
Li R, Liu KB, Li X et al. Assessing diagnosis approaches for wireless sensor networks: Concepts and analysis. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 29(5): 887–900 Sept. 2014. DOI 10.1007/s11390-014-1476-z

Assessing Diagnosis Approaches for Wireless Sensor Networks:

Concepts and Analysis

Rui Li1,2 (李 瑞), Ke-Bin Liu3,4 (刘克彬), Member, ACM, IEEE
Xiangyang Li2,5 (李向阳), Senior Member, IEEE, Member, ACM, Yuan He3,4 (何 源), Member, ACM, IEEE
Wei Xi2,∗ (惠 维), Member, CCF, ACM, IEEE, Zhi Wang2 (王 志)
Ji-Zhong Zhao2 (赵季中), Member, CCF, ACM, IEEE, and Meng Wan6 (万 猛), Member, ACM, IEEE

1Institute of Software Engineering, Xidian University, Xi’an 710071, China
2School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3School of Software, Tsinghua University, Beijing 100084, China
4Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
5Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, U.S.A.
6Center for Science and Technology Development, Ministry of Education, Beijing 100080, China

E-mail: rli@xidian.edu.cn; kebin@greenorbs.com; xli@cs.iit.edu; he@greenorbs.com; weixi.cs@gmail.com

{zhiwang, zjz}@mail.xjtu.edu.cn; wanmeng@cutech.edu.cn

Received February 27, 2014; revised June 27, 2014.

Abstract Diagnosis is of great importance to wireless sensor networks due to the nature of error prone sensor nodes and
unreliable wireless links. The state-of-the-art diagnostic tools focus on certain types of faults, and their performances are
highly correlated with the networks they work with. The network administrators feel difficult in measuring the effectiveness
of their diagnosis approaches and choosing appropriate tools so as to meet the reliability demand. In this work, we introduce
the D-vector to characterize the property of a diagnosis approach. The D-vector has five dimensions, namely the degree
of coupling, the granularity, the overhead, the tool reliability and the network reliability, quantifying and evaluating the
effectiveness of current diagnostic tools in certain applications. We employ a skyline query algorithm to find out the most
effective diagnosis approaches, i.e., skyline points (SPs), from five dimensions of all potential D-vectors. The selected skyline
D-vector points can further guide the design of various diagnosis approaches. In our trace-driven simulations, we design and
select tailored diagnostic tools for GreenOrbs, achieving high performance with relatively low overhead.

Keywords diagnosis approach, analysis and measurement, wireless sensor network

1 Introduction

The nature of error prone sensor nodes and dynamic
wireless links make fault diagnosis a crucial task in wire-
less sensor networks (WSNs). With the proliferation
of the sensor network applications in the wild[1-4], this
trend has accelerated as the diagnosis is even harder
caused by complex topography and dynamic environ-
mental factors[5-7]. Various debugging and diagnostic
tools have been proposed, aiming at detecting diffe-
rent types of network faults, for instance, Declarative
Tracepoints[8] and Clairvoyant[9] focus on debugging
software bugs. Leveraging the periodically collected

network state information, Sympathy[10] and PAD[11]

deduce failures in sensor networks with rule-based and
inference-based approach respectively. Dustminer[12]

tries to uncover failures resulting from interactions be-
tween different components.

Diagnosis approaches are different from each other in
many aspects, such as, the types of failures they tackle,
the information they use in fault deduction process, the
reliability they own under varying system settings, and
the like. These approaches work well in a reliable net-
work. They, however, may experience significant perfor-
mance degradation when more failures occur. For exam-
ple, some diagnostic tools deliver diagnosis information
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using initial network protocols, thus network failures
lead to incomplete information for the diagnosis engine
and thus inaccurate judgments. In contrast, diagnostic
tools using out-bound information can avoid such prob-
lems. A comprehensive understanding of the diagnosis
approaches is indeed necessary for evaluating and se-
lecting diagnosis tools as well as guiding the future de-
sign.

