
1172 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

Dynamic Packet Length Control in
Wireless Sensor Networks

Wei Dong, Member, IEEE, Chun Chen, Member, IEEE, Xue Liu, Member, IEEE, Yuan He, Member, IEEE,
Yunhao Liu, Senior Member, IEEE, Jiajun Bu, Member, IEEE, and Xianghua Xu, Member, IEEE

Abstract—Previous packet length optimizations for sensor
networks often employ a fixed optimal length scheme, while
in this study we present DPLC, a Dynamic Packet Length
Control scheme. To make DPLC more efficient in terms of
channel utilization, we incorporate a lightweight and accurate
link estimation method. We further provide two easy-to-use
services, i.e., small message aggregation and large message frag-
mentation, to facilitate upper-layer application programming.
The implementation of DPLC based on TinyOS 2.1 is lightweight,
with respect to computation, memory, and header overhead. Our
experiments using a real indoor testbed running CTP show that
DPLC achieves the best performance compared with previous
works.

Index Terms—Packet length optimization, link estimation,
aggregation, fragmentation, wireless sensor networks.

I. INTRODUCTION

A fundamental challenge in wireless networks is that radio
links are subject to transmission power, fading, and in-

terference, which degrade the data delivery performance. This
challenge is exacerbated in wireless sensor networks (WSNs),
where severe energy and resource constraints preclude the use
of many sophisticated techniques that may be found in other
wireless systems [1].

In this paper, we consider a simple, cost-effective solution
based on the technique of dynamic packet length control to
improve the performance in these varying conditions. A trade-
off exists between the desire to reduce the header overhead by

Manuscript received August 1, 2012; revised February 6, August 4, and
December 15, 2013; accepted December 15, 2013. The associate editor
coordinating the review of this paper and approving it for publication was
B. Liang.

A preliminary version of this work was published in IEEE INFOCOM
2010.

This work is supported by the National Science Foundation of China Grants
No. 61202402, 61070155, 61170213, 61373181, 61370087, the National
Key Technology R&D Program (2012BAI34B01), the Research Fund for
the Doctoral Program of Higher Education of China (20120101120179), the
Open Research Fund of Zhejiang Provincial Key Lab of Data Storage and
Transmission Technology, Hangzhou Dianzi University (No. 201303), the
Fundamental Research Funds for the Central Universities (2012QNA5007),
and Demonstration of Digital Medical Service and Technology in Destined
Region.

W. Dong, C. Chen, and J. Bu are with the Zhejiang Key Lab of Service
Robot, College of Computer Science, Zhejiang University, China (e-mail:
{dongw, chenc, bjj}@zju.edu.cn).

X. Liu is with the School of Computer Science, McGill University (e-mail:
xueliu@cs.mcgill.ca).

Y. He and Y. Liu are with the School of Software and Tsinghua National
Lab for Information Science and Technology (TNLIST), Tsinghua University,
China (e-mail: {he, yunhao}@greenorbs.com).

X. Xu is with the Zhejiang Provincial Key Lab of Data Storage and
Transmission Technology, School of Computer Science, Hangzhou Dianzi
University, China (e-mail: xhxu@hdu.edu.cn).

Digital Object Identifier 10.1109/TWC.2014.012414.121106

making packet large, and the need to reduce packet error rates
(PER) in the noisy channel by using small packet length [2].

Although there have been several studies on packet length
optimizations in the literature [2]–[6], existing approaches
usually require that a set of parameters to be carefully tuned
such that it can better match the level of dynamics seen by any
particular data trace. However, any fixed set of parameters will
not adapt to the changing conditions since one parameter set
does not fit all conditions. Furthermore, the update process
would require user intervention, further data collection and
reprogramming the parameters. This is precisely what we want
to avoid in our case, and one of the strengths of using dynamic
packet length optimization scheme.

We design and implement DPLC based on TinyOS 2.1.
The current implementation of DPLC on TelosB motes is
lightweight. We evaluate DPLC in a testbed consisting of 20
TelosB nodes, running the CTP protocol [7], and compare
its performance with a simple aggregation scheme and AIDA
[8]. Results show that DPLC achieves the best performance
in terms of transmission overhead and energy efficiency.

The contributions of our work are highlighted as follows.
• We design and implement a dynamic packet length opti-

mization scheme in the context of WSNs. We incorporate
an accurate link estimation method that captures wireless
characteristics.

• We provide two easy-to-use services, i.e., small message
aggregation and large message fragmentation, to facilitate
upper-layer application programming. The implementa-
tion of DPLC based on TinyOS 2.1 is lightweight, with
respect to computation, memory, and header overhead.

• We evaluate DPLC extensively. We demonstrate the fea-
sibility of dynamic packet length optimization in WSNs,
and show its performance improvement by integrating it
into CTP [7], a widely used data collection protocol.

Compared with our conference paper [9], this journal ver-
sion has the following extensions. (1) We provide a complete
description on how to derive the metric in Section IV-B. (2)
We analyze DPLC’s energy consumption and convergence in
Section IV. (3) We examine the accuracy of our link estimation
method. We present more detailed comparison results in
Section VIII.

The rest of this paper is structured as follows. Section II
discusses related work. Section III describes the experimental
observations that motivate our design. Section IV presents the
design of DPLC. Section V presents an analysis the energy
consumption and the convergence rate of DPLC. Section VI
introduces the implementation details. Section VII shows the
simulation results. Section VIII shows the evaluation results.
Finally, Section IX concludes this paper.

1536-1276/14$31.00 c© 2014 IEEE

DONG et al.: DYNAMIC PACKET LENGTH CONTROL IN WIRELESS SENSOR NETWORKS 1173

10 20 30 40 50 60 70 80 90
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

 TO
 PRR

Packet payload length (bytes)

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

0.3

0.4

0.5

0.6

0.7

0.8

P
ac

ke
t r

ec
ep

tio
n

ra
te

 (P
R

R
)

(a)

10 20 30 40 50 60 70 80 90
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

 TO
 PRR

Packet payload length (bytes)

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

P
ac

ke
t r

ec
ep

tio
n

ra
te

 (P
R

R
)

(b)

10 20 30 40 50 60 70 80 90
2.4

2.7

3.0

3.3

3.6

3.9

4.2
 TO
 PRR

Packet payload length (bytes)

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 P
ac

ke
t r

ec
ep

tio
n

ra
te

 (P
R

R
)

(c)

Fig. 1: Impact of packet payload length on normalized transmission overhead (TO) and packet reception rate (PRR). (a)
Experiment 1: power level=3, distance=8m. (b) Experiment 2: power level=4, distance=8m. (c) Experiment 3: power level=4,
distance=35m.

