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Abstract—Routing dynamics are intrinsic characteristics of
operational wireless sensor networks (WSNs). We present the
measurement and analysis results for routing dynamics in a large-
scale WSN. We seek to answer several fundamental questions:
How dynamically are current routing protocols performing?
What causes routing dynamics? What is the impact of routing
dynamics? Answers to the above questions are critical to un-
derstanding the interactions among multiple network elements,
evaluating protocol design strategies, and improving system
performances. However, measurements in large-scale WSNs are
challenging due to the lack of dedicated log information (be
analogous to configuration files, syslog messages used in Internet).
We propose an approach to identify the routing dynamics based
on limited information and correlate them with system events to
find out the root causes. The key findings of our study include:
1) parent change events mainly affect local nodes, i.e. they do
not cause routing instability on far-away nodes; 2) environment
dynamics and routing loops have large impact on routing; 3)
small portion of parent changes might not be necessary, while
a large portion of parent changes are effective in improving
network performance.

I. INTRODUCTION

Wireless sensor networks (WSNs) are deployed for various

applications, e.g., event detection [1], [2], target tracking [3]

and environment monitoring [4], [5]. Many WSNs interact

closely with the environment. Therefore, how a WSN system

operates is intuitively affected by the environmental dynamics,

including weather condition changes, urban traffic flows and

signal interference from other applications like WiFi. These

unknown dynamics impose serious challenges on predicting

the quality of wireless links for the routing protocols and

subsequently lead to the fluctuation of system performances.

To adapt to environment dynamics, dynamic routing proto-

cols are widely adopted in wireless ad-hoc networks [6], [7],

[8]. In those protocols, the routing path is regularly updated

to maintain consistent network performance. As dynamic

routing protocols over large-scale wireless sensor networks

become popular and they are significantly affected by dynamic

environments, the expectation of good routing performance

has dramatically increased: large fluctuation of system per-

formances caused by environmental dynamics is not accept-

able. To meet this challenge, protocol designers have made

tremendous efforts to improve routing performance. Most of

those efforts are based on measurement-driven insights from

small real systems [9], [10]. There have been several studies

with controlled lab settings to evaluate how wireless links

vary over time and space [11], [12], [13]. Very few work

on understanding how the dynamic environment affects the

routing performance in the wild and at scale.

Currently, lots of large-scale outdoor systems have attracted

people’s attention and provide real services. In this aspect,

it becomes important to systematically understand routing

dynamics in a large WSN. This knowledge can help designers

to better focus on optimizing the performance metrics(e.g.,

packet delivery ratio and delay). Specifically, answers to the

following fundamental questions are common interests:

• How dynamically are current routing protocols perform-

ing?

• What causes routing dynamics?

• What is the impact of routing dynamics?

However, understanding routing dynamics in large-scale

WSNs is challenging. First, the deployment of a large scale

WSN is non-trivial. We cannot be aware of locations with

highly environment dynamics. In advance, given limited infor-

mation, WSN operators cannot make precise judgements on

the correctness and effectiveness of routing decisions in the

network. Second, it proves difficult to estimate and verify the

impact scope of a network event in large-scale WSNs. Third,

better measurements require better equipments and workload.

Nonetheless, local log systems and external monitoring are

hardly achieved for resource-constrained WSNs. To address

these issues, we propose an approach to characterize routing

dynamics by correlating system events and seek to identify the

underlying causes of routing dynamics.

Our goals are two-fold. Firstly, we seek to characterize net-

work routing dynamic patterns in large-scale WSNs. Secondly,

we want to understand the root causes and the impact of those

dynamics to the design of future routing protocols in large-

scale WSNs. Since our system is based on the Collection

Tree Protocol (CTP) [6], the routing dynamics are essentially

caused by the route selection, which refers to the dynamics of
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parent change events in CTP. Therefore we will focus on the

study and analysis of parent change behaviors in this work.

To better understand routing dynamics in large-scale WSNs,

we study this problem from three perspectives:

• Characterizing the spatial-temporal characteristics of
routing dynamics. Route selection is a key functionality

of dynamic routing protocols. Characterizing routing dy-

namics can help to understand the interactions of multiple

network elements. To this end, we extract path change

events and analyze when, where, and under what kind of

circumstances routing dynamics occur.

