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Agnostic Diagnosis: Discovering Silent Failures in
Wireless Sensor Networks

Xin Miao, Kebin Liu, Yuan He, Dimitris Papadias, Qiang Ma, and Yunhao Liu

Abstract—In wireless sensor networks (WSNs), diagnosis is a
crucial and challenging task due to the distributed nature and
stringent resources. Most previous approaches are supervised,
relying on a-priori knowledge of network faults. Our experience
with GreenOrbs, a long-term large-scale WSN system, reveals the
need of diagnosis in an agnostic manner. Specifically, in addition
to predefined faults (i.e., with known types and symptoms),
silent failures that are unknown beforehand, account for a large
fraction of network performance degradation. Currently, there
is no effective solution for silent failures because they are often
diverse and highly system-related. In this paper, we propose
Agnostic Diagnosis (AD), an online lightweight failure detection
approach. AD is motivated by the fact that the system metrics
(e.g., radio-on time, number of packets transmitted) of sensor
nodes usually exhibit certain correlation patterns. Violations of
such patterns indicate potential silent failures. We implement AD
on a working WSN consisting of 330 nodes. Our experimental
results demonstrate the advantages of AD to discover silent
failures, effectively expanding the capacity and scope of WSN
diagnosis.

Index Terms—Diagnosis, sensor networks.

I. INTRODUCTION

RECENT advances in Wireless Sensor Network (WSN)
technologies have enabled various applications such as

environmental surveillance, traffic monitoring and emergency
navigation [1]–[4]. WSNs are by nature error-prone and have
unsatisfactory reliability, encountering various faults and fail-
ures during their operation. Consequently, diagnosis has drawn
substantial attention in recent years as a method to enhance
the applicability, reliability, and efficiency of WSNs.

However, diagnosing WSNs is a challenging issue because,
once a WSN is deployed, its inner conditions are not di-
rectly observable. Specifically, since many WSNs reside in
harsh or remote environments, it is difficult to perform in-
situ troubleshooting on the faulty nodes. Furthermore, the
distributed nature and stringent resources of WSNs render
it hard for a network operator to completely monitor the
system’s working status. Due to similar reasons, it is also
infeasible to deploy management tools like SNMP, or other
costly diagnostic modules, on the sensor nodes.

Many existing diagnostic approaches are supervised, i.e.,
they rely on either specific rules or inference models. An

Manuscript received November 15, 2012; revised March 11 and June 30,
2013; accepted September 2, 2013. The associate editor coordinating the
review of this paper and approving it for publication was N. Kato.

X. Miao, K. Liu, Y. He, Q. Ma, and Y. Liu are with the School of Software
and TNList, Tsinghua University, Beijing, China (e-mail: {miao, kebin, he,
maq, yunhao}@greenorbs.org). K. Liu is the corresponding author.

D. Papadias is with the Department of Computer Science and Engineering,
Hong Kong University and Technology, Clear Water Bay, Kowloon, Hong
Kong (e-mail: dimitris@cse.ust.hk).

Digital Object Identifier 10.1109/TWC.2013.110813.121812

obvious drawback is that they are limited to faults with known
types and symptoms, and hence, they cannot be easily gen-
eralized to different application scenarios. On the other hand,
the interactions within the WSN and the causal dependencies
between root causes and symptoms are usually unknown. As
a result, silent failures remain undetected.

This paper is motivated by the need for long-term reliable
operation of GreenOrbs, a large-scale WSN system in a forest
[2]. Currently, GreenOrbs includes 330 nodes and has been
in continuous operation for over eight months. During the de-
ployment, we often observe system performance degradations,
e.g., low packet delivery ratios. A portion of faulty nodes can
be easily identified since they generate apparently abnormal
system metrics (e.g., measurements that are clearly beyond the
reasonable scope). The other faulty nodes, however, cannot
be identified in this way. For instance, we adopt low-power
listening mode so the radio is switched on only for receiving,
sending, or idle listening. Consequently, the radio-on time
should be closely correlated with the amount of traffic passing
the node. We noted that during a five-minute period, a node
kept its radio on for 47.5 seconds, transmitting only 3 packets
in total. In the next five-minute period, it kept its radio on
for 51.6 seconds and transmitted 550 packets. Any individual
value of the metrics is not abnormal, but the correlation
between radio-on time and number of transmitted packets
clearly suggests inconsistency on that node.