II. RELATED WORK

Packet length optimization has been studied extensively in
the literature. Spragins et al. discuss optimizing packet length
for a variety of factors, e.g., error in the channel, buffer size,
and ARQ schemes [10]. Siew et al. discuss optimal packet
length under the Rayleigh fading channel model [3]. Recently,
WSNs have attracted a great deal of research attention [11]–
[13]. Sankarasubramaniam et al. extend prior work into WSNs,
where an optimal packet length framework based on energy
efficiency is proposed [6]. The above works usually require
that a set of parameters to be carefully tuned such that it can
better match the level of dynamics seen by any particular data
trace. However, any fixed set of parameters will not adapt
to the changing conditions. DPLC can automatically adapt to
network dynamics.

Dynamic packet length adaptation has been investigated in
802.11-based wireless systems [2], [5], [14], [15]. Lettierri et
al. study the effect of variable packet length on several metrics,
and implement a dynamic adaptation scheme on custom Linux
OS [2]. Jelenković et al. propose a dynamic fragmentation
algorithm that adaptively matches channel failure character-
istics [5]. The work of [2] uses a simple independent bit
error model for packet length adaptation. The work of [5]
requires the sender to measure the channel availability period
for adaptation. Our work differs from the above work in that
we employ a lightweight and accurate link estimation method
that is essential to a packet adaptation scheme.

Link estimation in WSNs has been extensively investigated
in the literature [16]–[18]. We incorporate the recent technique
proposed in [18] to passively monitor packet receptions. The
work of [18] requires L2 ACKs. We further extend the
work in [18] by proposing the Aggregated ACK (AggAck)
mechanism which mitigates ACK overhead, and redundant
data retransmissions in asymmetric links.

Jamieson et al. propose PPR [19] to exploit correct bits
in partial packets to improve the performance of wireless
communications. However, obtaining such information needs
PHY-layer modifications. Such requirements make it hard to
generalize PPR to many hardware platforms, such as TelosB
and Mica nodes. In DPLC, we use the hardware-independent
packet reception ratio (PRR) to measure the link quality.

Adaptive packet aggregation has been studied in [8], in
which an application-independent L2.5 framework is proposed

to maximize channel utilization. Our work differs from [8]
in two major ways. First, the work of [8] adapts the degree
of aggregation (DoA) by monitoring MAC delays, which are
highly dependent on the MAC layer. Second, the work of
[8] only deals with packet aggregation. In contrast, our work
proposes a unified framework that integrates both aggregation
and fragmentation.

III. MOTIVATION

In this section, we perform experiments to motivate dynamic
packet length adaptation.

To see the impact of variable packet length on the sys-
tem performance in WSNs, we conduct three experiments
with two TelosB motes, communicating in a quiet indoor
environment. In experiment 1, the transmit power level is
3 and the communication distance is 8m. In experiment 2,
the transmit power level is 4 and the communication distance
is 8m. In experiment 3, the transmit power level is 4 and
the communication distance is 35m. The packet transmission
interval is 128ms. We measure the packet reception rate (PRR)
and the normalized transmission overhead per useful received
byte (denoted as TO) for each packet payload length. A low
TO value indicates a high goodput and a high energy efficiency
provided that the transmission time and the transmission
energy consumption are approximately proportional to the
packet length. We ran each experiment 30 times, and Figure 1
shows the mean value and the standard deviation of PRR and
TO. We can see that with the packet payload length increases
from 10 bytes to 90 bytes, the observed PRR decreases. The
packet lengths that minimize the TO value are different for
different experiment settings.

While the above experiments show that packet length and
PRR show correlation when the transmit power level is rel-
atively low with respect to the communication distance, the
correlation also exists when there is heavy interference. For
example, in [20], the authors design a scheme called WISE
to maximize throughput efficiency of ZigBee in presence of
WiFi traffic.

We see from the above experiment results that a fixed set of
parameters (e.g., using a fixed packet length) will not adapt to
the changing conditions and dynamic packet length adaptation
is beneficial in WSNs.

1174 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

Application

Application-level msg

MAC

MAC frame

MAC

Application

MAC frame

Application-level msg

Sender Receiver

aggregation fragmentation

msg len?

AS FS
de-aggregation de-fragmentation

AS or
FS?

AS FS

DPLC

Fig. 2: DPLC overview.

IV. DESIGN

In this section, we present DPLC’s design. Below, we
identify the major design goals.

• Dynamic adaptation. DPLC should provide a dynamic
adaptation scheme to achieve performance improvements
in dynamic, time-varying sensor networks.

• Accurate link estimation. DPLC should incorporate an
accurate link estimation method that can capture physical
channel conditions.

• Ease of programming. DPLC should provide easy-to-
use services to facilitate upper-layer application program-
ming.

• Lightweight for implementation. DPLC should be
lightweight for resource constrained sensor nodes.

We will see how DPLC achieves the first two design
goals, i.e., dynamic adaptation and accurate link estimation
in this section. The remaining two design goals, i.e., ease
of programming and lightweight for implementation, will be
elaborated in Section VI-A and Section VI-B respectively.

A. Overview

Figure 2 shows an overview of DPLC. The DPLC scheme
works as follows. The application passes an application-level
message for transmission. The DPLC module at the sender
decides whether to use the aggregation service (AS, if the
message length is small) or the fragmentation service (FS, if
the message length is larger than the maximum packet length
supported by the radio, i.e., 128 bytes for CC2420). The link
estimator within DPLC dynamically estimates the appropriate
packet length for transmission. Based on this, the DPLC
module at the sender decides how many messages should
be aggregated (for AS), or how many frames the message
should be fragmented into (for FS). When a frame is ready
for transmission (enough messages have been aggregated or
time is out in AS), DPLC transmits it out via the MAC layer.
When the DPLC module at the receiver receives a MAC frame,
it deaggregates or defragments the frame in order to obtain the
original message. When the message is ready (all frames in
the message have been received or the receive buffer is full in
FS), the DPLC module at the receiver notifies the upper layer
for further handling.

The DPLC scheme provides two services for upper-layer
applications, i.e., the aggregation service (AS, for small mes-
sages) and the fragmentation service (FS, for large messages).

