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Abstract—Data collection is a fundamental task in wireless sensor networks. In many applications of wireless sensor networks,

approximate data collection is a wise choice due to the constraints in communication bandwidth and energy budget. In this paper, we

focus on efficient approximate data collection with prespecified error bounds in wireless sensor networks. The key idea of our data

collection approach ADC (Approximate Data Collection) is to divide a sensor network into clusters, discover local data correlations on

each cluster head, and perform global approximate data collection on the sink node according to model parameters uploaded by

cluster heads. Specifically, we propose a local estimation model to approximate the readings of sensor nodes in subsets, and prove

rated error-bounds of data collection using this model. In the process of model-based data collection, we formulate the problem of

selecting the minimum subset of sensor nodes into a minimum dominating set problem which is known to be NP-hard, and propose a

greedy heuristic algorithm to find an approximate solution. We further propose a monitoring algorithm to adaptively adjust the

composition of node subsets according to changes of sensor readings. Our trace-driven simulations demonstrate that ADC remarkably

reduces communication cost of data collection with guaranteed error bounds.

Index Terms—Wireless sensor network, approximate data collection, minimum dominating set.

Ç

1 INTRODUCTION

RECENT advances in low-power wireless technologies have
enabled wireless sensor networks (WSNs) in a variety of

applications, such as environment monitoring [1], [2], coal
mine monitoring [3], object tracking [4], and scientific
observation [5], [6]. They enable people to gather data that
were difficult, expensive, or even impossible to collect by
using traditional approaches [7]. Data collection is a funda-
mental but challenging task for WSNs, due to the constraints
in communication bandwidth and energy budget [7], [8]. On
one hand, many applications require persistent long-term
data collection, since the gathered data make sense only if the
data collection procedure lasts for months or even years
without interruption. On the other hand, sensor nodes are
often battery powered and deployed in harsh environments,
hence data collection strategy must be carefully designed to
reduce energy consumption on sensor nodes, so as to prolong
the network lifetime as much as possible.

In many applications, it is often difficult and unneces-
sary to continuously collect the complete data from the

resource-constrained WSNs. From the point of view of
WSNs, directly sending a large amount of raw data to the
sink can lead to several undesired problems. First, the data
quality may be deteriorated by packet losses due to the
limited bandwidth of sensor nodes. Second, intensive data
collection incurs excessive communication traffic and
potentially results in network congestions. Packet losses
caused by such congestions further deteriorate the data
quality. Experiments with TinyOS [9] show that packet
delivery ratio can be greatly increased by reducing the data
traffic within a sensor network. Third, intensive data
collection can lead to excessive energy consumption. It is
reported in [10] that the lifetime of a sensor network can be
increased extraordinarily from 1 month to more than
18 months by lowering the data flow rates of sensor nodes.

Approximate data collection is a wise choice for long-
term data collection in WSNs with constrained bandwidth.
In many practical application scenarios with densely
deployed sensor nodes, the gathered sensor data usually
have inherent spatial-temporal correlations [8], [11], [12],
[13]. For example, Fig. 1 shows the temperature readings
of five nearby sensor nodes deployed in a garden more
than 10 hours at night. The temperature readings recorded
by the five nodes keep decreasing in the first 4 hours and
then become stable in the next 6 hours, which exhibit
apparent spatial and temporal correlations among them-
selves. By exploring such correlations, the sensor data can
be collected in a compressive manner within prespecified,
application-dependent error bounds. The data traffic can
be reduced at the expense of data accuracy [8], [11]. The
granularity provided by such approximate data collection
is more than sufficient, especially considering the low
measuring accuracy of sensors equipped on the sensor
nodes. Study on approximate data collection is thus
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motivated by the need of long-term operation of large-
scale WSNs, e.g., the GreenOrbs project [6], [14].

There are several factors to be considered in the design of
an approach for approximate data collection. First, the data
collection approach should be scalable. In many real
applications, sensor networks consist of hundreds or even
thousands of sensor nodes. For example, GreenOrbs [6], [14]
has deployed 330 nodes and expects to deploy 1;000þ sensor
nodes in a network. Some existing models, e.g., BBQ [8], are
centralized and require complete sensor data set of a WSN.
In practice, in large WSNs, the information exchange
between the sink and the related sensor nodes may consume
considerable bandwidth and the acquisition of complete
sensor data set of a WSN is too costly to be practical.

Second, in approximate data collection, the spatial-
temporal correlation model used for data suppression
should be light-weight and efficient so as to meet the
constraints on sensor node’s memory and computation
capacity. For densely deployed WSNs, many models can be
used to describe temporal and/or spatial correlation of
sensor data, such as [8], [11], [15], [16], [17]. But it is often
nontrivial to build a light-weight correlation model to
suppress spatial-temporal redundancy simultaneously.
Most of the existing models are too expensive, i.e.,
consuming a large amount of computing capacity or storage
capacity, to be run on the existing sensor nodes [8]. Some of
them are too simple to contain enough information, e.g.,
[15] ignores the trend of sensor readings, or only consider
either temporal correlation or spatial correlation separately,
e.g., [11], [16], [17]. Our approach shows that simplicity and
efficiency can be achieved by exploiting implicit sensor
node cooperation and elaborately distributing data proces-
sing tasks to sensor nodes.

Third, the data collection scheme should be self-adaptive
to environmental changes. Note that physical environmen-
tal changes are usually complex and hard to be modeled
comprehensively with a simple estimation model [11]. For
long-term data collection, the approximate data collection
scheme should be capable of automatically adjusting its
parameters according to the environmental changes so as to
guarantee its correctness.

In this paper, by leveraging the inherent spatial-temporal
correlation in sensor data, we propose an efficient approach
for approximate data collection in WSNs to simultaneously
achieve low communication cost and guaranteed data
quality (namely bounded data errors). Our approach,
Approximate Data Collection (ADC), is well designed to

satisfy the above criterions. ADC achieves low communica-
tion cost by exploiting the fact that physical environments
generally exhibit predictable stable state and strong
temporal and spatial correlations, which can be used to
infer the readings of sensors.

