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Abstract—Understanding the packet delivery performance of a
wireless sensor network (WSN) is critical for improving system
performance and exploring future developments and applications
of WSN techniques. In spite of many empirical measurements in
the literature, we still lack in-depth understanding on how and to
what extent different factors contribute to the overall packet losses
for a complete stack of protocols at large scale. Specifically, very
little is known about: 1) when, where, and under what kind of cir-
cumstances packet losses occur; 2) why packets are lost. As a step
toward addressing those issues, we deploy a large-scale WSN and
design ameasurement system for retrieving important systemmet-
rics. We propose MAP, a step-by-step methodology to identify the
losses, extract system events, and perform spatial-temporal corre-
lation analysis by employing a carefully examined causal graph.
MAP enables us to get a closer look at the root causes of packet
losses in a low-power ad hoc network. This study validates some
earlier conjectures on WSNs and reveals some new findings. The
quantitative results also shed lights for future large-scale WSN
deployments.

Index Terms—Packet delivery performance, measurement,
packet losses, wireless sensor networks.

I. INTRODUCTION

A S AN emerging technology that bridges cyber systems
and the physical world, wireless sensor networks (WSNs)

are envisioned to support numerous unprecedented applications.
We have witnessed many research studies, deployments of real
systems, and substantive practical applications in recent years.
In the past years, many WSN protocols have been reported

and shown to be effective in testbed or small-scale networks. On
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the other hand, it is not uncommon to see that many real-world
deployments often adopt a set of tailored protocols to fulfil the
application’s requirements. We believe that it is important to
understand the performance of some well-principled protocols
in combination at large scale.
From a networking perspective, the most basic aspect of

wireless communication is the packet delivery performance:
the spatial-temporal characteristics of packet loss and its envi-
ronmental dependence [1]. 1) The packet delivery performance
deeply impacts the performance of application built upon
the network. For example, data loss in a sensor network for
environmental surveillance may mislead the users to incor-
rect knowledge of the environment and make inappropriate
decisions. Data loss in a sensor network for traffic monitoring
may lead to incorrect traffic management and cause serious
problems like traffic jams. Data loss in a sensor network for
structure health monitoring will probably cause the miss of
critical problems in the monitored object and potentially lead
to unpredictable accidents. Data loss in a sensor network for
industrial control will probably cause the inability to control
the industrial process, making the whole system simply fail to
work. 2) For energy-constrained sensor networks, packet de-
livery performance is important since that translates to network
lifetime [1]. Sensor networks typically use retransmissions
upon loss detection. If there are severe packet losses, a node
will repeatedly retransmit the packet, resulting in much more
energy consumptions. Hence, poor cumulative packet delivery
performance across multiple hops may expend significant
energy, impairing the network lifetime.
Many deployments have reported the overall packet delivery

performance [2], [3]. Also, many empirical measurement
studies show how some specific factors impact the packet
delivery performance via controlled experiments [1], [4].
However, we usually do not know how and to what extent
different factors contribute to the overall packet losses for a
complete stack of protocols at large scale. Specifically, very
little is known about: 1) when, where, and under what kind
of circumstances packet losses occur; 2) why packets are lost.
Answers to the above questions are critical for improving
system performance and exploring future developments and
applications of WSN techniques.
Understanding the packet delivery performance in an oper-

ating WSN is challenging due to the following facts. First, data
packets might be lost during multihop transmissions, and thus
data collection is incomplete by nature. It is very difficult to
acquire the complete information of the internal status of the
network. Second, operational efforts to disclose the root causes
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Fig. 1. Network topology where the node with a triangle is the sink node. The
green nodes represent nodes with %. The red nodes represent nodes
with %, and the length of the radius indicates the number of lost
packets.

behind packet losses are insufficient, and few efforts have been
validated to be effective at large scale.
As a step toward addressing those challenges, we deploy

GreenOrbs, a large-scale and long-term WSN system in the
wild. The network we measure has been in continuous oper-
ation since December 2010 with nearly 400 nodes. For the
sensor node hardware, we use the commonly used TelosB
nodes. For the software, we use TinyOS and its radio stack,
including the LPL MAC, the CTP collection protocol [5], and
the Drip dissemination protocol [6].
Based on GreenOrbs, we propose MAP, a practical method-

ology for Measuring and Analyzing the Performance of a large
operating WSN. MAP incorporates a carefully designed mea-
surement module for retrieving networking and system metrics.
MAP includes three steps for analyzing the packet losses. First,
it identifies the loss events as well as other important system
events called triggers. Second, it carefully tracks the interactions
inside theWSN system by means of a causal graph. Third, it ex-
amines the spatial-temporal correlations among system events
having causal relationships.
Using this methodology, we are able to conduct a deep exami-

nation of packet losses. For example, for a recent deployment of
our system, Fig. 1 shows the geographic distribution of packet
losses. The red nodes are those with packet delivery ratio (PDR)
less than 90%, and the length of the radius indicates the number
of lost packets. We note that while most previous deployment
studies report the delivery performance as in Fig. 1, they usually
lack detailed analysis for classifying the losses into smaller cat-
egories that can be more useful for gaining system insights. The
combination of multiple factors makes the overall packet losses
exhibit complex patterns that are extremely difficult to reason
about. Compared to previous deployment studies, MAP takes a
further step to decompose the overall losses into smaller cate-
gories that can be related closer to the underlying causes. It can
also reveal the spatial-temporal distributions of different losses.
The contributions of this paper are summarized as follows.
1) We examine the packet delivery performance for a com-
plete stack of TinyOS protocols in a large-scale operating
WSN.