(i) AS is useful for small data collection, e.g., CTP [7].
AS provides three distinct mechanisms, i.e., reliable trans-
missions (AS∞), unreliable transmissions with fixed number

of retransmissions (ASn, where n ≥ 1 is the retransmission
number), and unreliable transmissions (AS0). Both AS∞ and
ASn requires L2 ACKs provided by the link layer, because
packets need to be retransmitted (at least once) when they are
lost. For AS0, we additionally provide a more efficient ACK
scheme called AggAck that does not rely on L2 ACKs, and
thus mitigate the ACK overhead (we use AS0-L2 to denote
AS0 with L2 ACKs and AS0-AA to denote AS0 with AggAck
afterwards).

(ii) FS is useful for bulk data transmission, e.g., Flush
[21]. FS provides reliable transmissions as a large message is
usually very important for upper-layer applications. FS does
not necessarily depend on L2 ACKs. As mentioned above, we
additionally provide the AggAck mechanism to mitigate the
ACK overhead, and more importantly, to deal with data packet
retransmissions (we use FS-L2 to denote FS with L2 ACKs
and FS-AA to denote FS with AggAck afterwards).

B. Metrics for Dynamic Adaptation

We use the metric of transmission overhead per useful byte
(TO) as the metric. It is defined as the number of overall
transmitted bytes divided by the number of received useful
bytes. Generally speaking, as the transmission time and the
energy consumption are approximately proportional to the
number of transmitted bytes, a low TO value indicates a high
goodput and a high energy efficiency. The goal of our dynamic
adaptation scheme is hence to minimize the TO value.

For a path 1 → k + 1, the normalized path transmission
overhead TO1→k+1 is the number of total transmitted bytes
at nodes 1, . . . , k divided by the number of received useful
bytes at node k + 1.

We use dri→i+1 to denote the data delivery ratio over the
link i → i+1. The data delivery ratio differs from link PRR in
that link-layer retransmissions can improve the data delivery
ratio. It relates to PRR and the link-layer retransmission
threshold m as follows,

dri→i+1 = 1− (1− pi→i+1)
m+1 (1)

When the threshold of retransmissions is 0 (i.e., there is
exactly one transmission), dr equals to p, i.e., the packet
delivery ratio equals to the link PRR. Note that both dr and
p are functions of the packet length. We omit it here for
simplicity of notation.

Metric for Single-hop Transmission. For a flow traversing
a link i → i + 1, we decide the transmitted packet length at
node i in order to minimize the single hop metric which is,

TOi→i+1(l) =
l +H +O

l · p(l) (2)

where l is the packet payload length (bytes) over the link, p(l)
is the PRR from i to i+ 1 given the packet payload length l,
H is MAC header overhead, and O is the additional header
overhead introduced by DPLC.

Metric for Multi-hop Transmission. For a flow traversing a
path 1 → k + 1, we decide the transmitted packet length at
node k as follows.

The calculation is different because in this case node k is
not the source node (the source node is k−1 hops away from
node k). The normalized transmission overhead TO1→k+1 is

DONG et al.: DYNAMIC PACKET LENGTH CONTROL IN WIRELESS SENSOR NETWORKS 1175

the sum of the transmission overhead over the link k → k+1
and the transmission overhead over the path 1 → k for node
k + 1 to receive 1 useful byte.

For receiving one useful byte at node k+1, the transmission
overhead over the link k → k + 1 is TOk→k+1 according to
the definition. For receiving one useful byte at node k + 1,
node k must receive 1

drk→k+1
bytes.

For receiving 1
drk→k+1

useful bytes at node k, the trans-
mission overhead over the path 1 → k is 1

drk→k+1
· TO1→k.

So the normalized transmission overhead over the entire path
1 → k + 1 can be recursively calculated as follows,

TO1→k+1 = TOk→k+1 +
1

drk→k+1
· TO1→k (3)

The multi-hop metric can be explicitly expressed as a
function of l as follows,

TO1→k+1(l) = TOk→k+1(l) +
1

drk→k+1(l)
· TO1→k (4)

where l is the packet length over the link k → k + 1.
Distributed computation of the metric. For a single hop

transmission over the link i → i+1, node i needs to monitor
the link PRR, p(l) and decide the packet length that minimize
the metric.

For a multi-hop path transmission over the path 1 → k+1,
in order to decide the packet length over the link k → k + 1,
node k needs to monitor (i) the link PRR, p(l) (ii) the link
delivery ratio, dr(l) and (iii) the transmission overhead of
the previous k − 1 nodes, TO1→k. The link PRR, p(l) is
monitored by node k, and dr(l) can be derived from p(l)
and the link-layer retransmission threshold m. TO1→k is
piggybacked in each data packet and is passed down from
node k − 1, i.e., the calculation of our metric at the current
hop requires information at previous hops. It is worth noting
that path changes will not affect the calculation since it only
affects the future of packet transmission rather than the history
of packet. The information at previous hops is piggybacked in
a packet for the calculation of metric at the current hop.

It can be seen from Eq. (4) that when drk→k+1(l) = 1,
e.g., the link is perfect or the retransmission threshold is
high enough, minimizing the path transmission overhead
TO1→k+1(l) is equivalent to maximizing the link transmission
overhead TOk→k+1(l).

C. Description of DPLC

DPLC individually tunes the packet length on each outgoing
link. A link is initially set to transmit at its default granularity
(which equals to the message payload length for AS and 10
bytes for FS in our current implementation). DPLC monitors
all packet receptions by keeping a sliding window of size w.
When the window is full, DPLC computes the metric and tries
to increase (or decrease) the packet length by the granularity.

We use a gradient variable (g) to decide whether to increase
the packet length or decrease the packet length. DPLC uses
a bit vector to record each packet’s receptions and use it
to calculate the packet reception ratio. Initially, the gradient
variable is set to 1 and DPLC stays in the INIT state.
When the window is full, DPLC enters the STEADY state and
computes the metric for the current packet length. Then DPLC
enters the TRY state, increasing or decreasing the packet

INIT

TRYSTEADY

Window is full

l += g*unit

Performance
increases

Performance
decreases
l -= g*unit

g = -g

Fig. 3: DPLC state transition diagram. g denotes the gradient
variable and unit denotes the granularity for adaptation.

length. When α · w = 2
3w packet receptions are monitored,

DPLC compares the metrics to see whether the TRY state
improves the performance. If the performance increases, it
keeps the state unchanged, and waits until it transitions into the
STEADY state. In this case, the gradient variable is unchanged.
If the performance decreases, it restores the original packet
length and reenter the INIT state. In this case, the gradient
variable is inverted. DPLC also inverts the gradient when the
packet length has already reached the minimum or maximum
packet length.