Both the scalability and simplicity of ADC are achieved
by exploiting implicit cooperation and distributing data
processing among sensor nodes. ADC can discover local
data correlations and suppress the spatial redundancy of
sensor data in a distributive fashion. The distributed spatial
data correlation discovery and spatial redundancy suppres-
sion is achieved by dividing a WSN into several clusters.
The sink can estimate the sensor readings according to the
model parameters updated by the cluster heads. This
distributed data process scheme makes ADC can be easily
applied to WSNs with different system scales. As the sensor
network scale increases, ADC only needs to increase the
number of clusters. Furthermore, by using clustering-based
distributed data process scheme, sensor data can be
processed locally in ADC. First, each sensor node is
responsible for processing sensor readings generated by
itself. Second, the spatial redundancy of sensor data is
suppressed by cluster heads that are close to the data
source. There are no explicitly control data exchange
between sensor nodes and their cluster heads. The sensor
data process cost is distributed to all sensor nodes and the
sensor data process burden of each cluster head can be
easily controlled by adjusting the cluster size.

In order to simultaneously exploit temporal and spatial
correlations inherent in sensor data and distribute the data
processing task to each sensor node, we propose a novel
spatial-temporal correlation model for ADC, which consists
of two parts: the local estimation and the data approxima-
tion. The local estimation builds a local temporal correlation
model for each sensor node to estimate its local readings
and reduce the communication cost between each sensor
node and its cluster head. The local estimation achieves self-
adaption by periodically checking the differences between
its estimation and the actual sensor readings. If the actual
sensor readings consistently differ from the model in
function, the local estimation will regulate its parameters
automatically. The data approximation employs a novel
tool called correlation graph to describe the spatial
correlation among sensor nodes based on the sensor
reading information provided by the local estimation.
Based on the correlation graph, the sink can recover sensor
readings of all sensor nodes with the local estimation data
of a small portion of sensor nodes. The errors of recovered
data are within the prespecified error bound. Each cluster
head is responsible for computing the spatial correlation
model, tracking the changes of its local spatial correlation
model, and cooperating with the sink to derive a bounded-
loss approximation of all the sensor readings.

The main contributions of this work can be summarized as
follows: 1) By exploiting the spatial and temporal correlations
within WSNs, we propose a novel estimation model to
approximate all sensor readings of a WSN using a subset of
the sensor readings. Moreover, we prove rated error bounds
of data collection using this model. 2) In the process of model-
based data collection, we formalize the problem of selecting
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Fig. 1. Temperature readings of five sensors in a garden over ten hours.



the minimum subset of sensor nodes as a minimum
dominating set problem, which is NP-hard. We accordingly
propose a greedy heuristic algorithm to get an approximate
solution. We also propose a monitoring algorithm to adjust
the composition of node subsets according to the changes of
sensor readings. 3) We evaluate the proposed scheme with
trace-driven experiments. The data traces are collected from
a real deployed WSN. Simulation results demonstrate that
ADC remarkably reduces communication cost by 21 percent,
compared with existing approaches.

The rest of the paper is organized as follows: Section 2
briefly discusses the related works. Section 3 elaborates on
the local estimation. The details of data approximation are
introduced in Section 4. We evaluate ADC by trace-driving
simulations in Section 5. Section 6 concludes the paper.

2 RELATED WORK

There have been many related works on data collection in
WSNs. Directed diffusion [18] is a general data collection
mechanism that uses a data-centric approach to choose
how to disseminate queries and gather data. Cougar and
TinyDB [19], [20] provide query-based interfaces to extract
data from sensor networks. Those works mainly focus on
query-based data gathering, but none of them consider
the case of efficient long-term large-scale data collection.

Query-based remote continuously approximate data
collection in sensor networks is closely related to the
problem we study here. One such approach is approximate
caching [15], [21], [22], [23] which gives approximate
answers to queries in distributed environments with a fixed
error bound. The idea is that the sink uses a constant to
reconstruct a piecewise constant approximation of the real
sensor readings. No updates are sent until a sensor node
notices that its value has diverged by more than a given
upper bound from the last reading sent to the sink. CONCH
[15] also provides a simple spatial suppression technique to
suppress update messages of nearby sensors with similar
sensor readings. Sensor nodes in CONCH do not update
their readings if they hear similar update readings from
their neighbors. This kind of approaches, though simple,
ignore the trend of sensor readings and only offer a narrow
range of predictive capabilities. Approximate caching may
also suffer large overhead of update message transmission
when many sensor readings change dramatically. Com-
pared with approximate caching, our approach ADC has
two obvious advantages. First, ADC exploits the temporal
correlation by utilizing a linear trend component which
enhances the estimation capability. Second, in a distributed
manner, ADC selects only a portion of sensor nodes to
update their readings based on a more sophisticated spatial
correlation model, which utilizes the trend information of
sensor readings generated by the local estimation to further
reduce the communication cost.

Other query-based approaches extract data from sensor
networks by using Gaussian joint distribution to capture
the correlations of sensor readings, such as [8], [24], [25].
BBQ [8] is the first one using multivariate Gaussian joint
distribution to capture the correlations of sensor readings.
It samples a small fraction of sensor data from a WSN and
utilizes Gaussian joint distribution model to estimate the

nonsampled sensor readings. Gaussian joint distribution-
based approaches have several drawbacks that make them
unsuitable for long-term large-scale WSNs. First, this kind
of models need an expensive long training phase and a
complete data set of every sensor node within a
sufficiently long period. Gathering complete data set is
too energy consuming and even impractical for large-scale
WSNs with limited bandwidth. Second, the correctness of
this kind of models requires continuous model update
which needs periodically gathering the data generated by
every sensor node and disseminating the update informa-
tion to related sensor nodes. Both of the two tasks are
costly for energy-constrained WSNs, even when the
update frequency is low. Third, it is almost impossible
for this kind of models to precisely control the data error.
A Gaussian process (GP) is associated with a mean
function Mð�Þ, and a positive-definite kernel function
Kð�; �Þ, often called the covariance function. An important
property of GPs is that the posterior variance of one of its
variable depends on the covariance function Kð�; �Þ, instead
of the actual observed value. Hence, the estimation errors
of the nonsampled sensor readings are unknown and the
estimation quality of the nonsampled sensor readings
cannot be guaranteed. In comparison, the data processing
burdens of ADC are distributed to each sensor node. The
local estimation and the data approximation of ADC are,
respectively, settled on each sensor node and each cluster
head. This enables sensor data to be processed near or at
their sources. The correctness of local estimation is
guaranteed by each sensor node locally and the data error
bound of ADC is jointly controlled by the local estimation
and the data approximation. No explicit control message
exchange is required. And the data error bound of ADC
can be flexibly adjusted according to the requirements of
applications. Such features make our approach ADC
scalable and efficient for long-term continuous data
gathering applications.