2) We develop a methodology to investigate the underlying
causes for those losses. We quantify to what extent each
individual cause contributes to the overall identified losses.

3) We give implications and lessons learned to guide future
WSN designs and deployments.

The rest of this paper is structured as follows. Section II
describes the related work. Section III introduces the network
and the particular datasets we use in our study. Section IV
shows basic statistics of the network. Section V presents the
loss identification algorithm and the spatial-temporal distribu-
tion of packet losses. Section VI describes the methodology for
revealing the root causes. Section VII summarizes implications
and lessons we have learned. Section VIII presents a discussion
of our approach before we conclude in Section IX with an
outlook on future works.

II. RELATED WORK

This section discusses related works including existing WSN
deployments, measurement studies in wireless networks, and
the Internet.
Sensor Network Deployments: Many WSN prototypes have

been deployed in the recent years. Table I summarizes repre-
sentative sensor network deployments with some key network
metrics. Compared to other deployments, we can see that our
GreenOrbs network: 1) employs the latest TinyOS protocol
stack; 2) uses the largest number of sensor nodes per subnet.
During the year 2002–2003, a WSN for habitat monitoring

at Great Duck Island [7] is deployed. Tolle et al. [8] report a
sensor network consisting of 33 nodes to monitor the microcli-
mate of a redwood tree, covering an area of about 50 square me-
ters. Werner-Allen et al. [9] have deployed a WSN of 16 nodes
to monitor an active volcano. VigilNet [10] includes 200 nodes
to support military surveillance, covering an area of 100 100
square meters. ExScal [11], [2] attempts to deploy a WSN at
a large scale. The system consists of over 1000 sensor nodes
and 200 backbone nodes, while it fails to keep in continuous
operation for long. Bapat et al. [2] analyze the yield of ExScal.
SensorScope [12] is a real-worldWSN system on a rock glacier,
of which the largest deployment consists of nearly 100 sensor
nodes. The PermaSense project [13] collects long-term mea-
surements of diverse physical phenomena for geophysical re-
search. It employs a customized protocol, Dozer, for reliable
data collection. A wireless clinical monitoring system is in-
troduced in [14]. The system collects pulse and oxygen satu-
ration readings from patients with the TinyOS protocol stack.
Liu et al. [3] present measurement results of a large-scale sensor
network in the forest.
We can see from the above deployments that data collection

from multiple sensor nodes to a sink is a common application
scenario for WSNs. TinyOS and its protocol stack are widely
used in real sensor networks. A key difference between our cur-
rent study and previous studies is that we examine the corre-
lations among different events and quantitatively analyze the
causes for packet losses, while most of the previous works only
report the overall network performance without deep analysis
on the underlying causes. With the analysis results from our
study, developers and network operators can focus on the bot-
tleneck factors to improve the network performance.
Wireless Measurements: There are some dedicated

measurement studies in wireless and sensor networks.
1) Aguayo et al. [15] present a link-level measurement
study on an 802.11b mesh network. Our measurements are
based on different hardware and software. Moreover, sensor
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TABLE I
SENSOR NETWORK DEPLOYMENTS

networks employ low-power radios and dynamic routing pro-
tocols. 2) Zhao et al. [1] report a measurement study on packet
delivery performance using 60 Mica nodes. Srinivasan et al. [4]
present measurement of packet delivery performance of the
Telos and MicaZ platforms. Natarajan et al. [16] measure
and analyze the link-layer behavior of a body area network
at 2.4 GHz. Maheshwasi et al. [17] conduct a measurement
study on interference modeling and scheduling on two 20-node
TelosB testbeds. These measurement studies focus on impact
of each individual factor using controlled experiments, while
we present measurement results in an operating WSN. Those
measurements are important for understanding the impacts of
particular factors at different layers. The adopted measure-
ment approaches, however, are targeted at individual aspect
and cannot be easily integrated for a synthetical study in an
operating WSN since they do not consider the joint impact of
many aspects together, such as PHY, LPL MAC, and multihop
routing.
There are also some passive measurement tools using snif-

fers. Mahajan et al. [18] propose Wit, a tool that builds on pas-
sive monitoring to analyze the MAC-level behaviors of oper-
ational wireless networks. Chen et al. present LiveNet [19], a
system for investigating the behaviors of a deployed WSN via
passive monitoring. The sniffer infrastructure in LiveNet is able
to capture detailed wireless behaviors, but at the same time in-
curs excessive extra overhead due to the need of deploying ad-
ditional sniffer nodes and collecting the logs back for analysis.
Internet Measurements: For years, network measurement

has been a hot topic in the field of Internet, which attracts
many research efforts. The Internet employs a layered net-
work architecture consisting of end systems, routers, and
wired links. The available data sources for analysis and the
measurement approaches are thus different from WSNs con-
sisting of resource-constrained sensor nodes and wireless links.
Wang et al. [20] conduct a measurement study on the impact

of routing events on the end-to-end path performance. They
show that end-to-end Internet path performance degradation is
correlated with routing dynamics and analyze the root cause
of the correlation between routing dynamics and such perfor-
mance degradation. Turner et al. [21] present a methodology
for understanding the causes and impacts of link failures. They
opportunistically mine data sources that are already available
in modern network environments and analyze over five years of
failure events in a large regional network. Mahimkar et al. [22]
study the impact of upgrades on network key performance
indicators in a large operational network.
The viewpoint of existing Internet measurement studies can

be regarded as important references for our work in the WSN
context. Nevertheless, understanding the behavior and perfor-
mance of a WSN is an even more complex and challenging
task due to: 1) the complex behaviors of the network and its
nodes; 2) the lack of common infrastructure for the retrieval of
system events; and 3) the insufficient operational efforts for cat-
egorizing the losses. Hence, we need a new measurement and
analysis approach to understanding the packet delivery perfor-
mance of a WSN.