In this work, we propose a framework for modeling
the features of diagnosis approaches in wireless sensor
networks. We present a D-vector to specify the pro-
perty of a diagnostic tool. The D-vector includes five
dimensions, the degree of coupling, the granularity, the
overhead, the tool reliability, and the network reliabi-
lity. Each dimension characterizes the diagnosis tools
from one angle. Besides, different dimensions are inner-
correlated. Under this framework, each diagnostic tool
can be denoted by a D-vector, and all D-vectors form
a set of diagnosis approaches. For instance, the dia-
gnosis approach which can detect all types of failures
with zero overhead cannot be achieved based on cur-
rent techniques. A following question is whether we
can find all potential diagnosis solutions based on the
existing efforts in this field, in other words, all kinds of
diagnosis tools (represented by D-vectors) that can be
achieved by appropriate selection and combination of
current schemes.

We further propose to derive constraints by mining
the correlations among different dimensions. According
to these constraints, we find the set of D-vectors corre-
sponding to the properties of all the potential diagnosis
approaches. We conduct a skyline search on this set
for the skyline points. The skyline points indicate the
best properties a diagnosis tool can achieve. That is, all
the other points are dominated by at least one skyline
point, which means the diagnosis tool corresponding to
the skyline point is no worse than the tool correspond-
ing to a normal point in all dimensions. This result
gives a guidance in the diagnostic tool selection. D-
vectors which violate constraints denote the properties
of diagnosis tools that cannot be achieved at present.
These D-vectors figure out the direction of future de-
signs. The main contributions of this work are summa-
rized as follows.

1) To the best of our knowledge, this is the first work
on exploring the principal factors and inner-correlations
to characterize various diagnostic tools. And it is the
first step towards better understanding of diagnosis ap-
proaches in terms of the degree of coupling, the granu-
larity, the overhead, the network reliability and the tool
reliability.

2) We introduce D-vectors to model the properties
of different diagnosis approaches and analyze the cause-

and-effect diagram, so as to give the potential D-vector
points in the space of diagnosis approaches.

3) By employing a skyline query algorithm, called
NNS, and real trace-driven simulations, we can figure
out the most effective diagnosis approaches, and thus
give the future design guidance to diagnosis issues.

The remainder of this paper is organized as follows.
Related studies are illustrated in Section 2 and motiva-
tions of this work in Section 3. In Section 4, we define
the D-vector, and quantify five principal factors that
can form the D-vector. Section 5 analyzes the con-
straints of a D-vector by exploring the correlations of
the five factors. Section 6 contains the skyline query
algorithm to search the skyline points so as to find
the most effective diagnosis approaches and Section 7
gives experimental results and analyzes the future de-
sign of diagnosis tools. Section 8 concludes this paper
and gives future work.

2 Related Work

Most debugging tools[13-14] target finding software
bugs in sensor nodes. They are considered as pre-
deployment diagnosis. Cao et al.[8] reported a debug-
ging system, which could automatically watch program
states to detect bugs. Clairvoyant[9] enables the code-
level debugging for WSNs which allow users to remotely
execute debugging commands such as step and break-
point. Debugging tools are effective at finding network
failures. However, they can bring relatively high over-
head in term of massive control messages.

Operating period diagnosis attracts many efforts.
MintRoute[15] visualizes the network topology by col-
lecting neighbor tables from sensor nodes. SNTS[16]

constructs network infrastructure for logging and re-
trieving state information at runtime and EmStar[17]

supports the simulation, emulation and visualization
of operational sensor networks. Sympathy[10] actively
collects metrics from sensor nodes and determines the
root-causes based on a tree-like fault decision scheme.
PAD[11] reports the concept of passive diagnosis which
leverages a packet marking strategy to derive network
state and deduces the faults with a probabilistic infe-
rence model. TinyD2[18] is a self-diagnosis tool, which
combines the view of the node itself with the diagnosis
process.

Post-deployment diagnosis is usually log-based ana-
lysis. For example, Dustminer[12] focuses on trou-
bleshooting interactive bugs by mining discriminant
patterns from the logs on sensor nodes. Power-
tracing[19] uses current patterns to classify bugs into
various types. However, it is an independent diagnostic
tool that does not need network statistical data. And
the diagnostic tool is loosely coupled with the network.
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Skyline query is considered as a promising technique
in multi-criteria optimization process in database com-
munity. The intuitive method of processing skyline
computation, such as BNL[20], is to compare each point
q with other points: if q is not dominated by other
points, then q is part of the skyline. Bitmap[21] tech-
nique encodes in bitmaps all the information required
to decide whether a point is in the skyline. NN[22]

and BBS[23] are both skyline query algorithms based
on nearest neighbor search strategies. Since we do not
care about the I/O performance and the CPU usage,
we choose a nearest neighbor based skyline query algo-
rithm for it is efficient to implement.

