packet loss. They act as bottlenecks of the system and 
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Fig. 7: The traffic and PRR on two typical links. 

further suggest that such a set of critical nodes are relatively 
stable. 

C. Looking into the Links 

As our network-wide statistics suggest, there exist a small 
portion of critical nodes that bottleneck the performance of 
the entire network. According to our statistics on different 
categories of the packet drops, both TransmiC Timeout and 
Receive_PooLOverfiow contribute a large portion, implying 
that both congestion and link losses are possible causes that 
degrade the network performance. We are interested in the 
reason behind such a phenomenon. A question yet we want to 
answer is whether the existence of such critical nodes is mainly 
due to the poor quality of wireless communication, severe 
congestion or contention accompanied with the unbalanced 
traffic overhead. To answer this question, we further take a 
look into the link behavior. 

Figure 7 shows the observation on two typical links. We find 
that the link loss rate fluctuates with time and it seems indepen­
dent from the traffic load. An immediate guess is that such link 
dynamics may come from the environmental dynamics. Recall 
that our system is indeed deployed in the wild. To further 
explore the link loss fluctuation, we adjust the transmission 
power of the nodes. Intuitively, as the transmission power is 
increased, the received signal strength will be strengthened 
and the link PRR will be improved. The level of transmission 
power is respectively set at 8, 15, 21 and 31 (Traces No. 9-12). 
In CC2420, they correspond to the sending power of slightly 
above -15dBm, -7dBm, around -4dBm, and near OdBm. 

The observational results, however, still exhibit consistent 
fluctuations on many links. The system performance under 
different settings of transmission power is shown in Figure 9. 
As the transmission power is regulated, the network yield 
does not change much, remaining at 35%-50%. A higher 
transmission power does not help to stabilize the link quality, 
nor does it result in a better network yield. 

Similar results also hold for the impact of power on end 
to end delay. We also find that the highest power does not 
necessary mean the shortest delay. 

With such observations we have to carefully reconsider the 
way we used to view the wireless links in sensor networks. Are 
they inherently unpredictable with fluctuating quality? If so, 
are the link fluctuations due to the unpredictable environmental 
dynamics? Otherwise, assuming the wireless links as indeed 
good medium for data communications, do the current designs 
and protocols simply fail to make the best use of them? 

v. Who Moved Our Cheese? 

As we have experienced from our basic observations, the 
network cannot unlimitedly scale due to the physical resource 
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Fig. 9: The system performance under different settings of transmis­
sion power. 

constraint. In this section, we summarize from our basic 
observations and try to explore the major factors that limit 
the system scale. What is the dominant resource that is at 
the first depleted when the network workload scales? Is such 
resource appropriately used? Where are the places of resource 
depletion that bottleneck the entire network? How should 
existing protocols be improved to adapt to large-scale sensor 
network characteristics? Bearing those questions in mind, we 
proactively look into our data traces and conduct a new set of 
experiments. 

A. The Last Straw that Breaks the Camel's Back 

As previously shown in Section IV, when the size of 
the network scales and the traffic load increases, the overall 
system performance drops, especially after the scale exceeds 
a limit. 

Differing from previous studies, our measurement results 
suggest that the "hot area" problem around the sink does 
not play a major role in degrading the system performance. 
Instead, we observe a set of critical nodes that are distributed 
across the network. Those critical nodes receive excessive 
incoming traffic, with fluctuating link loss rates and account 
for a large portion of packet drops. Current data collection 
protocols, like CTP with ETX as the routing metric, however, 
do not seem to successfully handle those cases in time. The 
routing structure often overreacts to the ETX increases, leading 
the network traffic concentrated from one area to another, 
creating "hot" spots from time to time. 