A straightforward solution would be to develop a set
of static correlation rules for identifying the faulty nodes.
However, this is inapplicable for two reasons: (i) usually
there is insufficient domain knowledge to enumerate all the
rules; (ii) WSN deployment is often evolutional, so that the
correlation rules change over time; both software upgrades
and environment conditions may have a great impact on the
correlations.

To overcome these problems, we propose Agnostic Diag-
nosis (AD), an online lightweight approach for WSNs. AD
exploits the correlations among metrics of each sensor using
a correlation graph that describes the latent status of the node.
Such a correlation graph is updated periodically using the
node’s metrics. By mining the correlation graphs, we identify
the underlying rules of a normally running system, and detect
abnormal correlations.

Our main contributions are summarized as follows:

• Unlike previous approaches, Agnostic Diagnosis does not
rely on predefined rules. It relies on minimal a-priori
knowledge and thus can be applied to a wide variety of
WSN applications.

• We propose the correlation graph, a compact structure
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that efficiently characterizes the internal correlations in-
side a node.

• We implement AD and evaluate it with traces from a 330-
node GreenOrbs deployment. Case studies and statistics
demonstrate the effectiveness of AD.

The rest of the paper is organized as follows. Section 2
motivates the problem. Section 3 presents AD. Section 4
evaluates our design and Section 5 surveys related work.
Finally, Section 6 concludes this paper.

II. MOTIVATION

Diagnosis is a fundamental task for long-term large-scale
WSN systems. This section first introduces the basic infor-
mation and application requirements of GreenOrbs, including
several observations in the form of concrete examples. These
observations reveal the existence of correlation patterns among
the nodes’ operational metrics and the feasibility of AD.

A. GreenOrbs

GreenOrbs is an ecological surveillance project deployed
in a forest. It collects a group of sensory data such as
temperature, humidity, illumination and carbon dioxide con-
centration to support various applications. Since the deploy-
ment is in a remote area, the overhead of in-situ debugging
and troubleshooting is very high. Therefore, the diagnostic
system is designed so that each node periodically transmits
its current status to the sink. Specifically, we collect 22 types
of metrics (Table I) from each node that are classified into
four categories: (1) timing metrics e.g. RadioOnTimeCounter,
which denotes the accumulative radio-on time; (2) traffic
metrics, e.g. TransmitCounter, which records the accumulative
number of packets transmitted by a node; (3) task metrics, e.g.
TaskExecCounter, which is the accumulative number of tasks
executed; (4) other metrics such as ParentChangeCounter,
which counts the number of parent changes.

The difficulty of diagnosis in GreenOrbs stems from the
absence of a-priori knowledge on the possible faults and their
symptoms, which renders general diagnostic rules inapplica-
ble. Instead, we design a diagnostic system requiring minimal
domain knowledge.

B. Silent Failures

In this section, we demonstrate an example of silent failures
that could hardly be discovered using rule-based methods, as
well as an example that could be mistakenly flagged. Fig.
1a plots the number of packets transmitted by a node in two
time periods. Its value is counted in every fifteen-minute time
frame. For example, point (0,6) means the node transmitted
six packets within the first fifteen minutes. During time period
one, the metric changes dramatically, with its values ranging
from 6 to 13. One would think that the node might be faulty
in this time period. However, a manual analysis of the whole
trace reveals that the node works well. On the other hand,
during time period two, this metric appears to be stable, and
the difference between maximum value and minimum value
is only 2. Nevertheless, after manually checking the network
trace, we find that the node actually encounters routing loops
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(a) Number of packets transmitted by node 2 in two time periods
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(b) Number of packets transmitted by sensor nodes 2, 4 and 24 in a same
period

Fig. 1. Examples of normal operation and node failures.