3 Motivation

To reveal the factors that influence the diagnosis per-
formance, we introduce some basic observations in the
GreenOrbs[24] system. Fig.1 classifies the failure types
that appear in the system. For network diagnosis, many
approaches have been developed to tackle a certain type
of failures. However, without domain knowledge, how
can we choose diagnostic tools for network diagnosis?
We further give our observations and summarize the
principal factors that influence the choice of diagnostic
tools.

Fig.1. Three main types of failures that appear in the GreenOrbs

system.

Observation 1. We can distinguish node failure and
network failure by data value changes and data quan-
tity changes. Node failure can only influence the data
values, but network failure can result in the change of
the packet’s quantity. As shown in Fig.2, the number of
transmissions varies from each other on different nodes,
which may indicate the appearance of the node failures
in the network. However, Fig.3 illustrates the packets
received by sink during 48 sample points, where the
severe network failures occur at point 3, 8 and 9.

Observation 2. Many symptoms are necessary con-
ditions for the failure causes but not sufficient condi-
tions. As shown in Fig.4, packet loss is a necessary con-
dition leading to three types of failures. However, the

Fig.2. Number of transmissions on different sensor nodes in the

GreenOrbs system.

Fig.3. Packets received by 48 sample points during five days.

Fig.4. Causes of packet loss.

combination of several necessary conditions may form
the sufficient condition of a certain failure.

According to the above observations, we discuss the
main factors that influence the diagnosis results in
WSNs that come from the intrinsic nature of different
diagnosis approaches. We classify the root causes that
can influence the diagnosis results into five main fac-
tors. The five factors are inner-correlated with each
other as shown in Fig.5. And the figure is established
by cause-and-effect diagram[25]. In the figure, smaller
arrows connect the sub-causes to major causes, and re-
flect the inner-correlations among five factors.

The network reliability and the diagnostic tool relia-
bility influence each other. If the network reliability is
high enough, we do not need more effective diagnostic
tools. And if the network reliability is low, we cannot
rely on the network data. Consequently, we need an
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Fig.5. Cause-and-effect diagram of diagnosis results.

independent diagnostic tool and the diagnosis approach
should not collect more information from the network
itself. Fig.5 elaborates that the tool reliability and the
degree of coupling both influence the network reliabi-
lity. However, the tool reliability is only affected by the
network reliability.

Since the effective diagnosis approaches are re-
stricted by the collected information types, the effective
diagnosis information overhead is affected by granula-
rity and degree of coupling.

The degree of coupling is affected by the network
reliability, and they influence each other. Since the
network reliability decides the reliability of the data
collected from the network, without reliable data, the
diagnosis approach is useless. Therefore, if the network
reliability is low, we do not need the diagnostic tool
high coupled with the network.

The granularity influences the diagnosis results, but
it is not affected by the other factors. Since the granula-
rity determines the capability of diagnosis approaches,
with more fine-grained granularity of diagnostic infor-
mation, the diagnosis results can be more accurate.

4 Quantification of D-Vector

The five main factors may affect the diagnosis result
of a diagnosis approach, and they are correlated with
each other. In this section, we aim to quantify the main
factors so as to indicate various diagnosis approaches
effectively. Some symbols used later are defined in Ta-
ble 1.

4.1 Definition of D-Vector

We define a D-vector to specify the property of a
diagnosis approach, which contains five principal di-
mensions. The five dimensions are the five factors that

Table 1. Useful Notations

Symbol Definition

Degree of coupling Amount of effective information a dia-
gnostic tool needs to collect from the
sensor network

Rsensor Network reliability that can be mea-
sured by network yield

Rdiag Diagnostic tool reliability which de-
pends on the true positive and true
negative diagnosis results

Granularity Diagnostic information that diagnostic
tool collected

Overhead Calculated by the diagnostic informa-
tion traffic over total traffic during a
sample period

H(X) Entropy of source information X

Ns =
{Ns1, Ns2, . . . , Nsm}

Information source statistical set,
where Nsi is the traffic of different fea-
tures during observation period