Distributed source coding is a lossless compression
technique to address the problem of compressing correlated
sources that are not colocated and cannot communicate
with each other to minimize their joint description costs. In
[26], Slepian and Wolf show that it is possible to compress
the data at a combined rate equal to the joint entropy of the
correlated source. Distributed source coding technology
requires precise and perfect knowledge of the correlations
among attributes, and will return wrong answers (without
warning) if this condition is not satisfied. In practice, the
cost of acquiring precise and perfect knowledge of the
correlations among attributes is extremely high. Our
approach smartly utilizes a simple probabilistic model to
depict spatial correlations among sensor nodes based on
rough data generated by each sensor node. All information
is processed locally and sensor nodes implicitly cooperate
with each other to ensure the data error bound of ADC.

Another technique widely used to reduce communica-
tion cost in WSNs is called time-series forecasting. In [16],
Lazaridis and Mehrotra propose to use time-series method
to create piecewise linear approximations of signals
generated by sensor nodes, and send those approximations
to the sink. Their approach gathers a large amount of data
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and tries to approximate them, rather than exploiting the
temporal correlations among sensor readings. In [17],
Chatterjea and Havinga describe an adaptive sensor
sampling scheme where nodes change their sampling
frequencies autonomously based on time-series forecasting,
so as to reduce energy consumption. They use time-series
forecasting to predict the future sensor readings. The
sampling frequency decreases against prediction accuracy,
otherwise increases the sample frequency. The skipped
samples are replaced by prediction values. In [11], the sink
uses simple linear time-series model that consists of a trend
component and a stationary autoregressive component to
predict the reading of each sensor. Each sensor node
updates its linear time-series model individually, instead
of raw data. The drawback of these existing works [11], [16],
[17] is that they only exploit temporal correlation within
sensor data to reduce the communication cost, without
considering sensor readings’ similarity of nearby sensor
nodes, which can be used to suppress the update messages
of nearby sensor nodes with similar sensor readings. In
ADC, by further exploiting the data generated by the local
estimation settled on each sensor node by using time-series
forecasting, we propose a novel tool, called correlation
graph, to model the spatial correlation within nearby sensor
nodes. Based on correlation graph, ADC only needs to
collect corresponding data of a subset of sensor nodes,
saving the energy cost of information update.

3 LOCAL ESTIMATION

In this section, we present the local estimation which aims
to reduce the communication cost among sensor nodes and
their cluster heads. By utilizing the local estimation, a
sensor node can estimate a newly generated reading
through a data model learned from its historic data. Each
sensor node sends the parameters of its local estimation
data to its cluster head, rather than the raw sensor
readings. If the difference between the estimated value
and the original value is no larger than a given threshold,
the sensor node does not upload its data to its cluster head.
As a result, the communication cost is reduced. The update
message is send only when the difference between
the estimated value and the original value exceeds the
prespecified threshold. In the following part of this section,
we present the data model used in the local estimation, and
then describe how to learn its parameters. The used
notations in this paper are summarized in Table I, and
the computation procedures on the cluster heads and the
sink are discussed in the next section.

3.1 Data Model

A sensor network S consists of a collection of n sensor
nodes fs1; s2; . . . ; sng and a sink node. All data generated by
sensor network S can be written as IF ¼ fF1; F2; . . . ; Fng,
where Fi ð1 � i � nÞ is a time series viðt1Þ; viðt2Þ; viðt3Þ; . . .
generated by sensor node si every T seconds. The whole
sensor network is grouped into clusters. Each sensor node
belongs to one cluster and sends its data to the cluster head
through a multihop path. Each cluster head processes the
data from sensor nodes in its cluster, and sends the result to
the sink through a multihop path. Given a fiducial

probability, the sink node requires a �-loss approximation
of IF, denoted as IP ¼ fP1; P2; . . . ; Png, in which Pi ¼ piðt1Þ;
piðt2Þ; piðt3Þ; . . . for 1 � i � n, 8i; t; jviðtÞ � piðtÞj � �.

We use the model proposed in [11] to estimate the
sensor readings of each sensor node. This linear model has
many characters that suit for our data collection scheme.
First, it is capable of predicting data that evolve slowly
over time. Utilizing this linear model, we can abstract the
spatial correlation between different sensors and the error
of our spatial correlation model can be easily controlled.
Second, this linear data model does not require a large
amount of training data or a priori knowledge of the
distribution of sensor values. Hence, it is suitable for sensor
nodes with limited computation capability. Each sensor
node learns its data model locally and updates its data
model when it is no longer a good approximation for its
sensor readings. The burden of computing and maintaining
the data model of each sensor node is distributed to each
sensor node. In this model, the reading viðtÞ generated by
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sensor node si at time t is modeled as miðtÞ þ �iðtÞ, where
miðtÞ is a linear trend component that grows over time, and
�iðtÞ is a three-degree weakly stationary autoregressive
component. The linear trend component miðtÞ ¼ ai þ bit,
where ai and bi are real constants, and the stationary
component �iðtÞ is defined as follows:

�iðtÞ ¼ ��iðt� 1Þ þ ��iðt� 2Þ þ ��iðt� 3Þ þ �iNð0; 1Þ;
ð1Þ

where �; �; � are real constants, and �þ � þ � < 1 since
�iðtÞ is stationary. The function �i is the standard deviation
of the white noise, and it also provides a measurement of
the accuracy of the local estimation. The estimation piðtÞ of
value viðtÞ is given by the sum of the current trend miðtÞ
and the predicator �iðtÞ, which can be rewritten as a linear
combination of the differences of the last three sensor
readings and their trend components:

piðtÞ ¼ miðtÞ þ �ðviðt� 1Þ �miðt� 1ÞÞ
þ �ðviðt� 2Þ �miðt� 2ÞÞ þ �ðviðt� 3Þ �miðt� 3ÞÞ:

ð2Þ

Let eiðtÞ ¼ viðtÞ � piðtÞ be the estimation error on node si
at time t, the following lemma gives the error bound and
error probability associated with piðtÞ. The detailed proof
and analysis of Lemma 1 can be found in [11].