(a fatal routing problem). This example demonstrates that the
individual examination of metrics on the same sensor node
may overlook silent failures, or may flag failures by mistake.

Fig. 1b shows another example. In this figure, the same
metric is studied, but on different sensor nodes during the same
time period. It shows that the curve of node 4 is flat, while
curves of node 2 and 24 are steep. The reason why they have
different curves is as the following: (1) First, node 2 and node
4 play different roles in the network. Node 4 is a leaf node,
and it seldom has to forward packets for other nodes. So the
number of packets transmitted is 3 most of the time. However,
node 2 is an intermediate node. It has to forward packets for
its children, so the number of packets transmitted is always
above 6. (2) Second, radio irregularity may cause changes
in the number of node 2’s children. When node 2 has more
child nodes, it transmits more packets. (3) Third, since nodes
in the network are not synchronized, they wake up and sleep
according to their local clock. As a result, traffic patterns in
network do not remain stable. This may also cause fluctuations
in the packets transmitted by node 2. Although the metric on
node 4 exhibits a quite different pattern from those of the other
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TABLE I
EXAMPLES OF SYSTEM METRICS

Metric Names Meaning Metric Names Meaning

RadioOnCounter number of times radio is turned on DuplicateCounter number of duplicated packets

RadioOnTimeCounter radio-on time in milliseconds SuccAckCounter number of successfully transmitted packets

ReceiveCounter number of packets received ParentChangeCounter number of parent changes

TransmitCounter number of packets transmitted NoParentCounter number of times when no parent is found

SelfTransmitCounter number of packets transmitted by the node itself TaskPostCounter number of tasks posted in TinyOS programs

RetransmitCounter number of retransmissions TaskExeCounter number of tasks executed in TinyOS programs

LoopCounter number of routing loops detected TaskSendFailCounter number of tasks failed in TinyOS programs

two nodes, in fact all three nodes perform well. This example
suggests that even if considering multiple sensor nodes, an
individual metric is still insufficient to uncover failures.

C. Observations

We conduct the correlation patterns of the 22 metrics and
visualize them using gray-scale images (the details will be
presented later). The cell (i, j) in the image denotes the cor-
relation score between metrics i and j. Fig. 2(a)-(c) displays
three images constructed from metrics of a same node. The
node is normal in the first two periods, but faulty in the third
one. Interestingly, the first two images are very similar to each
other, whereas they differ significantly from the third one.
Analogous results are observed in the spatial domain as well.
Fig. 2(d)-(f) shows the images of three nodes in the same
period. The first two nodes are normal, while the third one
is faulty. Observe that the first two images follow a similar
pattern, which is clearly distinguishable from the last one.

The difference of correlation patterns can be explained
with the following example. There are two metrics called
LoopCounter and SuccAckCounter. The former is the number
of times that a same packet passes through the current node,
and the latter is the number of packets that are successfully
transmitted by the current node. If the node is normal, the
value of LoopCounter should be zero most of the time.
Thus, these two metrics have weak correlation. If the node
is out of order and produces routing loops, the same packet
passes multiple times. Eventually, LoopCounter dominates
SuccAckCounter, and these two metrics are highly correlated,
differentiating the faulty node from of the normal ones.

In summary, proper diagnosis of WSNs, especially long-
term large-scale systems like GreenOrbs, is crucial and chal-
lenging. This is partially due to resource constraints and
hardness to track in-network status. Even a more important,
but often overlooked fact is that the diagnostic capacity is
restricted by our incomplete knowledge of possible failures.
Our experience with GreenOrbs reveals that independent in-
vestigation of metrics is insufficient for capturing all the
problematic nodes. On the other hand, exploiting correlations
of metrics uncovers significantly more failures.