Nd =
{Nd1, Nd2, . . . , Ndk}

Destination of all information for dia-
gnosis purpose

Np =
{Np1, Np2, . . . , Npl}

Specified statistical set of diagnostic
tools during the observation period

t pos Number of true positives in diagnosis
results

t neg Number of true negatives in diagnosis
results

D-vector (DC, Rsensor, Rdiag, granularity, over-
head) quintuple to indicate a specific
diagnosis approach

influence the diagnosis result of a certain application,
and Fig.5 describes the cause-and-effect diagram. A
D-vector is formed to represent a certain diagnosis ap-
proach; however, not every D-vector corresponds to an
existing diagnosis approach.
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We further analyze the five factors that influence the
property of a diagnosis approach. In order to elabo-
rate the relationship between sensor networks and dia-
gnostic tools, we introduce degree of coupling to indi-
cate the extent, to which a diagnostic tool and a sensor
network are coupled, namely the amount of effective
information a diagnostic tool needs to collect from the
sensor networks. We then use entropy to quantify the
effective information that the diagnostic tool collects
from the sensor network for diagnosis.

4.2 Degree of Coupling

Degree of coupling is introduced as the first step to
quantify the information collected by diagnostic tools
from sensor networks. Since the interactive effects be-
tween sensor networks and diagnostic tools are compli-
cated, the difficulties exist in quantifying the correlation
between two parts. As a result, we introduce degree of
coupling to measure the interaction between diagnostic
tools and sensor networks. For ease of expression, we
use DC to denote degree of coupling in the rest of this
paper.

The diagnostic tools always need to collect informa-
tion as input to uncover faults. Different diagnostic
tools need different information types. For example,
source level debugging tools[8-9] do not need any ope-
rational period network information, but need global
state information as input. The approach for each tool
to get diagnostic information is quite different. How
much effective information can a diagnostic tool get
from the sensor network? And how much overhead does
a diagnostic tool take? To share a unified criterion, we
need to find a quantitative metric for all the tools and
calculate the effective information that a diagnostic tool
needs.

We introduce mutual information to measure how
much information a diagnostic tool collects, even
though different diagnostic tools collect different types
of information and inputs of the diagnostic tools bound
the diagnosis granularity. We then use entropy to il-
lustrate the uncertainty with the diagnostic informa-
tion. If the diagnostic tools collect information without
noises, the information can be calculated as the entropy
of the source information, which is defined by:

H(X) = −
∑

i
P (xi) log P (xi). (1)

P (xi) is the probability of the i-th variable that
source information may hold. H(X) is the entropy
of the source information. As the source information
usually contains noise, we use I(X;Y ) to denote the in-
formation that the diagnostic tools can get from source
information. I(X;Y ) is the mutual information and
can be calculated as below:

I(X;Y ) = H(X)−H(X|Y ),

where H(X|Y ) is conditional entropy, which can be il-
lustrated as:

H(X|Y ) = −
∑

i

∑
j
P (xi, yj) log P (xi|yj).

We address that I(X;Y ) has three properties:
• Non-negative property, i.e., I(X;Y ) > 0, where

the equality holds if and only if the sending informa-
tion and the receiving information are independent;
• Mutual information is no larger than the source

information entropy, i.e., I(X;Y ) 6 H(X). When the
noises do not exist in the channel, I(X;Y ) equals H(X)
in numerical value;
• Symmetry property, which means the mutual in-

formation is equal to the source information and the
destination information.

For the continuous information of I(X;Y ), it can
be calculated through the generation of discrete infor-
mation and holds the same property with the discrete
situation:

H(X) = −
∫

P (x) log P (x)dx,

I(X;Y ) =
∫∫

P (x, y) log
P (x, y)

P (x)P (y)
dxdy.

Definition 1. For the entire network system, we
can model the source information statistical set as Ns =
{Ns1, Ns2, . . . , Nsm}, where Nsi is the network traf-
fic of different features during the observation period.
All the destination information for diagnostic purpose
is Nd = {Nd1, Nd2, . . . , Ndk}, where Ndi is the traffic
of all information collected from the sensor network.
Np = {Np1, Np2, . . . , Npl}, is the specified statistical set
of diagnostic information, where Npi is the traffic of
different diagnostic tools during the observation period.