D. The Aggregated ACK (AggAck) Mechanism

We additionally provide the AggAck mechanism to mitigate
the ACK overhead for unreliable aggregation service (AS0)
and reliable fragmentation service (FS). For AS∞ and ASn

(n ≥ 1), L2 ACK is required because data packets need to be
retransmitted when they are lost.

(i) For AS0, we use a sender-initiated AggAck mechanism,
i.e., the sender requests for an ACK at the end of a sliding
window. The request is piggybacked in the data packet, and
we keep on requesting until an ACK is received. We can do
this because if the transmission is unreliable we can proceed
to send the next data packet (and piggyback the ACK request)
after the previous packet is sent out. We do not change the
packet length until an ACK is received. On receiving an
ACK request, the receiver sends out the ACK without MAC
layer carrier sense assessment (CCA). As indicated in [22],
this synchronous mechanism improves the ACK reliability
significantly. The AggAck carries only one byte information,
i.e., the number of received packets in the current window,
which is used by the sender to compute the PRR.

(ii) For FS, we use a receiver-initiated AggAck mechanism.
The reason is that we can not keep on piggybacking the ACK
request in the next data packet when the window is full and
we are not sure whether all packets in the current window
have been received. To avoid sending a separate ACK request
packet, we let the receiver to automatically send an AggAck if
no data packets have been received in a short timeout. Because
FS is reliable, the AggAck carries a bitmap indicating which
packets in the current window are lost. This mechanism is
similar to the NACK mechanism employed in the Deluge
protocol [23]. FS can also use L2 ACKs. However, we prefer
to use the AggAck mechanism. The reason is twofold. First, as
mentioned above, the AggAck mechanism mitigates the ACK
overhead compared to L2 ACKs which are transmitted after

1176 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

Table 1: Notations

Notation Meaning

n The current node

Cn The set of node n’s child nodes; c ∈ Cn denotes
one child.

m The retransmission threshold.

Ton (11ms) Channel polling time in XMAC [25].

Toff (500ms) Sleep interval

Tb Time to transmit one byte

len Packet length at the link from node n to its parent

lenc Packet length at the link from node c to node n

PRR(len) Packet reception ratio at the link from node n to its
parent with packet payload length of len.

PRRc(lenc) Packet reception ratio at the link from node c to node
n with packet payload length of lenc.

Ttxn Average time spent in transmission mode when trans-
mitting a packet; Ttxn = Tb · (H+O+ len) where
H is the header overhead and O is the overhead if
DPLC is used.

Ttxc Average time spent in transmission mode when re-
ceiving a packet (e.g., replying an ACK);

Trxn Average time spent in receiving mode when trans-
mitting a packet.

Trxc Average time spent in receiving mode when receiv-
ing a packet; Ttxn = Tb · (H + O + len) where
H is the header overhead and O is the overhead if
DPLC is used.

Un Useful data rate from node n (bytes/s).

Utxc Useful data from node c including all its downstream
nodes (bytes/s).

Ftxn The rate at which node n transmits packets (# of
packets/s).

Frxc The rate at which node n receives packets (# of
packets/s).

every data receptions. Second, in the presence of asymmetric
links, L2 ACKs can be lost. In this case, the data packets will
be redundantly retransmitted.

V. ANALYSIS AND EXTENSIONS

Energy analysis and extensions. We can extend the energy
analysis approach in [24] by considering the packet length
under XMAC [25]. We use the same notations as [24] for
better understanding. Table 1 lists some parameters for our
analysis.

We analyze energy efficiency of node n in terms of the duty
cycle, i.e., the fraction of time the radio spent in transmission
mode (Dtxn) and receiving mode (Drxn). The duty cycle can
be calculated as Dtxn +Drxn.

According to [24], node n’s fraction of time spent in
transmission mode can be computed as:

Dtxn = FtxnTtxn +
∑

c∈Cn

FrxcTtxc (5)

where Ftxn and Frxc are the rates at which node n transmits
packets and receives packets respectively.

Node n’s fraction of time spent in receiving mode due to
actual communication is [24],

Drxc = FtxnTrxn +
∑

c∈Cn

FrxcTrxc (6)

Node n’s fraction of time spent in receiving mode is [24],

Drxn = Drxc + (1−Drxc)Fcc (7)

where Fcc = Ton/(Ton + Toff).
The key difference is that we shall consider the impact of

packet length in computing Ftxn and Frxc. Both variables
depend on the packet length.

Ftxn(len) = (Nrtx(len)+1) · (Un+
∑

c∈Cn

UtxcRc(lenc))/len

(8)
where Nrtx(len) is the expected number of retransmissions at
the link from node n to its parent with packet payload length
len, i.e., Nrtx(len) = min(1/PRR(len)−1,m); Rc is relia-
bility of link from child c to node n considering the retransmis-
sion threshold m, i.e., Rc(lenc) = 1−(1−PRRc(lenc))

m+1;
The term (Un +

∑
c∈Cn

UtxcRc(lenc))/len calculates the
number of transmitted packets at the packet length of len.

Frxc(lenc) = (Nrtx,c(lenc) + 1) · Utxc/lenc · Pstc (9)

where Nrtx,c(lenc) is the expected number of retransmissions
at the link from node c to node n with packet payload length
lenc, i.e., Nrtx,c(lenc) = min(1/PRRc(lenc) − 1,m); Pstc

is the probability of receiving at least one strobe, according to
[24], Pstc = 1 − (1 − PRRstc)

(Ton−Tst)/Tit where Ton, Tst

and Tit are all MAC specific parameters. It is worth noting
that PRRstc is independent on the packet length since the
length of strobe packet is fixed in XMAC [25].

The metric to minimize energy consumption should mini-
mize (Dtxn+Drtx)(len) which can be expressed as a function
of len as follows (derived from Eq. 8 and Eq. 9):

(Dtxn +Drtx)(len) = Ftxn · Ttxn + (1− Fcc) · Ftxn · Trxn + C

= U · Tb · H +O + len

PRR(len) · len +
U · (1− Fcc) · Trxn

PRR(len) · len + C

(10)

where Fcc, C and U are all independent on len. U = Un +∑
c∈Cn

UtxcRc(lenc).
We can extend DPLC to use the new metric for minimizing

the energy consumption. However, MAC specific parameters
(such as Fcc, Trxn) need to be known in advance.