In Figure 10, we post a 60 hour statistics on the data for­
warding behaviors of a particular node (node 225). In the first 
half, it exhibits satisfactory performance, forwarding almost 
all of the incoming packets successfully. Starting some inter­
mediate time point around the 30th hour, this node happens 
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Fig. 10: The packet reception, forwarding, and drop at node 225 
within 60 hours. 

to drop all the incoming data packets while still successfully 
sending its own data packet. This abnormal behavior is likely 
related to a software bug that leads to locked memory of the 
forwarding queue in CTP with special concurrent operations. 
The real problem is that, even when such a node drops all 
the incoming packets it receives, it is still selected as the 
parent in the routing tables of many nodes for the rest of 
time. Such a phenomenon is largely due to the fact that the 
ETX indicator does not capture packet drops on a forwarding 
node. The ETX measured at node 225 is always good and 
broadcasted to its neighboring nodes, consistently absorbing 
the traffic and dropping them. Against such a problem, an 
aggregated indicator is urged, which should reflect both link 
quality and node's forwarding quality. 

Thus our first conjecture is that: the bottlenecks in a large­
scale sensor network does not necessarily lie in the "hot area" 
around the sink. It is likely that some of the intermediate nodes 
bottleneck the entire network while the existing widely used 
indicators may not accurately capture them. 

B. How Dynamic Is the Environment? 

According to our observations, the No_ACK_drop con­
tributes the largest portion of packet drops. In fact, many 
existing works have reported the possibility of environmental 
dynamics that affect link quality. To validate our guess, we 
conduct an independent set of experiments. We place two 
sensor nodes in the same environment where GreenOrbs is 
deployed and measure the link quality between them under 
different settings. The two nodes are placed 20m and 50m 
apart, respectively. We let one node send data packets and the 
other receive. Each packet contains 100 bytes payload. The 
sending rate is set at 1Hz and then 20Hz. We measure the 
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Fig. 1 1: The RSSI and link loss rate measured at an independent pair of nodes. 

RSSI and link loss rate at the receiver. Each set of experiment 
is conducted three rounds at different time of a day, and each 
round lasts for 1000 seconds. 

As Figure 11 suggests, the RSSI, which is a major indicator 
that measures the quality of propagated signal is relatively 
stable through most of the time and settings. The fluctuation 
of RSSI is mostly composed of a series of sparkling burrs. That 
is quite possible from the interference from nearby 802.11 b 
AP signals, as reported in [23]. Only in the experiment of 
50m distance and 20Hz sending rate, the RSSI varies around 
-90dBm, and there appear some observable link losses. This 
is mainly because the CC2420 transceiver has a receiving 
sensitivity at around -93dBm to -87dBm [10]. 

The above measurement results indicate that the signal 
propagation in the wild is not as dynamic as we imagined. 
Recall that in our observations on the link performance, the 
link loss rate fluctuates far more intensively (see Figure 7) 
and there is not an apparent correlation between the link 
loss rate and the traffic overhead on that link. However, as 
our network-wide statistics suggest, the high link loss usually 
occur at those nodes within or near high traffic regions. 
Such observations suggest that the fluctuating link loss is 
due to the collisions of concurrently transmitted packets in 
those regions. Such contentions are not effectively detected 
by the CSMA mechanism, resulting in improper concurrency. 
Considering the dense deployment of sensor networks, the 
traditional wireless "hidden terminal" problem might be far 
more popular than else where like 802.11 AP network or 
MANET where the network is usually of a small density. 

Thus our second conjecture is that: most of the wireless 
links used in sensor networks are physically stable. The 
dynamics of sensor networks do not mainly come from the 
external environment but the internal network operations. The 
inherent concurrency of operations among different nodes 
should be further investigated and considered in designing 
scalable network protocols. 

C. Adaptive Routing Design 

While our measurement results reflect that the environment 
introduces very limited dynamics to the network, the impact 
from the deployment environment itself is non-negligible. 