From Definition 1 and (1), we can describe the fea-
ture entropy of the above three statistical information
sets as follows:

H(Ns) = −
m∑

i=1

(Nsi

S1

)
log

(Nsi

S1

)
, (2)

H(Nd) = −
k∑

i=1

(Ndi

S2

)
log

(Ndi

S2

)
, (3)

H(Np) = −
l∑

i=1

(Npi

S3

)
log

(Npi

S3

)
, (4)

where S1 =
∑m

i=1 nsi, S2 =
∑k

i=1 ndi, and S3 =∑l
i=1 npi illustrate the collected information traffic dur-

ing the observation period. (2)∼(4) show the entropy
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of source information observed from sensor networks,
the entropy of sink side information, and the entropy
of diagnostic tools’ input, respectively. The value of
feature entropy lies in the range of [0, log N ]. When
the value of ni is approximate to 0, different ni may
experience the same event. When the distribution of
the feature is maximized, the value is approximate to
log N , i.e., n1 = n2 = · · · = ni.

Therefore, we can calculate the distribution of en-
tropy for each diagnostic tool in order to get DC. We use
the feature entropy of each diagnostic tool to quantify
DC, when the feature entropy is large. That means the
diagnostic tool needs more effective information from
sensor networks. Then DC can be calculated as fol-
lows:

D =
H(Np)−H(Np|Nd)
H(Ns)−H(Ns|Nd)

,

where D is the ratio of the effective input information
for the diagnostic tool to all information collected from
the sensor network.

4.3 Network Reliability

The network reliability is one of the major factors
that influence the selection of diagnosis approaches.
The sensor networks suffer from different types of fai-
lures during the deploy period. If the network reliabi-
lity is high enough, we do not need to care about the
DC of the diagnostic tool. Then, how to measure the
reliability of sensor networks?

Yield [26] is the metric of data quality collected from
sensor networks. The node yield measures the quality of
each node, while the network yield measures the quan-
tity of the entire sensor networks. The node yield can
be calculated as follows:

Yield i =
Number of packets received by sink from i during p

Number of packets sent by i during p
,

where i is the node ID and p is the observation period.
The network yield is calculated by:

Yield =
Number of packets received by sink during p

Number of packets sent by all nodes during p
.

In our case studies, we will adopt network yield com-
bined with node yield as our metric to evaluate the net-
work reliability. Therefore, network reliability, denoted
by Rsensor, is influenced by the network yield and the
node yield. The threshold Rsensor0 is specified in diffe-
rent sensor network applications as tailored to diverse
purposes.

In most sensor networks, the value of Rsensor is equal
to the value of network yield. However, in a small por-
tion of sensor network applications, all nodes are one
hop to sink node where the fidelity of data can be gua-
ranteed. And for this kind of sensor networks, the net-
work yield can usually be easily guaranteed. So we
adopt average node yield instead of network yield to
represent Rsensor. Rsensor can be calculated by:

Rsensor =
1
n

n∑

i=1

Yield i,

where Yield i is the node yield of each node.

4.4 Tool Reliability

For all kinds of sensor network applications, we can
obtain the diagnostic information through many ways,
like through the sensor network itself, the extra field
from the data packets, or the information from sniffer
nodes that can overhear the network status. What-
ever methods that diagnosis approaches adopt, they all
need information as input to unveil the faults occurred
in sensor networks.

There are three main approaches in diagnostic tools.
The first approach is the inference of the faults with
various inference algorithms, using data collected from
sensor networks. The second choice is rule-based dia-
gnosis using decision trees to find at where the faults
locate. The third and the most frequent way, to deal
with performance degradation in sensor networks, is
that the administrators monitor the network and use
domain knowledge to judge if there were faults hap-
pened in sensor networks. Unveiling fault manually is
laborious but effective, since many faults are hidden or
hard to detect by one or two specific diagnostic tools
but easy to detect by administrators.

As we have addressed, the capabilities of diagnostic
tools are bounded due to the constraints on informa-
tion each tool adopts in diagnosis, which is shown in
Table 2.