• Revealing the root causes of routing dynamics. Root

causes are explored to understand the key factors that

affect routing dynamics. However, extracted path change

events are insufficient to disclose the underlying causes.

Therefore, we also extract other system events such as

packet loss events and routing loop events. Examining

their spatial-temporal correlations, one can better under-

stand their causal relationships.

• Estimating the impact of routing dynamics. In man-

aging a WSN, operators need to focus on system per-

formance metrics like packet reception ratio (PRR). Un-

derstanding the impact of routing dynamics on system

performance can evaluate the effectiveness of routing

protocols. In this study, we analyze the effectiveness of

CTP routing selection mechanism by comparing the PRR

before and after making routing decisions.

We obtain several key observations from our study:

• Parent change events mainly affect the local area.
A routing decision might affect local nodes while the

probability of affecting far-away nodes is fairly low.

• Variations in humidity affect the link qualities to a
large extent. Therefore, environment has a large impact

on routing dynamics. Variations in humidity may cause

huge packet losses and even no possibility to find an

available route.

• Routing loops and parent change events show strong
correlation. Routing loops have a close relationship with

routing dynamics. The majority of loops can be recovered

within a short duration while others need a much longer

time to be recovered.

• Most route selections are effective. While a large por-

tion of parent changes is effective in improving network

performance, a small portion of parent changes might not

be necessary. 30% of the parent changes might not be

effective in improving network performance.

The rest of this paper is organized as follows. Section

II presents the related works. System architecture and data

sources are described in Section III. In Section IV we define

and extract the parent change events. We characterize temporal

and spatial distributions of parent change events in Section

V. We correlate system events to identify the root causes of

routing dynamics in Section VI. In Section VII, we estimate

the effectiveness of current routing selection mechanism in

CTP. Finally, our work is concluded in Section VIII.

II. RELATED WORKS

Recently, the research community has made lots of ef-

forts on deploying real-world sensor networks and conducting

performance measurements of these systems. These studies

show valuable observations and guidelines to the design and

implementation of network protocols. However, most of those

results are based on controlled testbeds or small networks, and

thus fail to consider many practical and critical factors for

large-scale sensor networks. In this section, we review studies

on sensor network deployments and related measurement

studies.

A. Large-scale WSN deployments

Deploying sensor networks is always a multi-faceted job

since during the pre-deployment test we cannot simulate all

conditions which would happen in a real environment. Tolle et
al. [14] conduct an experiment to monitor the microclimate

of a redwood tree. Unfortunately more than a half of sensors

cannot form a routing tree after the deployment, and nearly

15% of the remaining nodes die in one week by exhausting

their battery power. Though this study gives valuable guidance

to early sensor network design, the network scale is small

and cannot reflect intrinsic characteristics in large-scale sensor

networks. Viginet [15] uses a 200-node network to support

long-term military covering of 100∗100 square meters. ExScal

[16] is an attempt to deploy a sensor network at an extreme

scale. The system consists of about 1000 sensor nodes and

200 backbone nodes, covering 1300 ∗ 300 square meters.

SenseScope [17] is a real-world deployment on a rock glacier,

consisting of about 100 sensor nodes. They provide many

practical guidelines for large-scale WSN deployments, but few

of them focus on routing dynamics.

B. Sensor network measurements

Considering unpredictable performances in real environ-

ments, researchers design indoor controlled testbeds to conduct

experiments for exploring more nuances. Testbeds help us to

understand in-depth network behaviors. MoteLab developed

by Harvard university provides a web interface for users to

easily program sensor applications and conduct experiments

remotely. Maheshwasi et al. [18] conclude that the physi-

cal interference model is most accurate comparing to other

interference models in two testbeds. Although those testbeds

bring benefits to explore specific aspects in sensor networks,

testbeds can hardly simulate real environment.

In sensor network systems, measurement studies are limited

by the system scale and constrained resources on sensor nodes.

Werner-Allen et al. [9] use a wireless sensor network to

monitor volcanic eruptions within a 19-day deployment and

collect over 54 hours of continuous data which include at least

9 large explosions. They analyze the packet loss performance
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Fig. 1. The overview of prototype system deployment

and propose some hypotheses of the causes, e.g., equipment

dropouts, weather conditions and temperature fluctuations.