Lemma 1. Let �i ¼ k�i, where k is an application specified real
constant larger than 1, the actual value viðtÞ is contained in
½piðtÞ � �i; piðtÞ þ �i� with error probability at most 1=k2.

3.2 Parameter Learning

Each sensor node generates a reading every T seconds and
inserts it into a queue Q of length N . During the parameter
learning phase, each sensor node compute the coefficient a
and b of the trend component based on the N readings
contained in Q by applying least-squares regression [28].
Then it computes the difference between each reading
stored in Q and its estimated trend value �iðtÞ ¼
viðtÞ �miðtÞ and stores all the values in a queue D. After
that, the sensor node uses the data in D to compute the
coefficients �; �; � by applying least-squares regression.
Finally, the standard deviation of the white noise can be
computed by the following equation:

�
0

i ¼
XN
i¼1

ðejðtiÞ � ejÞ2=ðN � 1Þ
 !�1=2

; ð3Þ

where ej refers to the average value of the items in D of
sensor node sj.

Since the local estimation model can be uniquely
identified by the above-mentioned five coefficients, a sensor
node transmits them to it cluster head, and the cluster head
can reconstruct the model to estimate the readings of this
sensor node.

3.3 Local Estimation Updating

In practice, the environment changes nonlinearly. Our
linear model must be self-adaptive to effectively predict
nonlinear phenomena. In order to maintain the accuracy of
the local estimation model, each sensor node periodically

checks the correctness of its local estimation model and
updates the parameters of its local estimation as needed. If
the estimation error falls outside ½��i; �i�, we call it is a
anomaly. Each sensor node detects the anomalies according
to the history of its sensor data. The anomalies can be
outliers, which transiently diverge from its data model, or
distribution changes, which persistently diverge from
current data model and suggest that the model needs to
be relearned. The local estimation model should be updated
only when the distribution changed. In order to distinguish
the distribution changes from outliers, we open a monitor
window of size WS to monitor the occurrences of
anomalies. A sensor node opens a monitor window when
it detects an anomaly. At the end of the monitor window,
the sensor node relearns its local estimation model only if
all estimation errors within the monitor window fall
outside ½��i; �i�. Otherwise, we consider sensor readings
outside ½piðtÞ � �i; piðtÞ þ �i� as outliers. Hence, each sensor
node requires WS�T seconds to determine whether the
parameters of its local estimation model should be
relearned or not.

In our simulation, WS is set to be 3. Lemma 1 proves that
a sensor reading whose estimation error exceeds �i does not
belong to the data distribution with error probability
smaller than 1=k2. If the estimation error falls outside
½��i; �i�, it is either an outlier, or the data distribution has
changed. But, the probability that outliers continuously
make estimation errors fall outside ½��i; �i� is very small.
Therefore, WS should be larger than 2. On the other hand,
the time required for checking the correctness of the local
estimation model is proportional to WS. Increasing WS can
reduce the false positive rate of the data distribution
change, but also increase the time required for checking
the correctness of the local estimation model. At the same
time, in our simulation, k is set to be larger enough ðk > 10Þ.
It is not necessary to set WS to be a large number to reduce
the false positive rate of the data distribution change.
Hence, we set WS to be 3. According to Lemma 1, we can
get the following lemma that depicts the relationships
among the real sensor readings viðtÞ and the estimated
values piðtÞ maintained at each cluster head.

Lemma 2. Let viðtÞ be the actual sensor reading of sensor node i
and piðtÞ be the estimated value of viðtÞ at time t stored at the
cluster head, then viðtÞ 2 ½piðtÞ � �i; piðtÞ þ �i� with error
probability at most 1=k2.

4 ADAPTIVE DATA APPROXIMATION

Utilizing the data generated by the local estimation of all
sensor nodes, the cluster heads cooperate with the sink
node to derive a �-loss approximation of IF. In this section,
we first introduce how to obtain a bounded-loss approx-
imation of the actual sensor data, and then present our
adaptive data approximation algorithm for approximation
data collection in detail.

4.1 Finding a Bounded-Loss Approximation

Sensor readings of nearby sensor nodes are very similar.
Since the cluster heads do not know the real sensor readings
of their sensor nodes, the cluster heads can only use the
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local estimation value of a sensor node to estimate the real
readings of the others. In order to reduce the estimation
errors, the sensor readings of the estimator should be very
close to that of the estimates (the sensor nodes to be
estimated). So, we need a metric to measure the sensor
reading similarity between two sensor nodes. Definition 1
provides a metric, called estimation distance, to measure
the sensor reading similarity between any two sensor nodes
based on their local estimation.

Definition 1. The estimation distance between any two sensor

nodes si and sj in S at time t is defined as DijðtÞ ¼
jpiðtÞ � pjðtÞj.

We find that the estimation error of estimating the real
sensor readings of sensor node si by utilizing the local
estimation of sensor node sj is related to the estimation
distance between si and sj and the estimation error of the
local estimation of sj. Lemme 3 shows their relationship.

Lemma 3. Let EijðtÞ be the estimation error of estimating viðtÞ
by pjðtÞ, we have EijðtÞ 2 ½0; �i þDijðtÞ� with error prob-

ability less than 1=k2.

Proof. According to Definition 1, we can get

EijðtÞ ¼ jviðtÞ � pjðtÞj ¼ jviðtÞ � piðtÞ þ piðtÞ
� pjðtÞj � jviðtÞ � piðtÞj þ jpiðtÞ � pjðtÞj
¼ jviðtÞ � piðtÞj þDijðtÞ:

By Lemma 2, viðtÞ 2 ½piðtÞ � �i; piðtÞ þ �i� with error
probability at most 1=k2. Therefore, it is easy to see that
the estimation error EijðtÞ 2 ½0; �i þDijðtÞ� with error
probability at most 1=k2. tu
According to Lemma 3, we can build a model called

correlation graph to describe the spatial correlation inherent
in sensory data. Before introducing correlation graph, we
would like to give the following definitions.

Definition 2. Sensor node si is �-similar to sj at time t, if and

only if �i þDijðtÞ � �, where � is a positive real constant.

Definition 3. �-similar set Wj is a set of sensor nodes that

9sj 2Wj, 8si 2Wj � fsjg, �i þDijðtÞ � �, where � is a

positive real constant and refers to the radius of the �-similar

set Wj. We define sensor node sj as the representation node of

�-similar set Wj, denoted as Rj, and Dðsi;Wj; tÞ ¼
jviðtÞ � pjðtÞj ¼ �i þDijðtÞ as the distance between si and
Wj at time t.