Table 2. Diagnostic Tools and the Types of Faults

They Can Detect

Diagnostic Fault Information Recovery

Tool Type Type Method

PAD, Node, Out-network Node reboot,

Powertracing link node replacement

Sympathy, State In-network Network or node

TinyD2 reconfiguration

Declarative Trace- Source Global Code correction

points, Clairvoyant code or rewrite

Nevertheless, we need to illustrate the tool reliabi-
lity. For instance, Sympathy and Declarative Trace-
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points are detecting different faults. Sympathy may
be of a high reliability using the information collected
from the sensor networks. However, Declarative Trace-
points detect faults in code lines, which cannot use the
diagnostic information parsed from the common data
packets.

Therefore, a unified metric to measure tool reliabi-
lity is even harder to establish with a same set of infor-
mation for the specified sensor networks. We just sim-
ply choose the reliability of each tool under the same
condition of different granularities and the reliability is
calculated by:

Rdiag =
t pos + t neg

pos + neg
, (5)

where t pos is the number of true positives in diagnosis
results, and t neg is the number of true negatives. pos
is the number of positive results of the diagnostic tools
and neg is the number of negative results of the dia-
gnostic tools. (5) denotes the accuracy of diagnosis re-
sults in sensor networks and we adopt this accuracy
as the tool reliability, since the accuracy indicates the
diagnosis results effectively.

4.5 Granularity and Overhead

Granularity measures the capability of a diagnosis
approach. For different diagnosis approaches, the dia-
gnosis granularity is bounded by the input informa-
tion types, i.e., the granularity basically determines the
capability of each diagnostic tool. As Table 2 describes,
we can derive three levels of information granularity,
namely in-network statistical data, out-network statis-
tical data, and global information data. How to classify
each diagnosis approach into different levels?

We formalize the three levels into three discrete val-
ues, and the granularity is the nature of each diagnosis
approach, since the information collected for each tool
is already determined by the approach itself. For diffe-
rent diagnostic tools and granularities they have, we
obtain the results in Table 3.

Table 3. Granularity of Each Diagnostic Tool

Determined by the Collected Information Types

Diagnostic Tool Granularity DC

PAD, Powertracing① Out-network (3) Relative high

Sympathy, TinyD2 In-network (2) Relative fair

Declarative Tracepoints, Global (1) Relative low

Clairvoyant②

The overhead is defined as the amount of diagnostic
packets. Nevertheless, the cost of diagnosis approach
is considered as the traffic overhead plus the hardware
cost. As most diagnosis approaches are tightly cou-
pled with sensor network and do not need any extra
hardware, we define the overhead only contains traffic
overhead. If a diagnostic tool contains extra hardware
equipment, we ignore the traffic overhead and simply
set the traffic overhead to 1.

In this study, we define the overhead as the result
calculated by the diagnostic information traffic flow
over the whole traffic flow during a sample period, and
it ranges from 0 to 1.

5 D-Vector as a Property Set

In this section, we explore the five factors as a
whole property set (D-vector) for indicating diagnosis
approaches. Furthermore, we illustrate the potential
D-vector points that are restricted by the inner corre-
lations among the five factors.

5.1 Impact Factors of D-Vector

In this subsection, we explore the correlations among
the five factors that restrict the potential D-vector
points. In Section 3, note that the granularity and
the DC both influence the overhead. Since the granu-
larity determines the capability of a certain diagnosis
approach, when granularity is more fine-grained, more
diagnostic information types are needed and cause rela-
tively high overhead. On the contrary, if the overhead
is relatively high, we cannot derive that the granula-
rity is more fine-grained. If the DC is relatively high,
the diagnosis overhead must be relatively low, and vice
versa. However, the overhead cannot influence the DC.

The network reliability is influenced by the DC and
the tool reliability. The DC has a negative impact on
the network reliability, while the tool reliability has a
positive impact on the network reliability.

A D-vector denotes the property of a diagnostic tool.
If there exists a chosen diagnosis approach, the can-
didate D-vector point refers to the best diagnosis ap-
proach we can achieve at present, and the future designs
accompany with the selected diagnosis approach of a
specific D-vector that can dominate all existing tools.

Table 3 shows the granularity and the DC of typ-
ical diagnostic tools. We can find that PAD is less
effective than other diagnostic tools. But that is not
always the fact. PAD has relatively lower DC than
other diagnostic tools. That means PAD slightly relies

①Powertracing holds a DC of 0, since the diagnostic tool is an independent system and it does not need statistical data from
sensor nodes.