III. DATA SOURCES

In order to set the context for our analysis, we briefly de-
scribe our system first and then detail the particular data sources
available.

A. GreenOrbs Network

Our ongoing research project aims at building a long-term
and large-scaleWSN system in the forest. It employs the TelosB
mote [23] with msp430f1611 processor and CC2420 radio. The
project was started from April 2009. From August 2010, we re-
built the software based on TinyOS 2.1.1 [24], with an improved
architecture and implementation of the measurement module.
Basically, each sensor node reads the sensor data, measures

and records system status, and delivers three kinds of packets to
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the sink with a period of 10 min. The application uses TinyOS
and its network protocols, including the TinyOS LPLMAC pro-
tocol (with a sleep interval of 500 ms) for achieving low+duty
cycling, the CTP routing protocol [5] for multihop routing, and
the Drip dissemination protocol [6] for disseminating and con-
figuring key system parameters.
We perform careful accounting in our measurement module.

For example, we instrument the LPL MAC protocol to pre-
cisely track the radio duty cycle. We also implement methods
for obtaining per-packet routing path and per-packet generation
time, which are essential for performing spatial-temporal corre-
lation analysis. Our current measurement module is not general
enough to be incorporated into other protocol suites without any
modifications, and we plan to make it more general in the future.
On December 10, 2010, we started a new deployment of the

system with nearly 400 nodes in the campus woodlands (with
the power level of 31), covering an area of about 60 000 m .
A single TelosB sink node was used for collecting data. As can
be seen from Table I, the GreenOrbs network has the largest
number of sensor nodes per subnet.
In this paper, we analyze the collected packets of 10 days

starting from December 19, 2010. The trace contains
1 137 430 packets in total.

B. Collected Packets

The sink node collects three kinds of packets with CTP col-
lection types C1, C2, and C3, respectively. Our measurement
and analysis in the subsequent sections are based on the data
fields in these packets.
The C1 packet contains two kinds of information: 1) sensor

data, including temperature, humidity, light, and voltage; 2)
routing information, including path-ETX [26] from the source
node to the sink node, and node IDs along the path (with a
maximum number of 10).
The C2 packet contains the routing table with a maximum

neighbor number of 10. Each routing table entry contains: 1) the
neighbor node ID; 2) the received signal strength indicator
(RSSI) value from the neighbor; 3) the link-ETX estimate to
the neighbor; 4) the path-ETX estimate to the sink.
The C3 packet contains various counters. For example: 1) the

CPU counter records the accumulated task execution time in
unit of ms; 2) the radio counter records the accumulated
radio-on time in milliseconds; 3) the transmit counter
records the accumulated number of transmitted packets.
The above-mentioned three kinds of packets also share a

common packet header including: 1) the source field, indi-
cating which node the packet originates from; 2) the seqno
field that increments when CTP sends a packet; 3) the thl
field that indicates the hop count of the arriving packet; 4) the
source_time field that is the time instant when the source
node transmits the packet in its local time; (5) the sink_time
field that is the packet reception time in the local clock of the
sink node.

IV. BASIC STATISTICS

With collected packets of 10 days, we are able to extract some
basic statistics about the working system. During the measure-
ment period, there are 343 nodes with %. We detect

that the sink was down from 14:40 p.m. December 24, 2010, to
8:20 a.m. December 25, 2010. In our analysis, we exclude the
sink-down time and nodes with % in order not to
bias our analysis.
As each node sends three packets every 10 min, we know the

number of packets that should be received during the measure-
ment period when the delivery from the source node is fully re-
liable. Without considering packet losses during the sink-down
time, the system achieves an average PDR of 81.3%. We be-
lieve the packet delivery performance of our network is a typ-
ical representative for TinyOS protocols in real-world deploy-
ments (as can be seen from Table I). Compared to tailored proto-
cols that are reported to achieve 99.9% reliability at permilli in
small-scale networks [5], [27], the current ready-to-use TinyOS
protocols are not good enough in large networks.
Please refer to our conference paper for more detailed system

statistics [28].

V. LOSS IDENTIFICATION: A FIRST STEP

Basically, we identify packet losses by observing gaps in se-
quence numbers (seqno). In our study, we identify loss event
of the form ID, stime, etime, size where ID is the
source node ID, stime and etime denote the start time and
end time, and size denotes the loss size that is the maximum
number of consecutive packets lost by the same source node.
Two types of packet losses can be identified by observing the
drop_no_ack and drop_overflow counters contained in
C3 packets.
We also want to identify other interesting system events,

called triggers (e.g., packet corruption, loop, reboot, etc.),
which can explain the loss events. A trigger is in the form of
ID, stime, etime, scope where ID is the source
node ID, stime and etime denote the start time and end
time, and scope contains a list of nodes that are likely to be
impacted by the trigger.

