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Spatiotemporal Visual Analysis of Sensor Networks in the Wild
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Figure 1: Visualization tool for analyzing spatiotemporal anomalies for network data. As an example, the average sensor readings of light over
hourly-generated snapshot graphs are color-mapped into network topologies while multiple selection of nodes is enabled to observe temporal

patterns.

ABSTRACT

Diagnosing and managing a large-scale sensor network in the wild
is a crucial but challenging task, due to the resource and bandwidth
constraints on sensor nodes, the highly dynamic spatiotemporal net-
work behaviors, and the lack of accurate models to understand such
behaviors in a hostile environment. In this paper, we present a visu-
alization tool that allows quick and effective navigation of the sen-
sor data collected in real time. By tightly combining a spatiotempo-
ral visualization framework and a novel construction of differential
contour maps with existing sensor network failure models, our tool
helps analyze and diagnose the sensor network in a way easy for
ordinary users while customizable for domain experts.

1 INTRODUCTION

As the recent surge of sensor technology, networks have expanded
from the traditional computer-based ones, e.g. the internet, to
the vast object-based networks in the real world, and even to the
science-fiction-like human body networks. In this paper, we are
focusing on the diagnosis of sensor networks. A sensor network
consists of a number of sensor nodes, each of which has the ca-
pability of sensing, computing, and wireless communication. We
mainly focus on sensor networks in the wild, which are usually
powered by batteries and resource-constrained. For example, in
a sensor network deployed in the forest for carbon emission esti-
mation and forest surveillance, we need to know in real time the
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portion of abnormal sensors to guarantee an accurate overall mea-
surement. Generally, this kind of network is composed of a large
number of resource-limited sensor nodes in the frequently-changing
and unpredictable environments, vulnerable to both system failures
and environmental abnormalities. As a direct result, sensor data are
highly dynamic in both spatial and temporal dimensions, making
singular model driven analytics hard to locate correlational patterns.
These natures make the diagnostic tasks extremely difficult.

Traditionally, the diagnosis methods have been based on the net-
work itself and its graph properties, such as degree distributions,
subgraph isomorphism and graph edit distance [2]. While there
are techniques dealing with time series data visualizations, e.g. the
GrowthRingMaps [1], very few of them are designed specially for
the diagnosis of performance issues in sensor networks and for the
easy exploration of root causes for which there may be no prior
established knowledge. In this work, we propose a visualization
framework that incorporates 1) both the node properties (e.g. the
sensor readings) and the physical/logical network topology; 2)cor-
relation between both the spatial and temporal changes of the sensor
network.

Our contributions are twofold. we develop an visual analytic
tool (Figure 1) that allows quick and effective exploration of mas-
sive sensor datasets. The tool extends the data and anomaly analysis
algorithms visually to allow network operators and analysts to in-
teract with the data images and gain insights from a domain expert’s
perspective. Second, we propose a novel differential visualization
method of topology-aware contour maps. Actual routing networks
are encoded into contour maps using topological measurement such
as the average hop counts to the sink. The proposed 2nd-order dif-
ferential visualization of contour maps leverages our observations
that the values of contour lines change at different rates. These
changing rates, or gradients in short, can be used to construct a new
contour map.
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Figure 2: Differential visualization of topology-aware contour maps.

2 DATASET

The dataset we experiment with our visual analytic tool is collected
in GreenOrbs project [3], which has more than 300 sensor nodes
deployed in the wild and is among the largest real-life sensor net-
work systems worldwide. Two types of data are measured in real
time and aggregated at the network sink for investigation purpose:
i) Network data, including the routing data, link state data, neigh-
borhood list and the various counters at the sensor node indicating
the network performance; ii) Sensor data, including the measured
temperature, humidity, light, voltage, etc. From the raw sensor net-
work data, we calculate the average hop count of each node going
to the sink and construct their hop-count contour maps.

3 VISUALIZATION

In this section, we focus on a few examples illustrating the spa-
tiotemporal visualization using interactive data exploration and
anomalies detection modules as well as a novel differential visu-
alization using topology-aware contour maps.

3.1

Figure 1 shows a screenshot of the visual exploration tool that is
under active development. After reading in data sent by the sensor
networks in real time, it automatically generates snapshot graphs
and visualizes them in the main window. Each node represents the
actual sensor node and directed edges among nodes indicate the
actual routing of packets from the source to the sink. The width of
the edges reflects the magnitude of the connections. An investigator
can drag the slider bar on the bottom to view snapshot network
graphs at any specific time granularity with a customizable time
history window.

Spatial anomalies can be visualized in a network topology view
through standard color/shape/size coding on the nodes/edges based
on the selection of node properties, e.g., average values of sensor
readings such as temperature, humidity, light, voltage, etc. Nodes
coded with a spectrum of colors are easy to visualize the spatial
distribution of node property values across the entire network. This
can be especially useful to detect potential correlations of network
anomalies. The correlation among spatial anomaly can provide use-
ful context information that can potentially reduce the false posi-
tives. For example, rapid changes of temperatures among the nodes
in close vicinity would suggest events perhaps fire in a part of the
forest, rather than merely due to sensor anomaly. Another exam-
ple would be if many of the blue nodes (low voltages) have a large
number of in-degrees, this could be evidence that these core nodes
serve as the hubs that route many packets from sources to the sink
node. Therefore, the rapid decrease in voltage of these nodes may
not necessarily be anomalies.

Interactive spatiotemporal visualization
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Temporal anomalies are also very important because they are the
key to capture the changing events (normal or abnormal) happen-
ing in the network. Depending on the selection of nodes and their
properties, statistical charts representing the time evolution of sen-
sor properties give investigators a quick view of the trend. As a
result, any potential temporal anomalies can be easily picked up.
For example, in Figure 1, one node (top) shows clear diurnal pat-
terns of light readings over the three-day period while another se-
lected node (bottom) also matches the overall trend of the first node.
Misalignment could suggest temporal anomalies in this example.
The detected abnormality patterns will be mapped into the network
topology graphs to understand the spatiotemporal correlation of the
anomalies (e.g., Type-I anomalies are observed exclusively in Clus-
ter A).

3.2 Spatiotemporal differential visualization using con-
tour maps

Understanding the difference among snapshot graphs is the crucial
part of visualization for anomaly analysis. While comparing the
network graphs at the level of nodes and edges gives the maximum
of details, a novel topology-aware contour-map visualization is de-
veloped to reflect the balance of granularity and complexity. The
differential visualization of topology-aware contour maps (Figure
2) shows the concept of generating such differential views of con-
tour maps. Firstly, the spatial network topology is encoded into a
contour map by making use of the average number of hops to the
sink nodes derived from the actual routing paths. Secondly, we de-
velop a novel differential view to compare dynamically temporal
contour maps (e.g., compare the contour maps at time ¢ and t').
The differences of any pair of gradient vectors (the direction and
length) on the contour maps are then used as the values to construct
the new differential contour map. The net result is that any potential
anomalies are ready to be spotted, as highlighted in Figure 2. Based
on the differential visualization, we can not only discover temporal
patterns, but also gain insights into the correlations of the content
(e.g., sensor readings such as temperature, humidity, light, voltage,
etc) and the context (e.g., traffic loads, routing structures, etc).
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