By Definition 3 and Lemma 3, we immediately have the
following lemma.

Lemma 4. The sensor reading of 8si 2Wj at time t can be

estimated by the local estimation data of the representation
node of Wj. The estimation error EirjðtÞ is less than � with

error probability at most 1=k2, if the radius of �-similar set Wj

is less than �. We define the local estimation data of the

representation node of Wj as the predictor of �-similar set Wj

at time t, denoted as wjðtÞ.
Proof. Let sj be the representation node of �-similar set Wj,

the estimation error of 8si 2Wj is EirjðtÞ ¼ jwjðtÞ �
viðtÞj ¼ jpjðtÞ � viðtÞj ¼ EijðtÞ. According to Definition 3,

we can get ð�i þDijÞ � � � �. By Lemma 3, it is very clear
that EirjðtÞ 2 ½0;��with error probability at most 1=k2. tu

Definition 4. For any arbitrary �-similar set Wj of sensor
network S, the �-loss approximation of �-similar set Wj at
time t is a function, fðtÞ, that, for 8si 2Wj, jviðtÞ � fðtÞj �
� with error probability at most 1=k2.

Definition 5. For sensor network S, a function set

�ðtÞ ¼
ff1;sðtÞ; f2;sðtÞ; . . . ; fx;sðtÞg is a �-loss approximation of
sensor network S at time t if for 8si 2 S, 9fðtÞ 2 �ðtÞ that
jviðtÞ � fðtÞj � � with error probability at most 1=k2.

By Definition 4 and Lemma 4, we can get that wjðtÞ is a
�-loss approximation of Wj. According to Definition 5, if
we divide a sensor network into several �-similar sets, we
can estimate the actual sensor readings of this sensor
network at time t by the predictors of these �-similar sets.
Let GsðtÞ be a partition of sensor network S at time t,
referred by GsðtÞ ¼ fg1;s; g2;s; . . . ; gx;sg, where gj;s is a �-
similar set with � � �. Now, according to the partition
GsðtÞ, we can obtain a predictor set of S at time t, referred
by SSðtÞ ¼ fw1;sðtÞ; w2;sðtÞ; . . . ; wx;sðtÞg, where wj;sðtÞ is the
predictor of gj;s at time t. By Lemma 4, it is easy to see that
SSðtÞ is a �-loss approximation of the data generated by
sensor network S at time t. Therefore, we have the
following theorem.

Theorem 1. Let IFðtÞ ¼ fv1ðtÞ; v2ðtÞ; . . . ; vnðtÞg be the data
generated by sensor network S at time t, any arbitrary
predictor set SSðtÞ of S is a �-loss approximation of IFðtÞ.

Now, we would like to introduce how to find a �-loss
approximation of sensor network S. Definition 3 describes
the spatial correlation between any two sensor nodes. For
all sensor nodes that belonged to a wireless sensor network,
if we add a directed edge from one sensor node to another
one when the first one is �-similar to the second one, we
can build a directed graph for this wireless sensor network
and the spatial correlation between any two sensor nodes
can be clearly depicted by this directed graph. We define
this directed graph as correlation graph.

Definition 6. For a prespecified positive real constant �, the
correlation graph GGsðV ;E; tÞ of sensor network S is a directed
graph at time t, where each vertex in V is a sensor node and
ei;j 2 E is a directed edge from si to sj. ei;j exists if and only if
ð�þDijðtÞÞ � �. We define � as the radius of correlation
graph GGðV ;E; tÞ. 8sj 2 V is a neighbor of si, if there is a
directed edge from si to sj.

Comparing the definition of representation node of �-
similar set with the definition of dominating set in graph
theory, we find that any arbitrary representation node set
IRS ¼ fR1;s; R2;s; . . . ; Rx;sg of sensor network S is a dom-
inating set of correlation graph GGsðV ;E; tÞ, where Rj;s is the
representation node of �-similar set gj;s 2 GsðtÞ, and any
arbitrary dominating set of correlation graph GGsðV ;E; tÞ,
denoted as IDsðtÞ, is also a representation node set of sensor
network S. This means that we can get a representation
node set of sensor network S by constructing a dominating
set for the correlation graph GGsðV ;E; tÞ. By Theorem 1, we
can convert the problem of finding a �-loss approximation
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of wireless sensor network S into that of finding a
dominating set of correlation graph GGsðV ;E; tÞ. Therefore,
we have the following lemma.

Lemma 5. Let IDsðtÞ ¼ fR1;s; R2;s; . . . ; Rx;sg is a dominating set
of correlation graph GGsðV ;E; tÞ, where node Rj;s is the
representation node of �-similar set gj;s 2 GsðtÞ. The predictor
set of IDsðtÞ, referred as SSðtÞ ¼ fw1;sðtÞ; w2;sðtÞ; . . . ; wx;sðtÞg,
is a �-loss approximation of IFðtÞ, where wj;sðtÞ is the local
estimation value of representation node Rj;s.

Unfortunately, the correlation graph GGsðV ;E; tÞ of
sensor network S cannot be directly computed, since the
estimation distances between any two sensor nodes cannot
be obtained unless the local estimation data of all sensor
nodes had been send to the sink node. Therefore, we cannot
directly find a �-loss approximation SSðtÞ of IFðtÞ by finding
a dominating set of correlating graph GGsðV ;E; tÞ. For any
arbitrary cluster Ci, the local estimation data of every senor
node is timely updated to its cluster head hi. Instead of
generating a correlation graph GGsðV ;E; tÞ for sensor net-
work S, we can generate a correlating graph GGiðV ;E; tÞ for
any arbitrary cluster Ci in its cluster head and compute a �-
loss approximation for cluster Ci by finding a dominating
set of correlating graph GGiðV ;E; tÞ. As a result, we divide
the task of finding a �-loss approximation of wireless
sensor network S into finding a dominating set of the
correlation graph of each cluster in its cluster head.
Dividing a sensor network into several clusters brings two
benefits. The first one is that it makes ADC scalable. ADC
can be applied to large-scale wireless sensor network
without considering the size of WSNs. The data processing
complexity can be easily controlled by the size of each
cluster. The second one is that it makes the data processing
close to the data source which can reduce the burden of
data transmission. According to Lemma 5, we can get the
following corollary.