A. Algorithm

Nowwe turn our attention to the loss identification algorithm.
We use the 1-B seqno field in the CTP header for loss identifi-
cation. A practical challenge in loss identification is that the 1-B
seqno can easily overflow. Using a seqno field with more bits
(e.g., 16 bits) will simplify the task. However, the GreenOrbs
implementation keeps the header unmodified at that time, which
complicates our algorithm at the PC side.
Basically, we identify the loss events using the following

steps.
1) We validate packet fields for filtering out corrupted
packets.

2) We assign each packet a virtual seqno (vseqno) that never
overflows.

3) We sort the packets for each node according to the virtual
seqno and identify the loss events by looking for gaps in
the virtual seqno.

We also use two counters in C3 packets, i.e., drop_no_ack
and drop_overflow, to identify two particular kinds of
packet losses. We call these two types of packet losses no-ack
drops and overflow drops, respectively.
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Fig. 2. Packet losses at a glance. The -axis denotes the node IDs in ascending order. A black line indicates a loss event. A diamond indicates a reboot event.
Vertical bands in Dec. 25 and Dec. 28 labeled V1 correspond to loss events happening at all nodes. Vertical bands in Dec. 24 and Dec. 27 and 28 labeled V2
correspond to loss events happening at a subset of nodes. The horizontal bands in the bottom left corner of Fig. 2 labeled H correspond to loss events happening
at particular nodes. The sink is down during 14:40 p.m. Dec. 24, 2010, to 8:20 a.m. Dec. 25, 2010.

B. Results

We have identified a total of 181 862 losses. We have
also identified 5930 no-ack loss events (by examining the
drop_no_ack counter), containing 84 030 losses, and
347 overflow loss events (by examining the drop_over-
flow counter), containing 5219 packet losses. They contribute
to nearly 50% of the identified losses.
Fig. 2 shows the loss events during the measurement period.

The -axis denotes the time, and -axis denotes the source node
IDs in ascending order. Each loss event is represented by a black
line located according to its start time and end time.We also plot
the no-ack loss event by a red line and the overflow loss event by
a green line. A diamond indicates a reboot event. We can make
several observations from Fig. 2.
Vertical Banding: We can see two types of vertical bands

here. 1) Vertical bands in Dec. 25 and Dec. 28 labeled V1 in
Fig. 2 correspond to loss events happening at all nodes. The root
cause should be at the sink side. 2) Vertical bands in Dec. 24 and
Dec. 27 and 28 labeled V2 in Fig. 2 correspond to loss events
happening at a subset of nodes. This is mostly caused by routing
loops. An evidence is that we also observe overflow losses at a
subset of nodes (green lines).
Horizontal Banding: The horizontal band in the bottom left

corner of Fig. 2 labeled H corresponds to loss events happening
at particular nodes. We observe that those nodes experience
heavy packet losses during the measurement period. Most of
them also experience no-ack loss events, suggesting that those

nodes may have very poor link qualities to neighboring nodes,
causing the retransmission threshold to be exceeded. Interest-
ingly, we observe that most of these nodes experience recoveries
in the midday. We will further look into such a phenomenon in
the following section.

VI. ROOT CAUSES: A CLOSER LOOK

To investigate the root causes of packet losses, we would like
to perform correlation analysis between the loss events and the
triggers identified in Section V.

A. Spatial-Temporal Correlation Analysis

Intuitively, if a loss event is highly correlated with a trigger,
it is caused by the trigger with a high probability. Fig. 3 shows
the causal relationships we will investigate in this paper.
We investigate the following categories of causes:
A) Sink-side failures that are further classified into:

A1) sink node failures;
A2) PC-end failures.

B) Corruptions that are further classified into:
B1) in-network corruptions;
B2) corruptions at the sink node.

C) Overflow drops that are further classified into:
C1) loop-induced overflow drops;
C2) non-loop overflow drops.

D) No-ack drops that are further classified into:
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Fig. 3. Causal relationships of system events to loss.

D1) no-ack drops due to environment-induced link
degradation (env-no-ack drops);

D2) no-ack drops due to in-network interference (inter-
ference-no-ack drops). Those losses can be induced
by node reboot or routing loops. Both node reboot
and routing loops will cause a very high beaconing
rate in the current implementation of CTP/LPL,
causing severe interference to neighboring nodes.

E) Node reboot that can directly cause queued packets of the
downstream nodes to be dropped at an intermediate node.

There are other causes such as sink down or node down. We
note that a single trigger may have different impacts. For ex-
ample, a reboot may cause the queued packets to be dropped di-
rectly or cause interference to all neighboring nodes, resulting in
no-ack drops at those nodes. A routing loop may cause overflow
drops directly or cause interference to all neighboring nodes, re-
sulting in no-ack drops. The multiple impacts of a single event
and the complex interactions among triggers and the loss events
make the delivery performance of a sensor network extremely
difficult to reason about.
As each trigger is annotated with a start time and an end time,

we use temporal correlation to match it with loss events. To
find matches, we widen the start time and end time of a trigger
by a time lag to compensate for factors like delayed reporting.
The setting of the time lag, however, depends on the scenario
under consideration. To minimize the false positives, we also
use spatial correlation, i.e., we consider the impact scope of a
trigger. As mentioned in Section V, the scope field in a trigger
contains a list of nodes that are likely to be impacted by the
trigger.
We consider three kinds of impact scopes in this study:
1) trigger.scope trigger.ID;
2) trigger.scope downstream nodes of trigger.ID;
3) trigger.scope neighboring nodes of trigger.ID.
The downstream nodes of trigger.ID are found by inspecting

all C1 packets from trigger.ID received in the time window
[trigger.stime , trigger.etime] ( min in this study).
As each C1 packet contains the forwarding path toward the sink,
the downstream nodes for a particular node can be found.