III. AGNOSTIC DIAGNOSIS

We assume a WSN consisting of N sensor nodes. In each
time frame t, a sensor si measures its working status, obtaining
a status vector Si,t = (m1,t,m2,t, . . . ,mp,t), where p is the
number of metrics and mu,t is the value of the u-th metric

TABLE II
DEFINITION OF SYMBOLS

Symbols Definition

N number of sensors

p number of metrics

w window size; a time window consists of w time frames

si sensor node i, 1 ≤ i ≤ N

Si,t the p-dimensional status vector of sensor node i in time

frame t, Si,t = (m1,t ,m2,t, . . . ,mp,t)

mu,t the value of the u-th metric in time frame t, 1 ≤ u ≤ p

ck(u, v) correlation score of metrics u and v in time window k,

1 ≤ u, v ≤ p

CGi,k correlation graph of sensor node i in time window k

within time frame t, 1 ≤ u ≤ p. Table II summarizes the
symbols used in this paper as well as their meanings.

A. Correlation Graphs

The correlation graph is a symmetric matrix representing
the pair-wise correlations of system metrics:

⎛
⎜⎜⎜⎝

ck(1, 1) ck(1, 2) . . . ck(1, p)
ck(2, 1) ck(2, 2) . . . ck(2, p)

...
...

. . .
...

ck(p, 1) ck(p, 2) . . . ck(p, p)

⎞
⎟⎟⎟⎠ .

It is constructed and maintained periodically, for each node
in the WSN. The correlation between metrics are evaluated in
each time window k, which lasts from time frame (k−1)∗w+1
to time frame k ∗ w, i.e., [(k − 1) ∗ w + 1, k ∗ w]. Sup-
pose Mu,k = (mu,(k−1)∗w+1,mu,(k−1)∗w+2, . . . ,mu,k∗w)
and Mv,k = (mv,(k−1)∗w+1,mv,(k−1)∗w+2, . . . ,mv,t∗w) are
the values of metrics u and v collected in time window k
respectively. We define the correlation score between them
using Pearson’s product-moment coefficient:

ck(u, v) =

w
w∑
i=1

mu,(k−1)∗w+imv,(k−1)∗w+i

σu,kσv,k

−

w∑
i=1

mu,(k−1)∗w+i

w∑
i=1

mv,(k−1)∗w+i

σu,kσv,k
,

(1)

where σu,k, σv,k are the standard covariances of Mu,k and
Mv,k respectively, This correlation score falls within the range
[−1, 1]. The closer it is to either -1 or 1, the stronger the
correlation between the variables is. As it approaches zero, the
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(a) Healthy period 1 of sensor node 2 (b) Healthy period 2 of sensor node 2 (c) Faulty period of sensor node 2

(d) Healthy node 1 (e) Healthy node 2 (f) Faulty node

Fig. 2. Visualizations of correlation graphs.

correlation decreases. In Fig. 2, the visualization is achieved
by transforming correlation scores into gray-scale values in
the range of [0, 255]. Since the gray value of white is 255,
lighter pixels correspond to stronger correlations.

B. AD Framework

AD is a sink-based framework. It instruments the source
code of TinyOS programs and thus is able to track the
performance of programs using a number of performance
counters, a.k.a, metrics. The values of these counters are im-
portant indicators of sensor nodes’ performance. Thus they are
required to be sent back to the sink periodically. On receiving
the metrics from the network, AD starts to build correlation
graphs in the current time window. After that, AD identifies
anomalies in both temporal and spatial domain. Specifically,
temporal detection refers to detecting sudden changes in the
correlation graphs from a same node, while spatial detection
discovers pattern inconsistencies using multiple nodes. If an
anomaly is identified by both temporal and spatial detection,
it has a high chance of signifying a real problem.

C. Temporal Detection

The problem of Temporal Detection is defined as the
following.