Convergence analysis and extensions. DPLC requires some
amount of data traffic to converge with respect to channel
conditions. Consider a link A→B with link bit error rate
(BER) b1 during [t1, t) and link BER b2 during [t, t2]. Let w
denotes the sliding window size and δ denotes the granularity
for packet length adaptation in DPLC. Assume the optimal
packet length under b1 is l1 = k1δ and the optimal packet
length under b2 is l2 = k2δ.

We can get the following results:

• If l1 < l2, DPLC requires
∑k2

k=k1
kδw bytes of data

traffic to converge.
• If l1 > l2, DPLC requires

∑k1

k=k2
kδw bytes of data

traffic to converge.

Proof: Without loss of generality, we consider l1 < l2.
According to the operation of DPLC (see Section IV-C), it
stays in the INIT state with packet length l1 = k1δ until w
packets are transmitted, translating to a total of k1δ · w bytes
traffic.

Then, DPLC tries to increase the packet length by δ step-
by-step until the length reaches l2. There are k2 − k1 steps.
In each step, DPLC transmits w packets with packet length

DONG et al.: DYNAMIC PACKET LENGTH CONTROL IN WIRELESS SENSOR NETWORKS 1177

interface DMSend {

command error_t send(am_addr_t addr,

void* msg,

uint16_t len);

event void sendDone(void* msg, error_t err);

command void* getPayload();

command void setLinkAck(bool ack);

command void setRetries(uint8_t num);

command void flush(am_addr_t addr);

command void setMaxLen(uint8_t len);

command void setMinLen(uint8_t len);

command void setTimeout(uint32_t ms);

}

(a) The DMSend interface

interface DMReceive {

event void* receive(void* msg, uint8_t len,

uint16_t pktlen);

command message_t* getAM(message_t* msg);

}

(b) The DMReceive interface

Fig. 4: Two interfaces provided by DPLC: the DMSend
interface and the DMReceive interface.

l = kδ (k1 < k ≤ k2), translating to kδ · w bytes traffic in
each step.

Therefore, the total data traffic in the above convergence
process equals to

∑k2

k=k1
kδw.

This result implies two facts. (1) The higher the traffic rate,
the smaller the convergence time. (2) The smaller the change
in link quality, the smaller the convergence time.

DPLC’s convergence time can be improved. For example,
Error Estimating Code [26] can be employed to estimate the
link bit error rate (BER). With this information, DPLC can
predict the link PRR at different packet lengths. Hence, the
optimal packet length can be directly derived by predicting
PRR as (1 − BER)H+O+l without the iteration process de-
scribed in Section IV-C. However, additional header overhead
and computational overhead are required for BER estimation.

VI. IMPLEMENTATION

A. Programming Interface

The DPLC module provides two interfaces for application
programming, i.e., DMSend and DMReceive (see Figure 4).
They are similar to the TinyOS AMSend and Receive
interfaces.

Using dynamic packets introduces several challenges in the
protocol design. In the following paragraphs, we describe the
drawbacks introduced by dynamic packet adaptation and the
corresponding approaches incorporated by DPLC to alleviate
the negative impacts.

(1) The increase of message buffer sizes. As DPLC needs
to send and receive variable sized packets, the MAC layer
needs to reserve one sending buffer and one receiving buffer
at the maximum size supported by the radio (e.g., 128 bytes
for CC2420). For this purpose, we use a different struc-
ture type called max_message_t for defining the sending
and receiving buffers so that arbitrary sized packets can be
sent or received. We do not use the default structure type

message_t and change the macro TOSH_DATA_LENGTH
directly because it will unnecessarily increase the size of every
message_t defined in the application logic. The increase is
(128 − 36)× 2 = 184 bytes because we enlarge two buffers
from 36 bytes (default) to 128 bytes.

(2) Different type for message passing (between different
layers). The main difference between DPLC and the TinyOS
AM interface is that we use void* instead of message_t*
to point to a message structure. Such a difference stems from
the fact that the application needs to pass to the DPLC layer
a message buffer for sending and the message buffer can
be larger than the size of message_t (e.g., for FS). This
overhead depends on how many times the application program
invokes the send/receive operations.

(3) Timing. For AS, sending delays and receiving delays
may be introduced because a sufficient number of packets need
to be aggregated at the MAC layer before actually sent out.
To prevent indefinite delays, we provide another command in
the DMSend interface, i.e., setTimeout(uint32_t ms).
With this command, application programmers can specify a
maximum delay that the application can tolerate before the
message is actually sent out. A message whose in-queue delay
reaches the specified timeout value will be sent out without
further aggregation.

Generally speaking, application programming using
DMSend is not much different from that using
AMSend. DPLC handles all specific details about
aggregation/deaggregation, fragmentation/defragmentation
such that upper-layer applications need not care about
how to use the appropriate packet length in the MAC
layer. Without such a scheme, the message length will
need to be manually changed, leading to time consuming
modifications and cumbersome design. By isolating packet
length adaptation decisions into L2.5, DPLC reduces such
cross-layer dependencies, thus leading to a lower cost to
application programming.

B. Overhead

This section analyzes DPLC’s implementation overhead in
terms of computation overhead, memory overhead, and header
overhead, respectively.

Computation Overhead. DPLC incurs computation over-
head mainly in send, receive, and decision mak-
ing algorithm (described in Section IV-C) (1) The ex-
tra overhead of DMSend.send is only about 30 μs be-
fore calling AMSend.send. (2) The extra overhead of
DMReceive.receive is about 170 μs due to deaggregation
or defragmentation. (3) The extra overhead of the decision
making algorithm is at most 480 μs (at sendDone or
AggAck is received). The frame transmission time in TinyOS
consists of the following components: (i) copying the message
from memory to CC2420 FIFO buffer which takes about
3–4ms. (ii) expected MAC backoff time which takes about
5ms because the maximum initial backoff time in TinyOS
is about 10ms (iii) message transmission time which takes
about 1.6ms (for a 40-byte packet). Our algorithm adds an
additional 0.48ms, which increases the frame transmission
time by 0.48/(3+5+1.6)=5%.

Memory Overhead. DPLC incurs memory overhead on
RAM (data) and ROM (program). (1) DPLC needs about 256

1178 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

Count

TO

Typ Ack

1 byte

(a) DPLC header for AS

Offset

Offset (cont.)

Typ S

1 byte

(b) DPLC header for FS

Fig. 5: DPLC data packet headers for AS and FS.