②Some of these tools are debugging tools and they are used before sensor networks are deployed. They rely on exchange messages
with sensor networks that may cause more overhead.
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on the statistical information collected from the sen-
sor network. It is more tolerant to faults than other
diagnostic tools, which heavily rely on the network sta-
tistical data.

We claim that D-vector is pragmatic for characteriz-
ing the properties of diagnosis approaches, and of real
usability for the design and selection of diagnostic tools.
To better understand D-vector, we give our trace-driven
simulations and evaluations of different diagnostic tools
in real prototype in Section 7. Although most lite-
ratures focus on designing and developing diagnostic
tools, guiding design of diagnostic tools is of impor-
tance to all applications.

5.2 Constraints of DC and Granularity

From Table 3 and correspoinding analysis, we can
get two important constraints.

Constraint 1. DC indicates how diagnostic tools
are coupled with sensor networks. When the value of
DC gets larger, the diagnostic tools become less effec-
tive.

Constraint 1 is easy to validate. If diagnostic tools
rely more on network information, the diagnosis results
could become more uncertain. Since the diagnostic in-
formation is not always available due to the error-prone
nature of sensor nodes and dynamic characteristics of
network environment. If the reliability of sensor net-
works is high, we can select diagnostic tools with high
DC, since it could meet the requirements we set (the
parameters are specified by the administrators or the
users) and have relatively low overhead. (When DC
gets larger, the overhead of most diagnostic tools be-
comes smaller.)

Constraint 2. The capabilities of diagnostic tools
are restricted by the granularity they own, and the gra-
nularity is of importance to coarse-grained selection of
diagnostic tools.

Constraint 2 can be inferred from the diagnostic
tools. Firstly, the capabilities of diagnostic tools are
restricted since the granularity is determined by the
input of diagnostic information. However, each dia-
gnostic tool aims at unique failure due to information
type constraints. Secondly, the granularity can help
the coarse-grained selection of diagnostic tools. With-
out enough information types, the specific faults cannot
be detected. Henceforth, the granularity also restricts
the capabilities of diagnostic tools, and we cannot un-
cover source code level faults, without argument know-
ledge of current running status in sensor node memory.
Therefore, if we know the granularity of information,
the detectable types of faults can be determined. As
a result, the granularity can help with the design and
selection of diagnostic tools.

6 Design Guidance Using Skyline Query

Designing a tailored diagnostic tool for network dia-
gnosis is urgent, as faults may lead to severe perfor-
mance degradation of the entire system. The D-vector
is introduced to characterize the properties of diagnosis
approaches, so as to guide the design of diagnosis ap-
proaches. A straightforward question is how to guide
design or selection of diagnostic tools by given different
D-vector points. Since the design of diagnostic tools is
deemed as a multi-criteria decision process, we need to
consider trade-offs among different factors to make the
decision.

Through the analysis in Sections 4 and 5, we derive
five principal dimensions that may affect the decision.
In this section, we are motivated by the skyline query,
to select the most effective diagnostic tools consider-
ing trade-offs of the five dimensions. With the selected
skyline points (SPs), we can get a set of diagnostic
approaches that can dominate the other diagnosis ap-
proaches, and the SPs can be a guidance for designing
diagnostic tools.

6.1 Skyline Query Principles

The skyline query deals with a multi-criteria opti-
mization problem. Given a set of objects p1, p2, . . . , pN ,
the operator returns all objects pi so that pi is not domi-
nated by another object pj . Consider an example of
choosing diagnostic tools. Fig.6 shows two factors that
influence the choose of diagnostic tools, the degree of
coupling (x axis) and the overhead (y axis). The most
interesting tools are a, k and n, which dominate other
approaches on both dimensions.

Fig.6. Example of skyline query using selection of diagnostic tools

on two dimensions.

We consider points in an n-dimensional numeric
space D = (D1, . . . , Dn). The dominance relation
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is built on the preferences on attributes D1, . . . , Dn.
Without loss of generality, we assume that, on
D1, . . . , Dn, smaller values are more preferable.