Problem 1. (Temporal Detection) Given the correlation
graphs CG(i) = {CGi,1, CGi,2, . . . , CGi,t, . . .} of node si,
detect the time when an abrupt change happens in time series
{c1(u, v), c2(u, v), . . . , ct(u, v), . . .}, where 1 ≤ u, v ≤ p and
u �= v.
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Fig. 3. CUSUM examples.
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Algorithm 1: Temporal detection algorithm
Input: (1) Correlation graphs of sensor node si, i.e.,
{CGi,tbegin , CGi,tbegin+1, . . . , CGi,tend

};
(2) The confidence threshold εthreshold.

Output: The time tfaulty when si becomes faulty with
confidence εfaulty . tfaulty = −1 if si is not faulty.

1: for t = tbegin → tend do
2: Take the upper triangular part of CGi,t;
3: Convert it into a column vector with length

p(p− 1)/2;
4: end for
5: for d = 1→ p(p− 1)/2 do
6: For each vector, take its d-th element;
7: Obtain a new series {ctbegin , ctbegin+1

, . . . , ctend
};

8: (ctcand
, εcand)=CUSUM(ctbegin , ctbegin+1

, . . ., ctend
);

9: if εcand > εthreshold then
10: tfaulty ← tcand;
11: εfaulty ← εcand;
12: else
13: tfaulty ← −1;
14: end if
15: end for

Considering that the system maintains p = 22 metrics, for
each node, there are totally p · (p− 1)/2 = 231 different time
series. At the end of each time window, AD detects whether
there is an abrupt change in each time series. The detection
process is modeled as a change point analysis problem. We
adopt a classical CUSUM algorithm [5] to discover change
points. In our application, it includes three steps.

Step 1: Cumulative Sums Calculation. In this step, CUSUM
charts are constructed based on the original time series.
Let {c1(u, v), c2(u, v), . . . , cn(u, v)} be the correlation scores
between metrics u and v from the first time window to the cur-
rent one. The cumulative sums {CS0, CS1, CS2, . . . , CSn}
are calculated as:

• CS0 = 0;
• CSi = CSi−1 + ci(u, v)−

∑n
i=1 ci(u, v)/n.

The intuition behind cumulative sums is that if there are
no abrupt changes in correlation scores, then the cumulative
sums just shrink near zero. Otherwise, supposing at the
beginning all the scores are above the average, the term
ci(u, v) −

∑n
i=1 ci(u, v)/n is always larger than zero, caus-

ing cumulative sums CSi to increase steadily. If ck+1(u, v)
is an abrupt change, CSk+1 should be much smaller than
CSk. Thus, CSk will dominate both the preceding and the
subsequent cumulative sums. The change score is denoted as
CSdiff = max(CSi)−min(CSi).

Step 2: Bootstrap Analysis. Bootstrap analysis provides a
way to test the significance of the change by mimicking the
behavior of CUSUM if there are no change points. In this step,
the time series {c1(u, v), c2(u, v), . . . , cn(u, v)} is reordered
randomly. Based on the random ordered time series, a new
sequence of cumulative sums {CS′

0, CS′
1, CS′

2, . . . , CS′
n} are

computed. The new change score is CS′
diff = max(CS′

i)−
min(CS′

i). After performing bootsraps M times, among
which there are X times that CSdiff is larger than CS′

diff ,

the confidence level of CSdiff is calculated using X/M .
With sufficiently high M , we can accurately estimate the
confidence. However, since each window has 10 data points,
it is infeasible to iterate all the 10! cases. We found that
M = 1000 is a reasonable value, for it is both large enough
to accurately estimate the confidence and small enough to run
the algorithm in a short period of time.

Step 3: Change Point Detection. Once the confidence level
of CSdiff is higher than a predefined threshold, we say that an
abrupt change happens in the current time series. We select
the index k so that CSk = max|CSi|. Therefore, k is the
last index before the change point ck+1(u, v). Through our
experiments, we choose 90% as the confidence threshold to
determine an abrupt change.

In Fig. 3a, the original time series has an abrupt change at
index 10. In Fig. 3b, at the same position, the original CUSUM
curve encounters a sudden change, which is consistent with
the original time series. However, in the other CUSUM curves
with random ordering, there is no sudden change, and all the
curves tend to shrink near zero.