Due to lack of extra information, those hypotheses cannot be

well validated by the data analysis.

Packet delivery performance is one of the most important

indicator for wireless communications and thus attracts many

research efforts. Zhao et al. [10] report packet delivery

performance measurement on medium-sized sensor networks

in three different environments. They obtain some interesting

findings, e.g., gray areas of radio communications and a high

percentage of asymmetric links. Srinivasan et al. [19] conduct

an experiment to identify root causes of packet losses. They

show that packet losses are highly correlated over short-

time periods, but are independent over longer periods. They

also show that though RSSI value change over time,it still

can provide useful information for the link estimation if the

receiver’s noise floor is known.

We have conducted a measurement study of a large-scale

network in the forest [20], which mainly focuses on the eval-

uation of overall system performance, especially the packet

delivery ratio.

C. Internet measurements

Traditional Internet measurements always rely on experi-

enced operators and dedicated instrumentations broadly de-

ployed across the network. Maropooulou et al. [21] use

passive optical taps and high-speed packet capture hardware

to study failure in the Spring backbone. To avoid significant

capital and operational expense, Turner et al. [22] extract

sufficient knowledge from router configuration files, syslog

archives, and operational mailing list announcements. How-

ever, measurement on large-scale sensor networks is even more

challenging due to complex wireless behaviors.

III. NETWORK ARCHITECTURE AND DATA SETS

A. GreenOrbs system

Our research project “GreenOrbs” was started from April

2009. We want to build a long-term large-scale WSN system

which aims to provide services to many forestry applications

such as canopy estimation, fire risk prediction, etc. The system

currently uses TelosB motes with msp430f1611 processor

and CC2420 radio. We develop programs based on TinyOS

2.1.1 [23]. Each node periodically collects environment data

including temperature, humidity, carbon dioxide concentration.

Each node also records system status, and delivers three
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Fig. 2. Component graph of GreenOrbs implementation

TABLE I
PACKET CONTENT

C1 Sensing Data temperature,humidity
light and voltage

Path Data parent node ID
routing path length

node ID along the path
C2 Routing Table neighbor ID

neighbor’s RSSI value
link ETX value
path ETX value

C3 Statistics Counter parent change counter
loop counter

drop no ack counter

packets to the sink node every 10 minutes. Figure 1 is the

deployment overview of our prototype system. The component

graph of the software design is shown in Figure 2. Many

protocols are used, like [6], [24].

In CTP protocol each node maintains a routing table which

records the next hop information associated with the destina-

tion. Packets are delivered to the next hop as recorded in the

routing table and the process repeats until the packets reach the

sink. The route selection is based on the ETX metric which is a

measure of the transmission cost. ETX estimation is updated

by both the control plane traffic and the data plane traffic.

CTP controls the beacon rate by increasing Trickle time when

a node reboots or detects a loop. When the network is steady,

it can also reduce unnecessary control plane traffic.

B. Data sets

We use a data set containing 343 nodes from December 19,

2010 for 10 days. The data includes three types of packets:

“Sensing Packets” (C1 packet), “Network Status Packets” (C2

packet) and “Statistic Packets” (C3 packet). Table I shows the

format of these three types of packets. In particular, the parent

change counter records the accumulated number of parent

changes, the loop counter records the accumulated number

of detected loops and the drop no ack counter records the

accumulated number of packet drops due to be exceeded the

retransmission threshold (i.e., 30 in CTP).
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Dec. 19 Dec. 20 Dec. 21 Dec. 22 Dec. 23 Dec. 24 Dec. 25 Dec. 26 Dec. 27 Dec. 28

Fig. 3. Parent change at a glance. The y-axis denotes the node ID in ascending order. Each parent change event is represented by a line on the plot, located
according to the start of the event. A red line indicates a parent change event with high frequency. A green line indicates a parent change event with low
frequency.

IV. TERMINOLOGIES

A. Defining and identifying routing dynamics

In CTP protocol, each node dynamically chooses one parent

node as its forwarding node, so routing dynamics are essen-

tially caused by the parent selection. To study the routing

dynamics, we first define parent change events.