1 2
BER=8E-4

(a)

1 2
BER=1E-4

3
BER=8E-4

(b)

1 2
BER=8E-4

BER=8E-3

(c)

Level 0

Level 1

Level 2

Level 3
(d)

Fig. 6: Topologies for validating DPLC’s design. (a): single
hop (symmetric link with median link quality). (b): two hops
(symmetric links in which the quality of the first link is high
and the quality of the second link is median). (c): single hop
(asymmetric link in which the reverse link quality is low). (d):
a tree topology of 4 levels.

bytes for a sending message buffer and receiving message
buffer. It needs (w/8+6) for each outgoing link. With w = 24
and neighbor number equals to 8, this consumes 72 bytes.
Additionally, DPLC needs 47 bytes local variables. Overall,
this adds up to 375 bytes. This overhead is small compared
to 10 KB RAM in TelosB. (2) To evaluate DPLC’s ROM
overhead, we compare the RadioCountToLeds benchmark
using the default AM message and the same benchmark using
interfaces described in Section VI-A. We have found that the
original benchmark consumes 11,528 bytes ROM while the
modified version consumes 16,052 bytes ROM. This indicates
the DPLC module consumes approximately 4.5 KB ROM,
which is acceptable compared to 48 KB ROM in TelosB.

Header Overhead. We add small header overhead to both
data packets (at most 2 bytes) and AggAck packets. Figure 5
shows the data packet overhead in DPLC. Please refer to our
conference paper [9] for a detailed analysis.

VII. SIMULATIONS

The major goals of the simulations described in this section
is to demonstrate DPLC’s achievable improvements in terms

of the transmission overhead per useful byte (TO).
We modify TOSSIM (version 2) to use the bit error model,

i.e., PRR = (1−BER)L+H+O , where H = 13 for TinyOS,
and O = 2 for DPLC. Figure 6 shows the topologies for
validation. Basically, we validate DPLC in both single-hop
topology and multi-hop topology with varying link qualities
(e.g., BER=1 × 10−4 or BER=8 × 10−4). We run each
experiment 5 times in each topology.

For the single hop case, we setup two nodes communicating
at time interval of 200 ms. For the multihop case, we setup
three nodes in which the first node transfers a single flow of
data to the last node at time interval of 200 ms. In this case, the
second node serves as a forwarding node. In the tree topology,
the level-0 node collects data packets from all other nodes.

We use exhaustive search to find the optimal packet length
in order to validate the DPLC algorithm. The exhaustive search
procedure simply iterates over each possible packet length.
In each iteration, it calculates the TO metric defined in Sec-
tion IV-B based on the already known simulation parameters.
The search procedure finally returns the packet length that
minimizes the TO metric. Since 802.15.4 has a maximum
packet length of 128 bytes, the search space is small.

DPLC is an iterative algorithm that increases or decreases
the packet length based on the TO metric. It will converge
to the packet length with which neither an increase nor a
decrease will improve the performance with respect to the TO
metric. DPLC does not use the exhaustive search procedure
since some parameters (e.g., bit error rate, network topology)
are difficult to know a priori in practice.

Figures 7a, 7b show the performance of AS0 in topology (a)
and topology (b) respectively. We measure the normalized
transmission overhead (TO) of each scheme in two ways: TO
without ACK overhead (in which the ACK overhead is not
accounted for), and TO with ACK overhead (in which the
ACK overhead is also accounted for). We can see that in both
cases, our DPLC algorithm achieves satisfactory performance.
Compared with the fixed optimal scheme (which always uses
the optimal packet length found by the exhaustive search
procedure), the additional overhead of DPLC keeps within
10%. We can also see that the AggAck mechanism mitigates
the ACK overhead, leading to about 5% improvement.

Figure 7c shows the performance of FS in topology (c). We
can see that in asymmetric links, the performance of FS-L2
degrades due to redundant data packet retransmissions. On the
other hand, the AggAck mechanism achieves a much better
performance because in this case only the data packets that
are actually lost need to be retransmitted.

We evaluate the energy efficiency of DPLCx, the extended
version of DPLC for X-MAC, in terms of radio duty cycles
compared to the original DPLC. Figure 7d shows how the
radio duty cycle varies with increasing data rate for X-MAC
in the tree topology in Figure 6d. We can see that the radio
duty cycle can further be reduced by 6% to 17% if MAC
parameters are taken into account.

VIII. TESTBED EXPERIMENTS

We implement DPLC based on TinyOS 2.1 and integrate
it into CTP [7]. CTP is a data collection protocol that
dynamically selects the best route to the sink according to
a hybrid link estimation algorithm [7].

DONG et al.: DYNAMIC PACKET LENGTH CONTROL IN WIRELESS SENSOR NETWORKS 1179

Fix-10 Fix-110 Fix-40 (opt) AS0-L2 AS0-AA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Schemes

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

 without ack overhead
 with ack overhead

(a) AS0 in topo-(a)

Fix-10 Fix-110 Fix-110,30 (opt) AS0-L2 AS0-AA
0

1

2

3

4

5

6

Schemes

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

 without ack overhead
 with ack overhead

(b) AS0 in topo-(b)

FS-L2 FS-AA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Schemes

Tr
an

sm
is

si
on

 O
ve

rh
ea

d
(T

O
)

 without ack overhead
 with ack overhead

(c) FS in topo-(c) (d) DPLC and DPLCx in topo-(d)

Fig. 7: TOSSIM simulation results. The notation “Fix-<len>” refers to the scheme using a fixed packet length of <len>. In
Figure 7b, the notation “Fix-<len1,len2>” refers to the scheme using a fixed packet length of <len1> in the first hop and a
fixed packet length of <len2> in the second hop. The optimal scheme is labeled “(opt)”.

We evaluate DPLC in testbed experiments consisting of
20 TelosB motes running the CTP protocol [7] in order to
show that DPLC can be utilized to improve the performance
of existing protocols.

Prior fixed optimization solutions heavily depend on the
accurate selection of multiple factors such as the distance
between nodes, path loss exponent, shadow fading compo-
nent, and etc. If those factors are accurately measured, fixed
optimization framework can outperform dynamic approaches.
The fact is that they are difficult to obtain in many real-world
deployments. For this reason, we select a dynamic adaptation
approach AIDA [8] for comparison.

We first evaluate the accuracy of DPLC’s link estimation
method in Section VIII-A. Then we conduct a comparative
study on the performances of different schemes integrated with
CTP in Section VIII-B.

• CTP denotes the original CTP protocol using a default
packet length of 23 bytes.

• CTP-max denotes the original CTP protocol with a sim-
ple aggregation scheme that always transmits the largest
packets.