A general manner of sensor nodes deployment is to place 
them uniformly across the field, aiming to provide a uniform 
networking infrastructure. As explicitly shown in Figure 1, 
however, the resulting networking infrastructure of GreenOrbs 
does not match the expectation. Some nodes have excessive 
neighbors and forward much more data than others. Some of 
them become critical nodes later, bottlenecking the network 
performance. We fail to achieve logical uniformity from 
geological uniformity, largely due to the inherent irregularity 

of the deployment environment. The bumpy floor in the wild, 
woods standing in between, slope of the hill, and etc., all en­
vironment factors make the signal propagation irregular. Only 
after the networking characteristics are thoroughly studied 
after deployment, we are able to provide customized schedule 
in the routing layer that optimizes the system performance. 

While current dynamic routing approaches aim to be adap­
tive to the network dynamics, they usually lack tailored opti­
mization in adapting to the surrounding environment. Besides, 
according to our observations, the environment impacts are 
relatively stable, providing us adequate room in designing 
comparatively stable while highly optimized routing protocols. 

Figure 12 exhibits our preliminary attempt in support our 
argument. During the system operation, we let the network 
first run with CTP routing for 120 minutes. Then we fix 
the routing tables for another 120 minutes, letting each node 
forward packets to a fixed parent node. We do not observe 
apparent difference between the performance of network yield 
in the two working periods. 

We believe, with careful consideration on the actual network 
structure under the practical environment and an intelligent 
learning process, it is very possible that a highly optimized 
static routing structure outperforms existing dynamic routing 
approaches in a large-scale sensor network. Moreover, a static 
routing structure can be made adaptive to the environment 
changes on an event-triggered basis. The routing structure will 
only be reconstructed when sharp events happen like intensive 
weather changes, large relief variations, a broad area of sensor 
damages, and etc, and after adequate knowledge about the new 
environment is learnt. 

Thus our third conjecture is that: the environment, while 
with less dynamics than we expected, has an unpredictable 
impact on the sensor network system running under it. Current 
dynamic routing approaches usually lack adaption to the sur­
rounding environment without adequately learning its unique 
characteristics. We suggest that an event-based static routing 
structure may have better performance in operating a large­
scale sensor network in the wild environment. 

VI. Conclusions 

In this work we conduct a measurement study on a large­
scale operating sensor network system, GreenOrbs, with up to 
330 nodes deployed in the wild. We aim to comprehensively 
understand how the sensor network performs when it scales to 
contain hundreds or even thousands of nodes. We instrument 
such an operating network throughout the protocol stack. The 
contribution of this work is twofold. 

First, to the best of our knowledge, we are the first to 
conduct a long term and large-scale measurement study on an 
operating sensor network in the wild. We present observations 
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Fig. 12: The performance comparison between original CTP routing 
and that when the routing table is fixed. 

across a variety of layers in the network that provide research 
community empirical experiences on how practical problems 
affect when the sensor network scales. 

Second, based on our basic findings from the system mea­
surement, we further propose and initially attempt to validate 
three conjectures that provide guidelines for future algorithm 
and protocol designs with larger scale sensor networks. In 
summary, (1) we think it might be very possible that some 
of the intermediate nodes bottleneck the entire network, and 
most of currently used indicators may not accurately capture 
them; (2) most of the wireless links in large scale sensor 
networks are physically stable. The dynamics mainly come 
from the inherent concurrency of network operations which 
should be further investigated and considered in designing 
scalable network protocols ; (3) the environment, while with 
insignificant dynamics, has an unpredictable impact on the 
sensor network under it. We suggest that an event based 
routing structure can be trained optimized and thus better adapt 
to the wild environment when building a large-scale sensor 
network. 

Acknowledgments 

This work is supported in part by NSFCIRGC Joint Re­
search Scheme N_HKUST602/08, National Basic Research 
Program of China (973 Program) under Grants 20 l OCB328000 
and No. 2011CB302705, COE_SUG/RSS_20 Aug2010_13/l4 
in  Nanyang Technological University of  Singapore, the NSFC 
under Grant No. 60803152, NSF CNS-0832120, NSF CNS-
1035894, National Natural Science Foundation of China under 
Grant No. 60828003, program for Zhejiang Provincial Key In­
novative Research Team, and program for Zhejiang Provincial 
Overseas High-Level Talents (One-hundred Talents Program). 