We define a parent change event as a quadruple: 〈 id, t,
pa,pb 〉, which indicates that node id changes its parent from

node pa to node pb at time t. Detecting all parent change

events in the system, however, is challenging since limited

external flash cannot support massive event logs. Therefore,

we use a parent change counter to track parent change events

and the accumulated counter value is periodically reported to

the sink node. We define a detectable parent change event

as 〈 id, ta, pa, tb, pb, counterpc, freq 〉. It means that

node id has counterpc times of parent changes between time

interval ta and tb, as well as the parent of node id is pa
at ta and pb at tb respectively. The freq value denotes the

parent change event frequency which is the average number

of parent changes every 10 minutes. For example, if the

duration of the parent change event are 50 minutes and the

counterpc records 30 parent changes in this interval, then the

frequency of the parent change event is 6. Similarly, we define

a tuple 〈 id, ta, tb, counterloop 〉 as a loop event. It means

node id encounters counterloop loops between ta and tb. The

definition of no ack drop events is a quadruple 〈 id, ta, tb,

counterloss 〉 as a no ack drop event, which means the node

id drops counterloss packets between time interval ta and tb
due to no ack received from parent nodes after exceeding the

retransmission threshold.

B. Event extraction

17,644 parent change events are extracted from the data set.

We find that the sink was down during 14:40 December 24,

2010 to 8:20 December 25, 2010. So when excluding the sink

down period, the number of remaining parent change events

is 17,281 with 201,734 parent changes.

V. CHARACTERIZING ROUTING DYNAMICS

We ask several fundamental questions regarding the protocol

strategy for routing dynamics. Especially, we consider:

• How often do parent changes occur? Where and when do

they frequently?

• How long do parent changes last? Are routing links near

to sink stable than others?

A. Event history at a glance

Figure 3 shows the spatial and temporal distributions of

parent change events. Each parent change event is represented
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by a line on the plot, located according to the start of the

event. A red line indicates a parent change event with high

frequency. A green line indicates a parent change event with

low frequency. We have two observations from Figure 3:

• Horizontal banding
Some nodes experience periodic horizontal bandings in-

dicates the parent change events exhibit the feature of

periodicity. At these nodes, HPC events and LPC events

are interleaved regularly. We will further look into such

a phenomenon in section VI-B.

• Vertical banding
We observe vertical bandings covering a subset of nodes.

In this case, a subset of nodes experience parent change

events simultaneously. This is mostly caused by routing

loops. A further discussion will be in section VI-C.

B. Aggregate statistics

To have a first look at the routing dynamics in our system,

we investigate three aggregated statistics: the number of parent

changes experienced by a node, the frequency of parent change

events, and the lifetime for each routing link.

1) Number of parent changes per node: We present a global

statistics of the number of parent changes for each sensor

node. The overall statistics is shown in Figure 4, where the

y-axis represents the number of parent changes and the x-axis

represents the node IDs sorted according to the y-axis value.

As shown in Figure 4, 80% of nodes whose number of parent

changes are fewer than 630. Routing links of most nodes

are quite stable, while remaining ones exhibit frequent parent

changes. Why do those nodes exhibit significantly different

parent change behaviors? Is hop count a key factor that
causes the parent changes? Figure 5 shows the correlation

between the number of parent changes for each node and hop

counts to the sink node. According to the theoretical collection

tree based model, nodes near the sink should carry more traffic

loads which may cause potential interferences. However, the

number of parent changes reaches the peak at hop distance

4 and decreases towards to the sink. So we cannot simply

conclude that the large number of parent changes is caused

by the interference or heavy traffic.

2) Frequency of parent changes: Figure 6 shows the CDF

of the frequency of parent change events. The x-axis indicates

the frequency. Here the frequency is the total number of parent

change events divided by the number of link quality updates

(including control beacons and data packet updates). From

Figure 3 we see that the parent change events widely exist

in the network. However, the valuse of freq of over 60%
parent change events is only one in Figure 6. Based on these

observations, we formally define all these parent change events

which freq value are larger than one as “high frequency parent

change events” (HPC events) and remaining ones as “low

frequency parent change events” (LPC events). HPC events are

paid more attentions since they will potentially cause network

dynamics.

3) The lifetime of routing link: Though a part of nodes

frequently switch their parents, the size of their forwarding

sets are limited. Are some nodes more likely chosen as parent

nodes? To figure it out, we check the lifetime of routing links.