The neighboring nodes of trigger.ID are found by in-
specting C2 packets in the time window [trigger.stime ,
trigger.etime]. The neighboring nodes are those that either
appear in the routing table of trigger.ID (upstream nodes) or
whose routing tables contain trigger.ID (downstream nodes).
We will use a subscript to differentiate triggers with different

scopes: has impacts on trigger.ID, has im-
pacts on all downstream nodes of trigger.ID, and has
impacts on all neighboring nodes of trigger.ID. In correlating
triggers to loss events (or other triggers), we ensure that the ID
in the loss event is contained in the impact scope of the trigger,
i.e., event.ID trigger.scope.
Validation: For deployed systems, it is difficult to obtain all

levels of ground truth. We employ a variety of mechanisms to
provide certain levels of ground truth in order to verify our
results. For example, we use sniffer nodes to verify that the
channel of our sensor network (i.e., channel 15) is not interfered
by external noises. We also maintain a ticket system to record
important system events such as weather changes, sink down,
etc.
In order to quantitatively verify the accuracy of our corre-

lation analysis algorithm, we perform controlled experiments
using the sameGreenOrbs program in a 5 10-grid testbed with
a power level of 1, manually injecting different causes of packet
losses. We inject the following kinds of events for introducing
packet losses:
• move a node away from other nodes and move it back after
a duration;

• reboot a node by pressing its reset button;
• manually assign parents in order to create routing loops;
• increase the traffic rate in order to cause queue overflows.
Each node locally logs the packet transmission and reception

events, and we collect those events via serial lines in the testbed.
The collected local logs are used for obtaining the ground truth
of packet losses. Each experiment lasts for 5 h. The above-men-
tioned losses are randomly injected into the first nodes

in the duration of the first hours . We have
examined the total number of triggers for the GreenOrbs net-
work during 10 days to be approximately 22 000. Considering
that our testbed experiment consists of 50 nodes for 5 h, we set
the number of manually injected events to be

.
The accuracy of our algorithm is defined to be the percentage

of loss events having a correct correlation with its cause. We
would expect that with smaller and , the accuracy of our
algorithm will decrease because there will be multiple causes
correlating to a single loss event, resulting in inablity to differ-
entiate the real cause. Fig. 4 shows the accuracy of our algorithm
with varying and . We have two basic observations from the
figure: 1) We indeed see that the accuracy of our algorithm de-
creases with smaller and . 2) If the events are injected in the
entire network of 50 nodes for the entire duration of 5 h (i.e.,

), the accuracy of our algorithm is as high as
0.99.
In Sections VI-B–VI-E, we will use our correlation analysis

algorithm to investigate different causes of packet losses in the
GreenOrbs network.
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Fig. 4. Accuracy of our correlation algorithm.

Fig. 5. Sink-side losses for each day.

B. Sink-Side Failures

The sink node receives packets via the wireless radio, and
then forwards the packets via the serial port to the PC where a
java tool records the collected packets.
By inspecting the receive counter in packets originated

from the sink node, we are able to detect that 22 873 packets
are dropped at the sink side, i.e., either at the sink node or at the
PC.
What causes sink-side failures? Fig. 5 plots the number of

packet losses at sink side for each day. We observe that a high
number of packet losses happened on December 25. Interest-
ingly, we can see that one vertical band covering all nodes on
December 25 from Fig. 2.
Checking : (Note that the labels A and A1 corre-

spond to triggers/events shown in Fig. 3.) The number of packet
losses corresponding to the vertical bands (i.e., V2 in Fig. 2) is
22 638, which means the vertical bands contribute to 99.6% of
the sink-side losses. To further investigate the causes of the ver-
tical bands, we examine the status of the sink node. We find
that the sink node does not reboot across the event since the

packet sequence numbers from the sink node continue to in-
crease. After many rounds of detections during testbed exper-
iments, we find that several possible causes exist: 1) the serial
line connecting the sink node and PC is too long and thus is un-
reliable in delivering packets; 2) the serial port number on the
PC unexpectedly changes, causing failure of the java tool; 3) the
java tool seems blocked (a restart of the java tool will solve the
problem). The above causes are outside the sink node. We col-
lectively call them PC-end failures.
The above result also implies that the amount of packet losses

inside the sink node (e.g., due to queue overflow) appears to be
small.

C. Corruptions

Corrupted packets are difficult to identify in the first place.
We only check a limited packet field (e.g., the ID field, the
routing table entries) to validate the correctness.
We are able to detect a total of 9511 corrupted packets that

correspond to the same number of corruption triggers. This does
not necessarily indicate that 9511 packets are lost because of
corruptions. We find that there are 222 corruption triggers that
are guaranteed not to cause losses because the subsequent cor-
rect packet in the collected packet trace has exactly the same
source and seqno fields with the previous corrupted packet.
Checking : We try to match the corruption triggers

to the loss events to find the actual losses caused by corrup-
tion.We do not match for the 127 corrupted triggers with broken
source fields because those triggers cannot be used for spatial
correlation and thus may cause a large false positive rate. We set
the time lag as 10 min since a smaller time lag will inevitably
cause false negatives because our loss detection latency can
reach 10 min (i.e., one transmission period). We have detected
a total of 9037 corruption-induced losses. This contributes to

% of the identified loss. In order to get an es-
timate of the false positive rate, we consider a sample of the 222
corrupted packets that are guaranteed not to cause losses. The
correlation algorithm finds 19 of those packets matched with
losses, implying an false positive rate of %.
Checking : How do corruptions occur? Does in-net-

work interference cause packet corruptions? To answer these
questions, we correlate and to the corruption trig-
gers. We find that 3001 corruptions triggers are correlated with
either or , indicating that %
corruptions are highly likely to be caused by in-network inter-
ference. This implies that the current packet-level CRC mecha-
nism cannot guarantee the correctness of a received packet.