References 

[ I ]  G. Tolle, 1. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, 
S. Burgess, T. Dawson, P. Buonadonna, D.  Gay, and W. Hong, "A 
Macroscope in the Redwoods," in Proc. of ACM SenSys, 2005 . 

[2] G. Werner-Allen, K. Lorincz, 1. 10hnson, 1. Lees, and M. Welsh, 
"Fidelity and Yield in a Volcano Monitoring Sensor Network," in Proc. 
of OSDl, 2006. 

[3] M. Li and Y. Liu, "Underground Coal Mine Monitoring with Wireless 
Sensor Networks," TOSN, vol. 5, no. 2, pp. 1-29, 2009. 

[4] T. He, P. Vicaire, T. Yan, Q.  Cao, G.  Zhou, L .  Gu, L. Luo, R. Stoleru, 
J. A. Stankovic, and T. F.  Abdelzaher, "Achieving Long-Term Surveil­
lance in VigilNet," TOSN, vol. 5, no. I, pp. 1-39, 2009 . 

[5] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, 
R. Govindan, and D. Estrin, "A Wireless Sensor Network For Structural 
Monitoring," in Proc. of ACM SenSys, 2004. 

[6] G. Werner-Allen, P. Swieskowski, and M. Welsh, "MoteLab: A Wireless 
Sensor Network Testbed," in Proc. of A CMIIEEE IPSN, 2005 . 

[7] G. Barrenetxea, F. ingelrest, G. Schaefer, M. Vetterli, O. Couach, and 
M. Parlange, "SensorScope: Out-of-the-Box Environmental Monitor­
ing," in Proc. of A CMIIEEE IPSN, 2008 .  

[8] P. Dutta, 1. Hui, 1 .  Jeong, S .  Kim, C .  Sharp, J .  Taneja, G. Tolle, 
K. Whitehouse, and D. Culler, "Trio: Enabling Sustainable and Scal­
able Outdoor Wireless Sensor Network Deployments," in Proc. of 
A CMIIEEE IPSN, 2006 . 

[9] K. Srinivasan and P. Levis, "RSSI  is Under Appreciated," in Proc. of 
EmNets, 2006. 

[ 1 0] CC2420 data sheet: hup:/(focus. ti. comilit/dslsymlinklcc2420.pdJ 
[ I I ]  T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, 

J .  A. Stankovic, and T. F. Abdelzaher, "Achieving Long-Term Surveil­
lance in Vigil Net," in Proc. of IEEE INFO COM, 2006. 

[ 1 2] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V.  Naik, S .  Bapat, 
V. Kulathumani, M. Sridharan, H. Zhang, and H. Cao, "Kansei: A 
Testbed for Sensing at Scale," in Proc. of A CMIIEEE IPSN, 2006 . 

[ 1 3] A. Arora, R. Ramnath, E. Ertin, and et aI . ,  "ExScal : Elements of an 
Extreme Scale Wireless Sensor Network," in Proc. of IEEE RTCSA, 
2005.  

[ 1 4] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M.  Vetterli, "The Hitch­
hiker 's  Guide to Successful Wireless Sensor Network Deployments," in 
Proc. of A CM SenSys, 2008.  

[ I S] A. Woo, T. Tong, and D.  Culler, "Taming the Underlying Challenges 
of Reliable Multihop Routing in Sensor Networks," in Proc. of ACM 
SenSys, 2003. 

[ 1 6] 1.  Zhao and R. Govindan, "Understanding Packet Delivery Performance 
in Dense Wireless Sensor Networks," in Proc. of A CM SenSys, 2003 . 