Corollary 1. Let IDiðtÞ ¼ fR1;i; R2;i; . . . ; Rx;ig be a dominating
set of correlation graph GGiðV ;E; tÞ of cluster Ci and SSiðtÞ ¼
fw1;iðtÞ; w2;iðtÞ; . . . ; wx;iðtÞg be a predictor set of IDiðtÞ, we
can get that SSðtÞ ¼ [SSiðtÞ is a �-loss approximation of
IFðtÞ. Let SS ¼ fSSðt1Þ; SSðt2Þ; . . . ; SSðtnÞg, where for 8i
tiþ1 � ti ¼ T , we can get that SS is a �-loss approximation
of IF.

4.2 Adaptive Approximate Data Collection

Corollary 1 provides an approach for finding a �-loss
approximation of IF. Since sensor readings change slowly
according to the change of physical phenomena, our adaptive
data approximation algorithm should be self-adaptive to the
changes of the sensor readings timely. Our data approxima-
tion algorithm consists of two parts: data approximation
learning algorithm and data approximation monitoring
algorithm. The data approximation learning algorithm runs
on every cluster head and is responsible for finding a �-loss
approximation of the true sensor data of each cluster. The
data approximation monitoring algorithm consists of two
parts. One runs on every cluster head continuously. It
monitors the changes of the parameters of the local
estimation and decides whether to send an update message
to the sink node or not. The other part, which runs on the sink

node, is responsible for updating the �-loss approximation
according to the update messages from each cluster head.

The learning algorithm. Cluster head hi starts the data
approximation learning algorithm after having received a
local estimation from each sensor node within cluster Ci. By
Corollary 1, cluster head hi only needs to send SSiðtÞ to the
sink node, instead of the local estimation of all its sensor
nodes. The cluster head sends one message to the sink node
for each �-similar set. Each message contains all coefficients
of the predictor of a �-similar set and the IDs of the sensor
nodes that belong to this �-similar set. The number of
messages required by hi is the cardinality of SSiðtÞ, denoted
as jSSiðtÞj. Therefore, the number of messages generated by
the data approximation learning algorithm is jSSðtÞj, which
should be minimized to reduce the communication cost
between cluster head hi and the sink node. Since we cannot
get the correlation graph GGsðV ;E; tÞ and divide a wireless
sensor network into several clusters, we minimize [jSSiðtÞj.
By Lemma 5, min[jSSiðtÞj ¼ [minjSSiðtÞj ¼ [minjIDiðtÞj.
Hence, the problem of min[jSSiðtÞj is converted into finding
a minimum dominating set of each correlation graph of
each cluster, respectively. Finding a minimum dominating
set for a directed graph is known to be NP-hard [29]. An
approximate minimum dominating set can be obtained in
OðjV j2Þ time using the greedy algorithm proposed in [30].

The details of the data approximation learning algorithm
are shown in Algorithm 1. The cluster head hi first
generates a correlation graph GGiðV ;E; tÞ (line 1). Then, we
adapt the greedy algorithm proposed in [30] to find an
approximate minimum dominating set for GGiðV ;E; tÞ. The
greedy heuristic algorithm finds a �-similar set in each
iteration and stops when all nodes are removed from V . In
each iteration, the cluster head finds the node v with largest
out degree and sets v as the representation node of wi (line
4-5), and then adds all neighbors of v to wi (line 6). Then, all
the nodes in wi are removed from vertex set V (line 7-8). The
algorithm stops when V is empty. At the end of this phase,
each cluster head sends its predictor set and all �-similar
sets to the sink node.

Algorithm 1. The Data Approximation Learning Algorithm

1: Generate correlation graph GGiðV ;E; tÞ;
2: i ¼ 0;
3: while jV j > 0 do

4: v ¼ FindLargestOutDegree(V );

5: w½i�.representation_node=v;

6: w½i�.similarity_set=AllNeighbor(v);

7: V� ¼ fvg;
8: V� ¼ w½i�.similarity_set;

9: i++;

10: end while

11: return w;

The monitoring algorithm. Our data approximation
monitoring algorithm guarantees that the predictor set SS
stored in the sink node is a �-loss approximation of IF at all
times. Each cluster head starts the data approximation
monitoring algorithm after the data approximation learning
algorithm. The data approximation monitoring algorithm
updates all local estimation data according to the received
local estimation update messages and checks the estimation
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error of each �-similarity set every T seconds. As we have
discussed in Section 3, each sensor node requires WS�T
seconds to check the correctness of it local estimation
model, the estimation error check is delayed by WS�T
seconds. If the radius of any �-similar set exceeds �, the
cluster head will adjust its local �-similarity sets and send
the changes to the sink node. The sink node updates SS
according to the update messages from the cluster heads.

The details of the data approximation monitoring
algorithm for cluster heads are shown in Algorithm 2. The
algorithm first updates all local estimations according to all
local estimation update messages M received in last T
seconds (line 1). Line 2-12 search each �-similar set and find
out all sensor nodes that are no longer �-similar to their
representation nodes, then add them into node list CC. All
empty �-similar sets are removed (line 9-10). Each sensor
node in CC tries to find a �-similar set to join in by invoking
the procedure Join() (line 14). If there is no such a set, a new
�-similar set will be created for this node by invoking the
procedure CreatNewSet() (line 16). Line 20 sends the
update messages to the sink node.

Algorithm 2. Monitoring Algorithm for the Cluster Heads

1: UpdateMessagePrc(M);

2: for all W 2 G do

3: for all s 2W do

4: if Dðs;W; tÞ > � then

5: CC ¼ CC [ fsg;
6: W� ¼ fsg;
7: end if

8: end for

9: if W ¼ � then

10: G� ¼W ;

11: end if

12: end for

13: for all s 2 CC do

14: flag=Join(s);

15: if flag==0 then

16: W ¼ CreatNewSet(s);

17: G ¼ G [W ;

18: end if

19: end for

20: SendUpdatemsg();

The data approximation monitoring algorithm only
requires two kinds of update messages: the �-similar set
creating message and the �-similar set updating message.
The former creates a new �-similar set at the sink node, while
the latter is used to update the predictor of a �-similar set or
add new sensor nodes into it. Note that explicitly sending a
message for removing a sensor node from a �-similar set is
not necessary, because no sensor node belongs to two or more
�-similar sets simultaneously. Adding a node into a �-
similar set means removing it from another one.