Algorithm 1 illustrates the details of temporal detection.
This algorithm runs at the end of each time window, and
uncovers the sensor nodes whose correlation graphs change
acutely. It is possible that a node may experience multiple
temporary failures, such that there are multiple change points
in the CUSUM curve. We focus on the most significant change
point because if it passes the confidence threshold, we can
already say that the node is suspicious. Meanwhile, if it does
not pass the confidence threshold, it means other change points
will not pass the threshold either.

D. Spatial Detection

Spatial detection takes snapshots of correlation graphs of
all nodes in each time window, and groups similar ones
together. Sensor nodes whose correlation graphs diverge from
the common patterns are considered suspicious.

Problem 2. (Spatial Detection) Given a set of nodes
{s1, s2, . . . , sn}, as well as their correlation graphs in time
window t, i.e., {CG1,t, CG2,t, . . . , CGn,t}, divide them into
K clusters with cluster centers C1, C2, . . . , CK . The confi-
dence level for a sensor node si to be suspicious is defined
as: min

j
(dist(CGi,t, Cj)), where dist(CGi,t, Cj) is a binary

distance function between two correlation graphs.
Considering the symmetry of the correlation graph, we can

take the upper triangular part of it and transform it to a d-
dimensional vector, where d = p · (p − 1)/2. Therefore, an
intuitive solution is to apply K-Means clustering [6] directly
and find the farthest nodes from the centers. However, this
approach is ineffective due to the high dimensionality of
correlation graphs. In high dimensions, the concept of distance
becomes meaningless [7], causing the clustering results to
be imprecise. Another problem is the dependencies among
dimensions. For instance, suppose metrics u, v, and w are
highly correlated pair-wisely. As a result, the three correlation
scores c(u, v), c(u,w), c(v, w) are very likely to be dependent,
suggesting that the actual dimensionality of the correlation
graphs is much smaller than d.
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Algorithm 2: Spatial detection algorithm
Input: (1) Correlation graphs of all sensor nodes in time

window t, i.e., {CG1,t, CG2,t, . . . , CGN,t};
(2) Dimensionality m (m� p(p− 1)/2).

Output: A ranked list of sensor nodes sorted by the
probability of being faulty.

1: for i = 1→ N do
2: Take the upper triangular part of CGi,t;
3: Convert it into a row vector Xi with length

p(p− 1)/2;
4: end for
5: Construct the data matrix X = [X1, X2, . . . , Xn];
6: Compute the m largest eigenvalues of matrix XTX ;
7: Obtain the corresponding eigenvectors v1, v2, ..., vm;
8: Construct a new data matrix Z = (v1 v2 . . . vm)T ;
9: Zi, the i-th column of Z , is the projection of

correlation graph CGi,t in m-dimensional space;
10: Cluster the set {Zi} using K-Means algorithm;
11: The cluster centers are C1, C2, . . ., CK ;
12: for i = 1→ N do
13: The probability that sensor node si is faulty ←

min
j

(dist(Zi, Cj));

14: end for
15: Return the list of sensor nodes sorted by their

probabilities of being faulty.

Following the idea of PCA, our algorithm first projects cor-
relation graphs to a low-dimensional space and then clusters
the projected data [8]–[10]. Let X1, X2, . . . , Xn denote the
d-dimensional row vectors consisting of elements drawn from
the upper triangles of CG1,t, CG2,t, . . . , CGn,t respectively.
Without loss of generality, assume Xi has zero mean. The
original data matrix can be written as X = [X1, X2, . . . , Xn],
which is of size d×n. After projection (line 6-9 in Algorithm
2), we perform K-Means clustering on the columns of pro-
jected data matrix Z = [Z1, Z2, . . . , Zn]. The confidence of
Zi to be suspicious is proportional to its distance to the nearest
center. The details of spatial detection is shown in Algorithm
2. Besides PCA, other techniques such as manifold learning
and compressive sensing can also be used here.