• CTP-AIDA denotes the CTP protocol with a more intel-
ligent aggregation scheme proposed in [8].

• CTP-DPLC denotes the CTP protocol integrated with
DPLC.

We use the TestNetwork benchmark in TinyOS. The
transmission power is configured to 3 and the retransmission
threshold is 4. Each TestNetwork node sends a packet
periodically to the sink at an interval of 20 seconds.

In CTP, the topology is dynamically formed. A node sends
packets to its parent which is selected according to the path-
ETX metric estimated by existing link estimators. We looked
into the trace, and find the hops of the network in the tth field
of each packet. The network has 3-hop nodes. The topology,
however, is time-varying. For most of the time, node 20
delivers packet to node 1 (sink) via node 8 (i.e., two hops).

We test each scheme for at least 2 hours (we do not analyze
data in the first 30min warmup time) with and without the use
of lower power listening (LPL, in which the sleep interval is
set to 500ms). We collect more than 24,000 packets for each
of the experiments. After a total of 12 hours, we analyze the
following performance metrics.

• Reliability of data collection in terms of packet delivery
ratio.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.4 -0.2 0 0.2 0.4
C

D
F

Error

Fig. 8: Accuracy of link estimation.

• Transmission overhead in terms of the number of total
transmitted bytes.

• Energy efficiency in terms of the radio duty cycle.

A. Accuracy of link estimation

We evaluate the accuracy of the link estimation method
in terms of absolute error. Each node transmits 200 packets
in turn. All other nodes record each packet’s reception. The
estimated link qualities are compared against the ground
truth values. Figure 8 shows the CDF of absolute error (i.e.,
estimated value - real value). We can see that the errors keep
within 10% for 95% links, indicating that the link estimation
method yields accurate results.

B. Performance comparison

Reliability. Figure 9a shows the collection reliability in term
of data delivery ratio. The data delivery ratio is the number
of packets received at the sink node divided by the number
of generated packets. Note that we use a maximum link-layer
retransmission threshold of 4 in this experiment. This means
if a packet transmission fails, the sender would retry at most
4 times before it gives up. With link-layer retransmission, the
packet delivery ratio keeps high, e.g., above 95%. We can
see that the CTP-max scheme is less stable than the other
schemes. The reason is due to the fact that larger packets are
more suspectable to wireless loss. We can see that CTP-max
slightly reduces the reliability while CTP-DPLC remains the
high reliability of the original CTP.

Transmission Overhead. With data collection reliability
almost the same (i.e., with almost the same amount of re-
ceived useful bytes), optimizing the TO value is equivalent to

1180 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

CTP CTP-max CTP-AIDA CTP-DPLC
0.0

0.2

0.4

0.6

0.8

1.0

D

el
iv

er
y

ra
tio

Schemes

(a) Delivery ratio

CTP CTP-max CTP-AIDA CTP-DPLC
0

10000

20000

30000

40000

50000

60000

Tr
an

sm
is

si
on

 o
ve

rh
ea

d
(b

yt
es

)

Schemes

(b) Transmission overhead

CTP CTP-max CTP-AIDA CTP-DPLC
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

D
ut

y
cy

cl
e

Schemes

(c) Duty cycle

Fig. 9: Performance comparisons.

optimizing the transmission overhead. We would like to see
how CTP-DPLC reduces the transmission overhead. Figure 9b
shows the transmission overhead of 19 nodes except the sink
node. We indeed see that CTP-DPLC reduces the transmis-
sion overhead of the original CTP. This is because CTP-
DPLC aggregates application-level messages to larger MAC-
level packets. Hence CTP-DPLC’s relative header overhead
compared to the payload (percentage) is smaller than that of
the original CTP. We also see that CTP-DPLC reduces the
transmission overhead compared to both CTP-max and CTP-
AIDA. We find that the performance of AIDA is relatively
low because our experiment has a low data rate. Hence the
MAC level contention is not severe, resulting in less aggressive
aggregation in AIDA. In summary, CTP-DPLC results in 13%,
21%, 17.7% reduction in the transmission overhead compared
to CTP, CTP-max, CTP-AIDA, respectively.

Energy Efficiency. In order to see the energy efficiency of
different schemes, we test each scheme with default LPL in
TinyOS. With LPL, the energy consumption mainly depends
on the radio-on time because the transmitting mode and
receiving mode consume roughly the same energy. For exam-
ple, the TelosB node consumes 19.5mA in the transmitting
mode and 21.8mA in the receiving mode [27]. Figure 9c
shows the duty cycles for different schemes. We see that
DPLC leads to the lowest duty cycle. We improve the energy
efficiency of CTP because of two reasons. First, we reduce
the transmission overhead. Second, we also reduce the MAC
delay because of packet aggregation. CTP-max has a higher
duty cycle than CTP-DPLC for most of the time because of
more retransmissions. CTP-AIDA also has a higher duty cycle
than CTP-DPLC because of less aggressive aggregation. In
summary, CTP-DPLC results in 41.8%, 15.1%, 31% reduction
in terms of duty cycles compared to CTP, CTP-max, CTP-
AIDA, respectively. Our current metric achieves the smallest
energy consumption as it has the smallest radio-on time.

IX. CONCLUSION

This paper presents DPLC, a Dynamic Packet Length Con-
trol scheme. DPLC incorporates a lightweight and accurate
link estimation method that captures physical channel con-
ditions. Moreover, DPLC provides two easy-to-use services,
i.e., small message aggregation and large message fragmen-
tation, to facilitate upper-layer application programming. We

implement DPLC based on TinyOS 2.1. The implementation is
lightweight with respect to computation, memory, and header
overhead. Our experiments using a real indoor testbed running
CTP show that DPLC achieves the best performance compared
with previous works.

REFERENCES

[1] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, “Packet combining in
sensor networks,” in Proc. 2005 ACM SenSys.

[2] P. Lettierri and M. B. Srivastava, “Adaptive frame length control for
improving wireless link throughput, range, and energy efficiency,” in
Proc. 1998 IEEE INFOCOM.

[3] C. K. Siew and D. J. Goodman, “Packet data transmission over mobile
radio channels,” IEEE Trans. Veh. Technol., vol. 38, no. 2, pp. 95–101,
1989.

[4] E. Modiano, “An adaptive algorithm for optimizing the packet size used
in wireless ARQ protocols,” Wireless Netw., vol. 5, no. 4, pp. 279–286,
1999.

[5] P. R. Jelenković and J. Tan, “Dynamic packet fragmentation for wireless
channels with failures,” in Proc. 2008 ACM MobiHoc.