The details of the data approximation monitoring
algorithm for the sink node are shown in Algorithm 3.
After receiving an updating message M, the sink node first
checks its message type. If it is a �-similar set creating
message, it first removes all the nodes contained in M from
current exiting �-similar sets (line 2), then creates a new �-
similar set and adds all these nodes contained in M into

the new �-similar set (line 3). If M is a �-similar set
updating message, the sink node first removes all the
nodes contained in M from current exiting �-similar sets
(line 7), then updates the predictor of the specified �-
similar set or add all the node contained in M into the
specified �-similar set (line 8). Finally, all empty sets are
removed (line 10-14).

Algorithm 3. Monitoring Algorithm for the Sink Node

1: if msgtype is �-similar set creating message then

2: Remove(M);

3: W ¼ CreatNewSetðMÞ;
4: G ¼ G [ fWg;
5: end if

6: if msgtype is �-similar set updating message then

7: Remove(M);

8: SetUpdate(M);

9: end if

10: for all W 2 G do

11: if W ¼ � then

12: G� ¼W ;

13: end if

14: end for

5 PERFORMANCE EVALUATION

In this section, we present an extensive performance
evaluation of our approximation data collection approach
using real-world data. Our trace-driving simulations
demonstrate that the proposed approximation data
collection mechanism ADC can notably reduce commu-
nication cost.

5.1 Experimental Setup

We conduct trace-driven simulations to evaluate the
performance of our scheme using the data traces collected
from a real-world deployment. We deploy 88 TelosB sensor
motes in a garden and collect sensor readings of
temperature generated every 30 seconds for 10 hours at
night. There are many trees and bush in the garden. Sensor
nodes are randomly in the garden. In order to guarantee
the collectivity of the whole sensor network, we vary the
distance between two nearby sensor nodes from 3 meters
to 6 meters and make sure that each sensor node has at
least two nearby sensor nodes in sight. In our experience,
the power level of the wireless radio is set to be 2 by using
the interface provided by TinyOS. We also collect the
topology information of our sensor network, including the
neighbor sets of the sensor nodes and the packet loss rates
of each links. Fig. 1 shows the temperature readings of five
randomly chosen sensor nodes. We can see that the
temperature drops from 22:7�C to 19�C.

Note that the used data set includes a large number of
missing readings due to unreliable wireless multihop
transmissions. We use linear interpolation to infer the
missing sensor readings and drop the data of 20 sensor
nodes that cannot be recovered, in which eight sensor nodes
have 100 percent packet loss rate, eight sensor nodes have
packet loss rate larger than 90 percent, and four sensor
nodes encounter sensor device errors.

The topology used in our simulation is the same as the
real topology of the sensor network deployed in the garden
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and we discard the links with packet loss rates larger than
20 percent, so that the route can be built on relatively
reliable links. For experiences of Sections B and C, we
divide the whole sensor network into two clusters accord-
ing to the locations of the sensor nodes. One cluster contains
29 sensor nodes and the other one contains 39 sensor nodes.

5.2 Communication Cost and Data Error

We evaluate the performance of ADC in terms of total
communication cost and data error, and compare ADC with
SAF [11] which aims reducing communication cost of
wireless sensor networks. ADC and SAF use the similar
mechanism to reduce the communication cost of wireless
sensor network. They both achieve efficiency in communica-
tion cost at the expense of data accuracy. Both ADC and SAF
use a linear model to describe the sensor reading of a sensor
node. SAF use a linear model to compress the sensor data, but
our scheme ADC reduce the communication cost by further
exploiting the spatial correlation of sensor data based on the
linear model use to compress the sensor data. Hence, we
compare ADC with SAF. In the simulations, the length of the
learning phase in SAF and that in ADC are set to 10 minutes.

Communication cost. We begin with investigating the
communication costs of the two approaches, which is
defined as the sum of the messages sent by all sensor
nodes. As shown in Fig. 2, the communication costs of ADC
and SAF decrease against the error bound �, and both the
two decreasing trends become smooth as � increases.
Compared with SAF, ADC has less communication costs
when � > 0:4, and ADC achieves more message saving as
� increases. When � ¼ 0:8, the communication cost of ADC
is only about 79 percent of that of SAF.

It should be noted that when � ¼ 0:4, the communica-
tion cost of ADC is larger than that of SAF. The first reason
is that the message paths used by ADC are longer than that
used by SAF, because the message paths used by ADC
traverse the cluster heads and SAF directly send its message
to the sink node. The second one lies in that ADC brings in
exorbitant communication cost on informing the sink node
the updates of the �-similar sets when � is small.
Specifically, when � is small, the radius of �-similar sets
is small and the number of �-similar sets increases. More
messages are required to update the changes of the �-
similar sets. Moreover, it is more likely that a sensor node
may frequently leave or join in a �-similar set with small
prespecified error bound �, because its expected estimation
error is more likely to exceed small prespecified error

bound �. This increases the number of messages required
to inform the sink node the updates of the �-similar sets.
More details of the impact of the radius of �-similar sets on
the communication cost will be given in the next section.

Data error. Next we compare the data errors (measured
in absolute value) introduced by SAF and ADC. Fig. 3
illustrates the average data errors of SAF and ADC for
varying data error bounds. Recall that the data error
introduced by ADC can be divided into two parts: local
estimation error and data approximation error. The former
depends on the Gaussian white noise Nð0; 1Þ and k, while
the latter is the difference between the local estimation of a
sensor node and that of its representation node. Since the
radius of the �-similar sets is set to � in ADC, the increase
of � allows the �-similar sets to contain sensor nodes with
larger estimation errors. As a consequence, the average data
error of ADC increases with �, as shown in Fig. 3. Although
the average data error of ADC is larger than that of SAF, the
difference between them is very small: it is always less than
0:1�C and decreases slowly against �.

Fig. 4 depicts the CDFs of data error of ADC and SAF
under variant �. We can see that as � increases from 0.5 to
0.8, the distribution of data error in SAF is more balanced
than in ADC, i.e., more sensor nodes have a small data error
in SAF, which is in accordance with the results in Fig. 3.
These results imply that ADC achieves efficiency in
communication cost at the expense of data error, and more
importantly, the error bound can be adjusted by users.

5.3 Impacts of Parameters

The following simulations focus on the impacts of para-
meter k and � on the efficiency and accuracy of ADC.