IV. EVALUATION

In this section, we provide both case studies and experi-
ments to show the effectiveness of AD.

A. Case Studies

We use data collected from 330 nodes in three months from
GreenOrbs project. Using AD, we have identified four types
of failures.

The first type is ingress drops, which is detected by correlat-
ing ReceiveCounter and TransmitCounter. Since the sampling
rate of a sensor is fixed (i.e., three packets every fifteen
minutes), the number of packets transmitted by a healthy node
should be very close to the number of packets it receives
from its children in the routing tree. However, if ingress
drops occur, a portion of the incoming packets is dropped.
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Fig. 4. Case studies.

Consequently, a change point in the time series of correlation
score between ReceiveCounter and TransmitCounter suggests
an ingress drop. As illustrated in Fig. 4a, the correlation
score has a significant change point at 2:00. An inspection
of the raw data confirms that at that time, this sensor node
received packets from its children but did not forward all
of them, causing ingress drops. However, if we investigate
ReceiveCounter and TransmitCounter separately, this failure
cannot be detected since the values of both metrics are within
the normal range.

The second type is routing failures. A typical symptom is
a node changing its parent too frequently. Fig. 4b depicts
one row of the correlation graph for three sensor nodes.
Each cell in the row stands for the correlation score between
ParentChangeCounter and another metric. Note that node 73
has a quite different pattern compared to the others. As
an example, consider the second cell in the row, which
corresponds to the correlation between ParentChangeCounter
and RadioOnCounter. For healthy nodes 70 and 100, the two
metrics are not correlated, as they signify the number of times
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a node turns on the radio and the number of times it changes
its parent node in the routing tree, respectively. For node 73,
the correlation score is so high that almost every time it turns
on its radio, a parent change happens. Again, if we merely
focus on the values of the two metrics independently, such
failures cannot be found.

The third type is link failures. The detection of link failures
exploits the correlation between RetransmitCounter and other
metrics such as RadioOnTimeCounter. Fig. 4c illustrates the
time series of these two metrics. Initially, they are weakly
correlated, since a node may retransmit some packets when
its radio is on, but it does not always happen. Starting from
8:30, the correlation score increases, indicating that a large
portion of radio-on time is used to retransmit packets. Thus,
the transmission from this node to its parent suffers from
poor link quality. On the other hand, it is difficult to simply
set a threshold for the ratio of retransmitted packets because
it may change depending on the time and the location. For
instance, a threshold equal to 0.5 may be acceptable in an
indoor environment where links are easily interfered, but too
low in an open space where link quality is very good.

The fourth kind refers to node failures that may be caused
by software or hardware problems. The correlation between
TaskPostCounter (i.e., the number of tasks posted in TinyOS)
and TaskExecuteCounter (i.e., the number of tasks actually
performed) can be employed to uncover software faults. We
do not address hardware failures because they can be readily
detected through a simple rule: when a node crashes, it
disappears from the neighbor tables of nearby sensors.

In summary, among the failures discussed in this subsection,
only hardware failures can be detected by some simple rules,
while other failures require AD.

B. Effectiveness

Temporal Detection: We depict both packet delivery ratios
(PDRs) and temporal detection results in Fig. 5. PDR is
defined as the ratio between the number of packets received
by the sink and that sent by the source node. For each
point in the curve, its x-axis value corresponds to the time,
while its y-axis value corresponds to the packet delivery ratio
at that time. Each square in the figure stands for the time
when a change point is reported. We can observe that nearly
every square corresponds to a local minimum or maximum
in PDRs. It means that the temporal detection results confirm
to the variation of system performance. However, some local
minima/maxima are not captured by squares, possibly because
they do not necessarily signify failures. For example, if a node
is healthy but its parent is faulty, it also causes its PDRs
to produce a local minimum. Moreover, temporal detection
also captures the time when a node recovers from temporary
failures, i.e., the squares that correspond to local maxima in
PDRs.