We define the lifetime of routing link from A to B is the time

interval during which node A ’s parent is node B. However it

is difficult to measure the accurate lifetime of the routing links

since we lack of detailed parent switching timing. In order to

approximately estimate the lifetime of the routing links, we

provide an alternative approach by discretization in time: each

ten minutes which is our sampling period notes a timing point.

If we observe that no parent change event happens within the

interval between ti and tj , and the parents at ti−1 and tj+1 are

different from the parent in the above interval, we consider tj-

ti+1 as the lifetime of a valid routing link. In Figure 7, we plot

CDF of the lifetime of the routing link. Around 33% of routing

links have a lifetime of below 10 minutes, 70% of routing

links have a lifetime of below 100 minutes, and around 10% of

routing links’ lifetime are over 1000 minutes. It represents that

many routing links are temporarily established and then die out

quickly. Note that short duration dominates the lifetime for

most of routing links, which means that the protocol seeks for

better routing performance by frequently switching the parents.

Does the routing performance increase after the routing
selection? The evaluation will be provided in the section VII.

VI. CAUSES OF ROUTING DYNAMICS

According to the above analysis, the interference caused by

the heavy traffic may not be the only reason for HPC events.

Other reasons, such as link failures, node failures, and the link

recovery, may affect the routing dynamics. In this section we

focus on identifying root causes of those HPC events.

A. Distinguishing correlated and independent parent change
events

Firstly parent change events are grouped. Here we name

to the parent change events which cause other parent change

events as trigger parent change events (TPC events). Accord-

ingly, the parent change events caused by others are called

influenced parent change events (IPC events). Grouping these

events can help narrow down the suspect set, as it allows us to

focus on root causes of TPC events. However, inappropriately

grouping two events are undesirable. Hence, the problem in

this subsection is, how to partition all events into disjoint

groups, and each element in one group is caused by the same

event.

We will discuss our strategy of grouping parent changes

based on spatial and temporal correlations in detail.

Based on the principle of the routing selection in CTP, a

parent change event will occur if both of these two require-

ments are satisfied:

1) At least one neighbor other than the current parent is

found with an acceptable link quality and that neighbor

is not congested.
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2) The current parent is congested and the second best

route is at least as good OR the current parent is not

congested and the link quality of the neighbor is better

than a threshold. The default ETX threshold is 1.5.

A sidenote of this principle is that if the current parent is

congested, then in order to avoid forming loops, we will select

a node which is not a descendant of the current parent.

Parent change events are correlated across two dimensions,

time and location. The time dimension observes the set of

parent change events close together in time. The location di-

mension takes into account the topology relationship between

nodes in parent change events.

Correlation across Time: When a node updates its ETX

value, other nodes will not be aware of its change immediately.

Updating messages need to be passed by beacons. The beacon

rate is always in a low level in LPL model. Unless the node

detects an inconsistency of one neighbor’s ETX value, the

beacon rate will be adaptively changed. Hence, we say two

parent change events 〈 x, xta, xpa, xtb, xpb, xcounterpc,

xfreq 〉 and 〈 y, yta, yta, ytb, ytb, ycounterpc, yfreq 〉 are

correlated across the time dimension if:

|min{xta, yta}−max{xtb, ytb}| ≤ |hopx−hopy|∗periodbeacon
(1)

where hopx and hopy are hop counts of node x and y
respectively. periodbeacon refers to the beacon period. Each

node broadcasts the beacon containing its ETX value every 8

minutes at most.

Correlation across Location: Two kinds of impact areas

of a parent change event, descendant nodes and neighboring
nodes are considered. When correlating parent change events

across the location dimension, we need to handle two cate-

gories separately. Correlating neighboring nodes is easier, for

we just need to check the parent change events on neighboring

nodes within a pre-defined time lag, e.g. the maximum beacon

period. To group upstream nodes, path information extracted

from C1 packet is utilized. When a node and its closet

downstream node switch their parents, if their timings satisfy

Equation 1, we say that they are correlated across the location

dimension. It is high likely that the parent change of upstream

node is caused by the parent change of the downstream node.

We group two parent change events and define the parent

change event of downstream node is TPC events.

Note that inappropriately handling grouping issues will lead

to a large number of false positive or negative groups. For

example, due to the loss of packets, we cannot know the exact

timing when those parent change events happen. Counting all

of those parent change events within a long time duration

will significantly increase the number of false positive groups.