The communication cost of ADC can be divided into
two parts: the communication cost of the local estimation
(CCLE) (the green parts in Fig. 5), which is used to
transmit the local estimation data of each sensor node from
each senor node to its cluster head, and the communica-
tion cost of the data approximation (CCDA) (the red parts
in Fig. 5), which is used to transmit the information related
to each �-similar set from cluster heads to the sink node.
As shown in Fig. 5, the experiment results reveal that the
values of k and � have notable impacts on communication
cost. First, the communication cost reduces against �.
Since the radius of �-similar set, �, is set to � in ADC and
a large � means a large distance between a sensor node
and its �-similar set. A larger distance can endure larger
sensor reading changes and this reduces the frequency of
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�-similar set member changes caused by sensor reading
changes. Hence, the communication cost reduces against
�. CCLE is only affected by the parameter k and reduces
against K since the local estimation can endure more data
error as k increase. Second, � has more impact on the
communication cost than k. As show in Fig. 5, CCDA
drops faster than CCLE as � increase. A small � and a
large k can make �-similar sets unstable and increase
CCDA of ADC, as illustrated in Fig. 6 when � ¼ 0:5. In
ADC, for each sensor node, the upper bound of the

distance between a sensor node and its representation
node, denoted by UD, is determined at the local estimation
phase and is equal to the difference between � and it local
estimation upper bound which is given by k�i in Lemma 2
and increases as K. Hence, for each sensor node, UD can
be regarded as a constant before the local estimation be

recomputed, and UD is small when � is small and k is
large. Since a sensor node leaves its �-similar sets only
when the distance between it and its representation exceed
UD, it is more likely that a sensor node will leave or join in
a �-similar set when UD is small.

Next we evaluate the impacts of k and � on the
accuracy of ADC. Fig. 6 shows the data error of ADC for
different k and �. Fig. 7 shows the cumulative distribution
of the data error for different k and �. For a given �, the

cumulative distribution curves of the data error for
different k is similar, hence we only give the cumulative
distribution curves of the data error for k ¼ 10 and k ¼ 16.
As shown in Fig. 6, the average data error of ADC is not
obviously affected by k. In Fig. 7, we can see that the CDF
of data error does not change obviously as k changes.
According to Figs. 6 and 7, we can infer that the accuracy
of ADC mainly depends on �, while k has very little

impact. The error upper bound of local estimation depends
on k. And the increase of k results in the increase of the
local estimation error. The data errors introduced by the
representation nodes are limited by the difference between
the local estimation error and �. Since whether a sensor
node joins in a �-similar set or not depends on the sum of
the two kinds of errors, the increase of k reduces the
estimated distance between sensor nodes and their

representation nodes when � is fixed.
Now, we investigate the maximum error of ADC. From

Fig. 8, we can see that the maximum error of ADC is a little
larger than the error bound � and increase with �. From
Fig. 7, we can see that a small fraction of data error is larger
than the error bound �. The local estimation of ADC
relearns the parameters of its data model only when the
absolute value of the estimation error continuously exceeds
�i several times. Otherwise, these sensor readings with

estimation error larger than �i are considered as outliers.
The data errors of these outliers may be larger than �.
Therefore, we conclude that the maximum error of ADC is
approximately bounded by �.
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5.4 Impacts of Cluster Size

The following simulation focus on studying the impact of
cluster size on the message efficiency and accuracy of ADC.
We divide the whole sensor network into two clusters, three
clusters and four clusters, respectively, according to the
locations of the sensor nodes. The size of each cluster is
given in Table 2.

Now we investigate the communication costs for
different cluster size. Fig. 9 shows that the cluster size
has difference impact on CCLE (the green part in Fig. 9)

and CCDA (the red part in Fig. 9). First, the CCLE reduces
against the cluster size. The CCLE relates to the number of
messages generated by each sensor nodes and the
distances among sensor nodes and their cluster heads.
According to the local estimation part, the number of
messages generated by sensor nodes is decided by the
parameter k. The distances between sensor nodes and their
cluster heads decrease as cluster size. As a result, the CCLE
reduces against the cluster size. Second, the CCDA
decreases against the cluster size at first when the number
of clusters changes from 2 to 3, but increases as the cluster
size when the number of clusters changes from 3 to 4,
especially when � ¼ 0:5 in Fig. 9. The CCDA mainly
relates to two factors: the number of messages generated
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by our data approximation algorithm and the distances
between the cluster heads and the sink node. The number
of sensor nodes that can be included in a �-similar sets
decrease with the size of cluster. But, the total number of
sensor nodes is not changed. Therefore, the number of �-
similar sets increases when the cluster size reduce and this
makes the number of messages that generated by our data
approximation algorithm increase when the cluster size
reduce. But, when the cluster size reduces, more cluster
heads are close to the sink node. The reduction of path
length can reduce the CCDA. As a result, those two
reasons combined together make the CCDA decrease when
the cluster size decrease at the beginning, but increase
when the cluster size further decrease. Third, the total
communication cost reduces when the cluster size reduce
in most cast, and the impact of the cluster size on the
CCDA decreases when � increases. Fig. 9 also shows that
� is main fact that affect the efficiency of ADC, which is in
accordance with the analysis in the previous section.

The impact of cluster size on the accuracy of ADC is shown
in Fig. 10. For the same �, the average data error slightly
fluctuates within a narrow range when the cluster sizes and k
change. This is in accordance with Fig. 6. As we analyzed in

the previous section, the data errors are limited by � and are
the sum of two errors: the local estimation error and the data
approximation error. Increasing one of them will reduce the
other one when � is fixed. According to Figs. 10 and 6, we can
conclude that the accuracy of ADC mainly depends on
parameter �. Parameter k and the cluster size have very
limited impact on the accuracy of ADC.

6 CONCLUSION

In this paper, we propose a novel approximate data collection
strategy ADC in WSNs. ADC can approximate all readings of
a sensor network by exploiting the fact that physical
environments frequently exhibit predictable weak stable
state and strong temporal and spatial correlations between
sensor readings. Our work detects data similarities among
the sensor nodes by comparing their local estimation models
rather than their original data. The simulation results show
that our approach can greatly reduce the amount of messages
in wireless communications by as much as 21 percent
compared with existing works. In the future, we plan to
implement and evaluate our work in real sensor networks.
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