Spatial Detection: To validate the effectiveness of spatial
detection, we randomly pick a piece of data and investigate
30 faulty nodes that are identified in this phase. Specifically,
23 of them are flagged because failures take place, while 5
of them are false alarms. The other 2 nodes exhibit a sudden
increase in the number of packets received, leading to different
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Fig. 5. Packet delivery ratios over time.

correlation scores between PacketReceiveCounter and other
metrics. However, after manually inspecting the raw data, we
believe that these two nodes are healthy since the number
of packets transmitted by them increases accordingly. The
involved faults include packet loops, frequent parent changes,
link failures, mismatch between radio-on time and packets
transmitted/received, ingress failures, and stack overflows.
These failures are not independent because several types of
failures may occur in the same sensor node simultaneously.
Packet loop is the most frequent type of failures.

Overall: We also examine the overall detection ratio and
false alarm rate of our approach using a test bed. We vary
the network size from 10 nodes to 50 nodes. With different
network sizes, we randomly select 10% to 15% of the nodes
and inject two kinds of bugs to them respectively.

Fig. 6 plots results of case one in which the software bug
causes selected nodes to send each packet multiple times as if
they do not receive ACKs from their parent nodes. According
to Fig. 6, with small network sizes the detection ratio is
almost 100%. As network size grows, the detection ratio tends
to decrease and false positive rate increases. The reason is
that with small network sizes, only one or two nodes keep
sending duplicated packets. Their low volume traffic does not
affect other nodes. However, as the number of faulty node
increases, the growing number of duplicated packets may lead
to congestions in other nodes and raise the false positive rate.

In the second case, we mimic the behavior of ingress drops
by reducing the receiving queue length. It can be seen from
Fig. 7 that similar trends can also be found as in case one.
The reason is that as the number of faulty nodes increases with
network size, their child nodes cannot deliver packets. Even
if these child nodes switch to other parents, the high volume
of data will still cause congestions in the new parent nodes.

V. RELATED WORK

Diagnosis of WSNs has been tackled from various per-
spectives. The first type aims at software debugging. Clair-
voyant [11] is a GDB-like source-level tool that provides
a suit of standard debugging commands such as break, set,
watch and backtrace. Declarative Tracepoint [12] supports a
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Fig. 6. Detection ratio and false alarm rate of AD when injecting software
bugs.
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Fig. 7. Detection ratio and false alarm rate of AD when injecting ingress
drops.

declarative, SQL-like language, allowing developers to insert
a set of action-associated rules to applications at runtime. Our
approach differs in that we do not debug the source code.
Instead, our goal is to discover the silent failures caused by
nodes, ambient environment, and protocols.

The second type of diagnosis is achieved through rule-
based mining, or specific inference models. Sympathy [13]
periodically gathers information such as nodes’ next hops
and then builds decision trees to analyze the root causes.
DustMiner [14] collects runtime event logs and performs
frequent pattern mining to uncover root causes of performance
anomalies. PAD [15] leverages a packet marking strategy for
constructing and maintaining the inference model. PowerTrac-
ing [16] employs a special power meter to identify patterns
of power consumption. Unlike these approaches, our work
addresses the problem when there is little domain knowledge.

There are also studies closely related to diagnosis [17]–[25].
For example, [18] and [19] focus on data faults. [20] provides
an experimental study on link performance. LiveNet [21] uses

passive monitoring to reconstruct dynamics of live sensor
networks. PD2 [22] pinpoints the root causes of application
performance problems. SNMS [23] proposes a sensor network
management system.

VI. CONCLUSION

This paper presents Agnostic Diagnosis, a novel approach
that relies on minimum domain knowledge to detect faulty
nodes. AD is a sink-based scheme and requires sinks to collect
data from all sensors. Consequently, there might exist a delay
between fault time and detection time. In the future, we will
extend AD such that it can work in a distributed manner. Thus
both energy consumption and detection delay can be further
reduced. We will also address node mobility [26] in diagnosis.
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