D. Overflow Drops

From Fig. 2, we can get an initial guess that loops can cause
overflow drops as there are many overflow drops (green lines)
in occurrence with loops (vertical bands covering a subset of
nodes).
Checking : To take a closer look, we try to correlate

triggers to overflow loss events. The scope of the trigger
only includes loop.ID since in this case the nodes experiencing
queue overflow should also see the loop events if the overflow
drops are caused by the loop. As both the triggers and the loss
events are identified using C3 packets, we use a small time lag
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Fig. 6. Average detected number of loops at each hop count.

of one second here. We have matched 399 triggers to 322
overflow loss events, containing 5178 losses.
This result implies several facts. First, overflow drops are

mainly caused by loops. Loop-induced overflow drops occupy
% (note that 5219 is the number of identified

overflow losses) of the total identified overflow losses. Second,
the non-loop overflow drops only occupy 0.8% of the identi-
fied overflow losses. We have manually inspected 15 non-loop
overflow events and find that nodes experience non-loop over-
flows have two characteristics: They either experience a sudden
increase in the number of received packets, or they have a high
incoming traffic ( packets in one period of 10 min). Third,
loops do not necessarily cause overflow drops: 93% of the loop
events do not cause overflow drops. It is, however, possible
that loops may cause other kinds of packet losses, e.g., inter-
ference-induced losses.
We are interested in the loop events that cause overflow drops.

Where and how do they occur? To get a first impression, Fig. 6
shows the average detected number of loops for nodes at a spec-
ified hop count. The hop count of a node is calculated as the
median hop count from packets from this node. We observe that
nodes far away from the sink can be easily involved into loops
that actually cause losses.

E. No-Ack Drops

No-ack drops constitute the largest portion of packet losses.
Conceptually, this type of loss is incurred by poor link qualities
to the neighboring nodes, causing the retransmission threshold
to be exceeded. We consider two kinds of factors impacting
the link quality, i.e.: 1) environment-induced link quality degra-
dation, and 2) in-network interference. It is worth noting that
environment changes can also cause interference in general.
However, in this study, we mainly consider inferences coming
from the network itself because of two reasons. First, our net-
work uses channel 15, which does not overlap with any WiFi
channels [29]. Second, we use sniffers before deployment and
find that the external noise and interference at channel 15 is
negligible.
1) No-Ack Loss Due to Environment-Induced Link Quality

Degradation (Env-No-Ack Drops): From Fig. 2, we observe

Fig. 7. Node 19’s routing table on December 19. IDs in the -axis show nodes
that appear in node 19’s routing table, with the color representing the link quality
to that neighbor. The parent node of node 19 at a time instant is indicated by a
blue rectangle.

Fig. 8. Node 19’s temperature and humidity on December 19.

that a number of nodes experience serious packet losses (hor-
izontal bands). Interestingly, those nodes experience recoveries
in the midday. This phenomenon is more obvious in the first six
days. To investigate the underlying causes, we inspect a repre-
sentative node, node 19. Fig. 7 shows node 19’s routing table
on Dec. 19. The -axis denotes the time, and the -axis denotes
the neighboring nodes that appeared in the routing table at least
once during the day. The color represents the link quality to the
neighbor. A green color indicates a good link quality, a yellow
color indicates a median link quality, and the red color indicates
a poor link quality. We also show the parent of node 19 by a blue
rectangle. The figure does not show information near the start
and end times of the day because no C2 packets from node 19
were received. We can see that the link qualities to all nodes
experience an abrupt change during 9:00–10:00 a.m. (increase)
and 20:00–21:00 p.m. (decrease). It makes us believe that the
environment has a large impact on the link quality.
Therefore, we plot node 19’s temperature and humidity on

December 19 in Fig. 8. We see that the changes in link qualities
seem to indeed be correlated with the environment: The link
qualities degrade when the humidity exceeds 70%+. This result
indicates that the current routing protocols can be greatly im-
proved by using sensor hints and local buffering mechanisms:
env-no-ack losses can be largely mitigated by sending packets
when the link condition becomes good in the midday.
Fig. 9 shows the RSSI and link packet reception ratio (PRR)

for some neighboring nodes in node 19’s routing table on Dec.
19. The -axis indicates the value of RSSI in dBm. Fig. 9 also
plots a circle corresponding to a RSSI value with the radius of
the circle indicating the link PRR from node 19 to the corre-
sponding neighbor. A larger circle denotes a high-link PRR. In-
terestingly, we see that there is a negative correlation between
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Fig. 9. RSSI and link PRR in node 19’s routing table on December 19.