[ 1 7] D. Ganesan, D. Estrin, A. Woo, and D. Culler, "Complex Behavior 
at Scale: An Experimental Study of Low-Power Wireless Sensor Net­
works," UCLA and UC Berkeley, Tech. Rep.,  2002. 

[ 1 8] S .  Lin, G.  Zhou, K. Whitehouse, Y. Wu, J .  A. Stankovic, and T. He, 
'Towards Stable Network Performance in Wireless Sensor Networks," 
in Proc. of IEEE RTSS, 2009 . 

[ 1 9] T. Liu, A. Kamthe, L. Jiang, and A. Cerpa, "Performance Evaluation 
of Link Quality Estimation Metrics for Static Multihop Wireless Sensor 
Networks," in Proc. of IEEE SECON, 2009. 

[20] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, "Link-level 
Measurements from an 802. 1 1  b Mesh Network," in Proc. of ACM 
SIGCOMM, 2004. 

[2 1 ]  M. Zuniga and B. Krishnamachari, "Analyzing the Transitional Region 
in Low Power Wireless Links," in Proc. of IEEE SECON, 2004. 

[22] A. Cerpa, 1 .  L. Wong, M. Potkonjak, and D.  Estrin, "Temporal Proper­
ties of Low-Power Wireless Links: Modeling and implications on Multi­
Hop Routing," in Proc. of ACM MobiHoc, 2005.  

[23]  K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, "Understanding the 
Causes of Packet Delivery Success and Failure in Dense Wireless Sensor 
Networks," Stanford University and UC Berkeley, Tech. Rep. ,  2006. 

[24] K. Srinivasan, M. A. Kazandjieva, S .  Agarwal, and P. Levis, "The Beta 
Factor: Measuring Wireless Link Burstiness," in Proc. of A CM SenSys, 
2008.  

[25]  G. Zhou, T. He,  J .  A. Stankovic, and T. Abdelzaher, "RID: Radio 
Interference Detection in Wireless Sensor Networks," in Proc. of IEEE 
INFO COM, 2005 . 

[26] R. Maheshwari, S. Jain, and S. R. Das, "A Measurement Study of inter­
ference Modeling and Scheduling in Low-power Wireless Networks," 
in Proc. of ACM SenSys, 2008. 

[27] R. Gummadi, D .  Wetherall, B .  Greenstein, and S .  Seshan, "Understand­
ing and Mitigating the Impact of RF Interference on 802 . 1 1  Networks," 
in Proc. of A CM SIGCOMM, 2007. 

[28] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, "A General 
Model of Wireless interference," in Proc. of ACM MobiCom, 2007. 

[29] O. Gnawali, R. Fonseca, K. Jamieson, D.  Moss, and P. Levis, "Collec­
tion Tree Protocol," in Proc. of A CM SenSys, 2009. 

[30] G. Tolle and D.  Culler, "Design of an Application-Cooperative Man­
agement System for Wireless Sensor Networks," in Proc. of EWSN, 
2005. 

[3 1 ]  M. Mar6ti, B .  Kusy, G.  Simon, and Akos Ledeczi, "FTSP:  The Flooding 
Time Synchronization Protocol," in Proc. of A CM SenSys, 2004. 

[32] D. S. J .  D .  Couto, D.  Aguayo, J. Bicket, and R. Morris, "A High­
throughput Path Metric for Multi-hop Wireless Routing," in Proc. of 
A CM MobiCom, 2003.  

[33] S .  Olariu and I .  Stojmenovic, "Design Guidelines for Maximizing 
Lifetime and Avoiding Energy Holes in Sensor Networks with Uniform 
Distribution and Uniform Reporting," in Proc. of IEEE INFO COM, 
2006. 

[34] X. Wu, G.  Chen, and S .  K. Das, "Avoiding Energy Holes in Wireless 
Sensor Networks with Nonuniform Node Distribution," TPDS, vol. 19 ,  
no.  5,  pp. 7 1 0-720, 2008 .  

881 