We set a threshold which is the maximum delay for beacon

announcement from the sink to the farthest nodes in the

network. If and only if a parent change event lasts no more

than this threshold, it can be grouped. For the other parent

change events with duration larger than the threshold, we call

them “fuzzy parent change events” (FPC events) and analyze

their root causes in the following sections.

After employing the grouping strategy, we now have 6,132

groups consist of 16,014 correlated parent change events

excluding 1,267 FPC events. Among the 16,014 parent change

events, 13,861 of them are TPC events and 3,233 of them

are IPC events. Figure 8 and Figure 9 show the temporal

and spatial distributions of grouped parent change events

respectively. The blue line represents the number of TPC

events and the red line indicates the number of IPC events.

The figures show that in both of the temporal and spatial

distributions, the number of IPC is positively proportional to

the number of TPC events and the ratio between them is below

15%. It implies that the parent change event might only have

a local impact and will not cause topology changes in a large

area. To confirm our conjecture, we plot the CDF of the group

size in Figure 10. It can be observed that 94% of groups have

only one parent change event and only 0.2% of groups have

more than 10 parent change events. Most of the groups are

relatively small in size, so they usually have small effects

and will not affect the routing strategy globally. The reason

might be the parent change event will only occur when the

ETX difference between the node’s best routing and second

best routing is more than a threshold. This rule prevents the

network topology from oscillating. Besides, a moving average
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method is employed on the link estimation and a large weight

is assigned to history value, they lead to that the estimation

value of link qualities will not change too much within a short

time.

B. Causal relationship between parent change events and
routing link degradation

Considering FPC events’ long durations, we cannot pre-

cisely correlate these events with other parent change events.

Then, we would like to know whether long duration packet

losses provide some hints in identifying the root causes. As

shown in Figure 3, for nodes close to the sink, they have

many periodic high HPC events (periodic red lines in the

figure) with long durations. Do these events share the same

cause? FPC events in each hour of the first 6 days are

aggregated and correlated with several other network events,

e.g., no ack drop events, loop events, reboot events and so on.

Finally, no ack drop events have strong correlations with FPC

events. Figure 12 shows the temporal and spatial distributions

of counterpc of those aggregated FPC events correlated with

no ack drop events. From Figure 12a, aggregated number of

FPC events exhibits a rough periodic patten and the number

of correlated parent change events reach its bottom at noon.

As shown in Figure 12b, most of correlated FPC events locate

near the sink.

Based on the observation, we are interested in the intrinsic

characteristics of the periodic patten. Auto-correlation method

is employed to evaluate temporal correlations for correlated

FPC events. Auto-correlation function is a standard tool in

time series to analyze repeated patterns at different period

lengths. As shown in Figure 11, a high degree of temporal

correlation of the number of FPC events. Specifically, the

crest occur at a period of 24 hours and the trough occur at a

period of 18 hours. It implies that the period of 24 reaches

the maximum probability to be the repeated pattern. According

to our experiences, no ack drop events always refers to the

link degradations and is highly likely caused by either envi-

ronmental issues or wireless interferences. Since the system

is deployed in a forest and there rarely exist interference

signals, we conclude a conjecture that environmental factors

may have significant impact on the periodic phenomenon.

After examining the link qualities from neighbor tables of

typical nodes, we find that most of them become extremely

poor during 8pm to 10am. They cannot find good neighbors to

forward packets. Further inspections show that the humidity

during these time intervals is quite high. As indicated in [25],

water accumulated on foliage or the antenna is more likely a

contributing factor.

C. Causal relationship between parent change events and
loops

In the above subsection, we have correlated a part of FPC

events with no ack drop events. However, some FPC events

are not caused by link degradations. In order to identify

root causes of remaining FPC events, we review Figure 3

and find that those remaining events constitute some vertical

bandings (vertical red bandings in the figure). The vertical

bandings imply that those parent change events co-occur on

multiple nodes. In the design of the CTP, when detecting an

inconsistency of ETX value, a node reselects the parent to

break the loop. The process usually involves several nodes

simultaneously. So another conjecture is concluded that do
those remaining fuzzy parent change events have strong
correlation with loop events?

Figure 14 shows the temporal distribution of counterpc
of remaining FPC events and counterloop of loop events.