RSSI and PRR, suggesting that the degradation in link quality
is not due to channel fading.
While we only show behaviors of a particular node in

Figs. 7–9, there are many other nodes included in the hori-
zontal bands in Fig. 2. They exhibit a similar phenomenon.
Such phenomena repeated for the whole measurement period.
They were not incurred by external interference because the
communication channel used by the sensor network did not
overlap with any WiFi channels.
We think this problem is related to both the sensor node en-

closure and the specific deployment (near a river). The same
observation is also reported in a prior study [30] that states
that particles and water pooling on the plastic enclosure are
likely to alter the radiation patterns, causing link quality degra-
dations. Such an observation is further confirmed by our addi-
tional prototype experiments in the field as well as controlled
experiments reported in [30], where the authors artificially in-
troduce water/moisture to sensor nodes with plastic enclosure.
With more advanced enclosures, we think the problem can be
mitigated. For example, in our later deployment of the CitySee
project [31] in an urban area, we have replaced the plastic en-
closures. We do not observe the same phenomenon.
Checking :We identify env-no-ack losses by iden-

tifying nodes that exhibit periodic behaviors in packet losses.
There are 68 444 env-no-ack losses, i.e., 37.6% of the total iden-
tified losses.
2) No-Ack Loss Due to In-Network Interference (Interfer-

ence-No-Ack Drops): Interference has a large impact on the per-
formance of wireless links. From the CTP/LPL implementation,
we know that both the reboot and loop events can cause a high
beaconing rate since the Trickle timer will be reset to its min-
imum interval of 128 ms. With LPL, interference will be severe
because of long preambles in packet transmissions.
To cross-validate the high beaconing rate after reboot and

loop events, we plot node 3’s average number of congestion
backoffs (i.e., the number of congestion backoffs divided by the
number of initial backoffs during the period) on December 23 in
Fig. 10. The average number of backoffs roughly reflects how
the channel is contended at that time. We see from Fig. 10 that
the value experiences an increase around 13:00 p.m. and during
20:00–21:00 p.m. By examining the system events, we find that
there are three reboot events around 13:00 p.m., and a loop is
detected during 20:00–21:00 p.m. A high contention suggests a
high probability of interference.

Fig. 10. Average number of congestion backoffs of node 3 on December 23.

TABLE II
ROOT CAUSES OF IDENTIFIED LOSSES

In our current study, we consider interference caused by re-
boots and loops. We do not consider interference caused by data
packet transmissions because the exact timing of data packet
transmissions is left unknown.
Checking : We try to correlate and

triggers to no-ack loss events in order to investigate interfer-
ence-induced no-ack loss. The scope of the reboot and loop trig-
gers are set to be the neighboring nodes that are interfered by
the corresponding triggers. We have matched 247 loop events
to 536 no-ack loss events, containing 4361 losses. We have also
found that 10 no-ack losses are matched with reboot events with
a time lag of 10 min. No loss event is found to be correlated to
both reboots and loops. Therefore, the total number of losses
correlated with interference is at least 4371, occupying 2.4% of
the identified losses.

F. Summary

We give a summary about the root causes we have found so
far. Table II gives the root causes and the percentage of identi-
fied losses they induce.

G. Understanding the Loss

We look at the characteristics of five important losses, i.e.,
corruption-induced loss, loop overflow drops, non-loop over-
flow drops, env-no-ack drops, and interference-no-ack drops.
Spatial Distribution: Fig. 11(a)–(e) shows the geographic dis-

tributions of five categories of losses. Interestingly, we see dif-
ferent spatial distributions of packet losses caused by different
events. Fig. 12(a)–(e) shows the spatial distributions of five cat-
egories of losses with respect to the median hop count of each
node. Fig. 12(a) shows that while corruption-induced losses in-
crease for the first five hops, it is not apparent for larger hops.
Fig. 12(b) shows that loop overflow drops mainly occur at nodes
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Fig. 11. Geographic distribution of losses. (a) Corruption. (b) Loop overflow drops. (c) Non-loop overflow drops. (d) Env-no-ack drops. (e) Interference-no-ack
drops.

Fig. 12. Losses versus hops. (a) Corruption. (b) Loop overflow drops. (c) Non-loop overflow drops. (d) Env-no-ack drops. (e) Interference-no-ack drops.

with larger hop counts where routing loops can occur more
easily. The large value for hop 2 is caused by a single node 576
involved in loops (which drops 1000+ packets because of over-
flow). Fig. 12(c) shows that non-loop overflows mainly occur
at nodes near the sink. It is reasonable because those nodes are
supposed to carry a higher traffic volume. Fig. 12(d) shows that
env-no-ack drops occur at nodes near the sink. We suspect that
it is related to our specific deployment where those nodes are
close to a river. Fig. 12(e) shows that interference-no-ack drops
mainly occur in nodes near the sink because of high traffic load.

VII. IMPLICATIONS AND LESSONS LEARNED

In this section, we give a summary on the observations, im-
plications, and lessons learned from this study.
Observation 1: The overall delivery performance of our

system is 81.3% with a radio duty cycle of 4.9%. Although the
performance of old versions of TinyOS protocols is reported
in prior works, the latest TinyOS protocol suite (version 2.1.1)
seems not well evaluated in outdoor deployments. To our
knowledge, we are the first to report quantitatively the perfor-
mance of latest TinyOS protocol suite in a large-scale outdoor
deployment.
Implication 1: Compared to tailored protocols that are re-

ported to achieve 99.9% reliability at permilli in small-scale
networks [27], [32], the current ready-to-use TinyOS protocols
are not good enough in large networks.
Observation 2: The number of packet losses on long path is

no higher than that on short path. For nodes near the sink, the
PDRs have a high variance while for nodes far away from the
sink, the PDRs are mainly concentrated around 80%.
Implication 2: This implies the existence of some bad links

since otherwise all PDRs will be high. Those bad links do not
impact nodes far away from the sink (distant nodes) but do im-
pact nodes near the sink (nearby nodes). This further implies that
the current routing metric can avoid the selection of bad links
for distant nodes but cannot optimize the delivery performance
for nearby nodes by utilizing a longer and more stable path.