[6] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. Mclaughlin, “Energy
efficiency based packet size optimization in wireless sensor networks,”
in Proc. 2003 IEEE International Workshop Sensor Netw. Protocols
Applications.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. 2009 ACM SenSys.

[8] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “AIDA: adaptive
application-independent data aggregation in wireless sensor networks,”
ACM Trans. Embedded Comput. Syst., vol. 3, no. 2, pp. 426–457, 2004.

[9] W. Dong, X. Liu, C. Chen, Y. He, G. Chen, Y. Liu, and J. Bu, “DPLC:
dynamic packet length control in wireless sensor networks,” in Proc.
2010 IEEE INFOCOM.

[10] J. D. Spragins, J. L. Hammond, and K. Pawlikowski, Telecommuni-
cations: Protocols and Design. Addison Wesley Publishing Company,
1991.

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

[12] X. Liu, Q. Wang, W. He, M. Caccamo, and L. Sha, “Optimal real-time
sampling rate assignment for wireless sensor networks,” ACM Trans.
Sensor Netw., vol. 2, no. 2, pp. 263–295, 2006.

[13] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M. B. Srivastava,
and D. Ganesan, “Estimating clock uncertainty for efficient duty-cycling
in sensor networks,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 843–
856, 2009.

[14] F. Zheng and J. Nelson, “Adaptive design for the packet length of IEEE
802.11n networks,” in Proc. 2008 IEEE ICC.

[15] M. N. Krishnan, E. Haghani, and A. Zakhor, “Packet length adaptation
in WLANs with hidden nodes and time-varying channels,” in Proc. 2011
IEEE GlobeCom.

[16] H. Zhang, A. Arora, and P. Sinha, “Learn on the fly: data-driven link
estimation and routing in sensor network backbones,” in Proc. 2006
IEEE INFOCOM.

[17] K. Srinivasan and P. Levis, “RSSI is under appreciated,” in Proc. 2006
EmNets.

DONG et al.: DYNAMIC PACKET LENGTH CONTROL IN WIRELESS SENSOR NETWORKS 1181

[18] G. Hackmann, O. Chipara, and C. Lu, “Robust topology control for
indoor wireless sensor networks,” in Proc. 2008 ACM SenSys.

[19] K. Jamieson and H. Balakrishnan, “PPR: partial packet recovery for
wireless networks,” in Proc. 2007 ACM SIGCOMM.

[20] J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond co-existence:
exploiting WiFi white space for ZigBee performance assurance,” in
Proc. 2010 IEEE ICNP.

[21] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica, “Flush: a reliable bulk transport protocol for
multihop wireless networks,” in Proc. 2007 ACM SenSys.

[22] L. Sang, A. Arora, and H. Zhang, “On exploiting asymmetric wireless
links via one-way estimation,” in Proc. 2007 ACM MobiHoc.

[23] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proc. 2004 ACM SenSys.

[24] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes:
runtime parameter adaptation for low-power MAC protocols,” in Proc.
2012 ACM/IEEE IPSN.

[25] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
Proc. 2006 ACM SenSys.

[26] B. Chen, Z. Zhou, Y. Zhao, and H. Yu, “Efficient error estimating
coding: feasibility and applications,” in Proc. 2010 ACM SIGCOMM.

[27] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low
power wireless research,” in Proc. 2005 ACM/IEEE IPSN.

Wei Dong received his BS and Ph.D. degrees from
the College of Computer Science at Zhejiang Uni-
versity in 2005 and 2011, respectively. He is cur-
rently an associate professor in the College of Com-
puter Science in Zhejiang University. His research
interests include networked embedded systems and
wireless sensor networks. He is a member of the
IEEE.

Chun Chen received his Bachelor of Mathematics
degree from Xiamen University, China, in 1981,
and his M.S. and Ph.D. degrees in Computer Sci-
ence from Zhejiang University, China, in 1984 and
1990 respectively. He is a professor in College of
Computer Science, and the Director of Institute
of Computer Software at Zhejiang University. His
research interests include embedded system, image
processing, computer vision, and CAD/CAM.

Xue Liu received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign
in 2006. He received his B.S. degree in Mathematics
and M.S. degree in Automatic Control both from
Tsinghua University, China. He is currently an as-
sociate professor in the School of Computer Sci-
ence at McGill University in Canada. His research
interests are in real-time and embedded systems,
cyber-physical systems, server and data center per-
formance modeling and management, and software
reliability. He worked briefly in the Hewlett-Packard

Labs and IBM T. J. Watson Research Center. His work on software reliability
received the IEEE Transactions on Industrial Informatics Best Paper Award
in 2008. He is a member of both the IEEE and the ACM.

Yuan He received his BE degree in University of
Science and Technology of China, his ME degree in
Institute of Software, Chinese Academy of Sciences,
and his PhD degree in Hong Kong University of
Science and Technology. He is now an assistant
professor in the School of Software of Tsinghua
University and the Vice Director of the IOT-Tech
Center, Tsinghua National Lab for Information Sci-
ence and Technology. His research interests include
sensor networks, peer-to-peer computing, and per-
vasive computing.

Yunhao Liu received the BS degree in automation
from Tsinghua University, China, in 1995, the MS
and PhD degrees in computer science and engineer-
ing from Michigan State University, in 2003 and
2004, respectively. He is now Cheung Kong Pro-
fessor at Tsinghua University. His research interests
include RFID and sensor network, the Internet, and
pervasive computing.

Jiajun Bu received the B.S. and Ph.D. degrees in
Computer Science from Zhejiang University, China,
in 1995 and 2000, respectively. He is a professor
in College of Computer Science and the deputy
dean of School of Software Technology at Zhejiang
University. His research interests include embedded
system, mobile multimedia, and data mining. He is
a member of the IEEE and the ACM.

Xianghua Xu is now a professor in the School of
Computer Science at Hangzhou Dianzi Unviersity,
China. He received his B.Eng. in Computer Science
from Hangzhou Institute of Electronic Engineering,
China, and his Ph.D. degree in Computer Science
from Zhejiang University, China. His research in-
terests include wireless networks, parallel and dis-
tributed computing. His recent research has been
supported by Natural Science Fundation of China.
He is the member of the IEEE, ACM, the senior
member of CCF (China Computer Federation). He

is also the member of CCF Technical Committee of Service Computing and
CCF Technical Committee of High Performance Computing. He is a recipient
of the ”Best Paper Award” of IISWC’2012.