The blue line is the number of parent changes and the red

line indicates the number of loops. As shown in Figure 14,

many nodes with large loop counters also experience more

parent changes. It suggests that two kind of events have high

correlations. Figure 13 shows the temporal and spatial distribu-

tion of counterPC of those remaining aggregated FPC events

correlated with loop events. From Figure 13b, most correlated

events locate at far-away nodes. To quantitatively analyze their

relationship, we calculate the pearson correlation between the

remaining FPC events and loop events for each node. Figure

15 shows that all nodes have correlation coefficients larger

than 0.51. It implies that loop events have strong correlation

with remaining FPC events. Many packets are lost due to loops

when we check no ack drop counters. However, if loops can

be broken down in a short duration, many packets will not be

lost. Intuitively, a question is asked: how effective is parent
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Fig. 12. (a) Temporal distribution of parent change events correlated with
no ack drop events. (b) Spatial distribution of parent change events correlated
with no ack drop events.
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Fig. 13. (a) Temporal distribution of parent change events correlated with loop
events. (b) Spatial distribution of parent change events correlated with loop
events.
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Fig. 15. CDF of pearson correlation
coefficient
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Fig. 17. Illustration of parent change effectiveness detecting algorithm

change mechanism for breaking loops? Figure 16 shows the

duration of the loops correlated with FPC events. Though 40%
of correlated loops can be dispersed within 10 minutes, nearly

20% of loops which at least last 50 minutes to be broken down.

Long duration loops are harmful to the protocol performance.

A lot of packets will be dropped if buffering queues overflow.

Therefore, effective methods for breaking down loops or loop-

free methods are necessary to avoid packet losses.

VII. IMPACT OF ROUTING DYNAMICS

After analyzing some possible causes of routing dynamics,

we view whether parent changes provide the optimal solution

for routing under CTP. We compare the packet reception ratios

between the nodes choosing old parent and those choosing new

parent. Assume node A ’s previous parent is B at time t1 and

its current parent is C at time t2. As shown in Figure 17, we

compare the packet reception ratio of A, using C as the parent

for a given time interval like 50 minutes after time t2. This

term is described as PDRC for short. The packet delivery

ratio of A, still using B as the parent for the same amount of

time interval after t2. This term is PDRB for short. If PDRB

is better than PDRC then it implies that this parent change

may not be necessary.

In practice, we are unable to obtain the ground truth of

PDRB . Here an alternative approach is provided: If the RSSI

values of linkAB are larger than a threshold at both of time

t1 and t2 (normally -85 dBm according to our experience

threshold. Since when the link RSSI is higher than -85 dBm,

we always observe good communication performances), we

consider that the link quality does not change significantly.

Under these situations we take the PDR value of node B after

time t2 as an approximation of PDRB . If the approximated

value ˆPDRB is better than PDRC , we consider that parent

change as ineffective. We define the ratio of the number of

ineffective parent change events and total parent change events

for each node as “Routing selection effectiveness coefficient”.

By counting it, we obtain Figure 18. Around 30% of nodes

suffers from ineffective routing decisions. Their ineffective

routing selections take up more than 60%. It is becaused in

CTP, if we only consider the ETX value and exclude other

factors like retransmission upper bound and forwarding quality

of the node, stable links might not be chosen. Therefore

ineffective routing oscillation will be incurred.
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Fig. 18. CDF of routing selection effectiveness coefficient

VIII. CONCLUSION

In this paper, we conduct extensive measurements of routing

dynamics in a large-scale WSN. The measurement results and

the analysis provide answers to several fundamental questions

regarding to routing dynamics: To what extent does the routing

protocol exhibit dynamics? What causes routing dynamics?

What is the impact of routing dynamics? The answers we pro-

vided in this paper give new understanding of the interactions

among multiple network elements, evaluating protocol design

strategies, and improving system performance.

The key findings of our study include: 1) Parent change

events mostly impact only local nodes, i.e. they do not result

in routing instability on distant nodes; 2) Environment and

routing loops have large impact on routing dynamics; 3)

While a large portion of parent changes are effective in

improving network performance, a few changes might not be

necessary and may even hurt the network routing performance.

All those findings will provide guidelines to understand the

routing dynamics and design more robust and adaptive routing

protocols in dynamic environments.
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