Observation 3: For our deployment, sink-side failures are
mainly incurred at the PC end instead of the sink node.
Implication 3: PC-end hardware and software should be

closely monitored to minimize packet losses. The use of mul-
tiple sinks (including sink node and PC) will be effective in
improving the reception reliability.
Observation 4: Packet corruption rates are relatively high

(at least 5%). Packets can be corrupted in the network during
transmission.
Implication 4: The current packet-level CRC mechanism is

not enough to ensure the correctness of a received packet.
Observation 5: Overflow drops are mainly caused by routing

loops whereas most loops are transient and show no strong cor-
relation with packet losses.
Implication 5: Routing loops have different impacts on

packet delivery performance. On one hand, it decreases the
performance because of queue overflow (and interference).
On the other hand, it can salvage transient packet losses. With
respect to packet delivery performance, we should eliminate
loops that cause overflow drops.
Observation 6: It is possible that there is a negative correla-

tion between RSSI and PRR.
Implication 6: Link estimation protocols should use multiple

factors to decide the link quality.
Observation 7: The environment has a large impact on

packet delivery performance. A number of nodes exhibit highly
periodic performance variations because many links severely
degrade in the night. However, most of the nodes experience
recoveries in the midday. We think this problem is related to
both the sensor node enclosure and the specific deployment
(near a river). With more advanced enclosures, the problem can
be mitigated.
Implication 7: This result indicates that the current routing

protocols can be greatly improved by using sensor hints and
local buffering mechanisms: Packet losses can be largely
mitigated by sending packets when the link condition becomes
good in the midday.
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Observation 8: We find in our deployment an unnegligible
number of node reboots and node failures. It also appears that
the poor performance of some wireless links are highly related
to our specific deployment where those links are near a river.
Implication 8: Both sensor node hardware and sensor

network deployment have great impacts on the system perfor-
mance. It is suggested that multiple rounds of indoor testbed
experiments and outdoor prototype experiments are conducted
before a large-scale and long-term sensor network is deployed.

VIII. DISCUSSIONS

Our current data sources are collected in the form of data
packets and are relatively easy to retrieve. Nevertheless, they
cannot capture the complete set of system events in the network,
and the additional transmissions of measurement data can affect
the network performance. Despite the potential negative impact,
it can reveal valuable information about the network, which
greatly improves the effectiveness of network management. We
also carefully study the network performance with/without ad-
ditional measurement data in a 50-node testbed and find that
the network performance in terms of PDR and radio duty cycle
is not significantly affected. For some wireless behaviors, such
as channel utilization, MAC efficiency and additional measure-
ment infrastructures such as passive sniffing or local logging are
required. We will explore those approaches as future work.
Our current study is based on a data collection network em-

ploying the TinyOS protocol suite. There are circumstances in
which developers employ customized protocol suites (such as
receiver-initiatedMACs or backpressure routing) in specific de-
ployments. However, our analysis using spatial-temporal cor-
relation is general and can also be well applied in other areas.
The causal graph and specific parameters to perform correlation
analysis need to be slightly modified.
The benefit of using spatial-temporal correlation analysis is

to quantify the impacts of different factors so that developers
and network operators can focus on the bottleneck factors to
improve the network performance. We see that a number of re-
cent works are very relevant to our measurement results, im-
plying that our findings in this study are potentially very useful
to real sensor network designs and implementations (as dis-
cussed below).
We have mentioned that routing loops indeed occur in

the current CTP protocol. Backpressure routing [33], [34]
is a promising mechanism that mitigates routing loops and
promises throughput-optimal performance. Unlike traditional
routing mechanisms for wired and wireless networks, backpres-
sure routing does not perform any explicit path computation
from source to destination. Instead, the routing and forwarding
decision is made independently for each packet by computing
for each outgoing link a backpressure weight that is a function
of localized queue and link-state information.
We have mentioned that both reboots and loops incur a high

beaconing rate that introduces negative impacts to the network,
especially for asynchronous low-power listeningMACs. Broad-
cast-Free Collection Protocol, BFC [35], is a protocol to elimi-
nate broadcast completely. We envision that the use of BFC can
significantly reduce the chances of interference-induced losses.

We have also mentioned that environment can cause link
quality degradations and the use of sensor hints and local
buffering can greatly improve protocol performance. Ravin-
dranath et al. [36] propose a network architecture that uses
sensor hints to augment and improve wireless protocols. It is
implemented on commodity smartphones and tablet devices
equipped with a variety of sensors that can provide hints about
the device’s mobility state and its operating environment. We
believe the same technique can be applied in existing sensor
networks to improve the wireless network performance.

IX. CONCLUSION AND FUTURE WORK

In this paper, we present MAP, a methodology for measuring
and analyzing the packet delivery performance of a large oper-
ating WSN in the wild. Based on the collected data, we present
an approach for uncovering the spatial-temporal distributions of
the loss events as well as developing a causal graph with which
we perform spatial-temporal correlation analysis for revealing
the root causes. We summarize implications and lessons learned
and give important guidance to future WSN deployments.
There are multiple dimensions to explore. First, we would

like to examine more numbers of system events. Second, we
would like to implement ourmethodology as a real-time service,
augmented with limited use of passive sniffing or local logging
for deep examination of wireless behaviors.
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