Definition 2 (Dominance). For two points u and
v, u is said to dominate v, denoted by u ≺ v, if for
every dimension Di (1 6 i 6 n), u.Di 6 v.Di, and
there exists a dimension Di0 (1 6 i0 6 n) such that
u.Di0 < v.Di0 .

Given a set of points S, a point u is a skyline point
if there does not exist another point v ∈ S such that v
dominates u. The skyline on S is the set of all skyline
points. Henceforth, a D-vector is considered to repre-
sent the properties of a diagnosis approach such that
we can obtain a set of diagnosis approaches.

Therefore, we need to tackle two questions as follows.
1) How do we form the space of potential D-vector

points? Do all these points compose a complete set of
all diagnosis approaches?

2) How to find skyline points from the space of po-
tential D-vector points?

To answer the first question, we form the space of po-
tential D-vector points based on combining and select-
ing existing diagnosis approaches under the influences
made by the five principal factors. And it is a set of
all potential diagnosis approaches that can be achieved
by using state-of-the-art techniques. With the appro-
priate combination of different approaches, we can get
all potential tools with expected capabilities.

And for the second question, we propose an algo-
rithm, called NNS, to search the most effective dia-
gnosis approach based on nearest neighbor query. The
detailed NNS algorithm is described in Subsection 6.2.

6.2 Skyline Query Algorithm

There exist many skyline query algorithms, such
as Block Nested Loop (BNL), Divide and Conquer
(D& C), Bitmap, Index. And we take the Nearest
Neighbor Based Skyline query algorithm (NNS), since
it is effective and efficient.

NNS uses a nearest neighbor query (such as [22]),
which is described in Algorithm 1 in the space of dia-
gnosis approaches, to get the minimum distance from
the origin of the axes. Without loss of generality, we
assume that the distance is computed according to L1-
norm.

Considering the example of choosing diagnostic
tools, the first chosen point is k, where point k (kx, ky)
is the nearest neighbor of point (0, 0). According to
Algorithm 1, k is a skyline point. Then, all the points
in the dominance region of k can be pruned, and the
remaining space is divided into two parts based on the
coordinates (kx, ky): [0, kx), [0, ∞) and [0, ∞), [0, ky).
It is shown in Fig.7(a) that the first partition contains

Algorithm 1. Nearest Neighbor Query

Input: the space of diagnosis approaches S = (p1, p2, . . .,

pN ) with d dimensions

Output: nearest neighbor pi of S

1 foreach point pi in S do

2 Calculate pi according to L1-norm;

3 /* minDist = min ‖ · ‖L1*/

4 Partition space into d subdivisions according to the

coordinate of pi;

5 Prune the dominance region of pi;

6 Add d subdivisions to to-do list;

7 Obtain pi;

8 end

Fig.7. Example of NNS using two impact factors of diagnostic

tools. (a) obtains diagnostic tool k as part of the skyline query,

while (b) gets the query result of point a.

regions 2 and 3 and the second partition contains re-
gions 3 and 4. The partition has been done after the
SP is found and inserted into a to-do list. When the
to-do list is not empty, NNS recursively does the same
procedure. For example, point a is the nearest neighbor
in partition [0, kx), [0, ∞), which causes the insertion
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of [0, ax), [0, ∞) and [0, kx), [0, ay) in the to-do list (as
is described in Fig.7(b)). If the partition is empty, then
we do not further divide and stop NNS. Finally, we ob-
tain all the SPs until all the subdivisions are finished.
For an N -dimensional space, finding each SP costs N
times recursive executions of NNS. The detailed NNS
is described in Algorithm 2.

Algorithm 2. NNS

Input: nearest neighbors in each partition pi

Output: SPs in S, which is denoted by Q (q1, q2, . . . , qM )

1 foreach subdivision pi do

2 if the partition is not empty in to-do list then

3 do Nearest Neighbor Query;

4 Add points to Q;

5 else

6 The to-do list is empty;

7 end

8 end

9 return stop;

10 end

The D-vector contains five dimensions, such that we
need to do NNS five times to obtain an SP. NNS stops
until all of the partitions become empty.

7 Evaluations

7.1 Experimental Setup

We deploy a prototype with 61 nodes to evaluate the
effectiveness of various diagnosis approaches. The net-
work physical topology is described in Fig.8. The proto-
type platform contains TelosB motes with an MSP430
processor and a CC2420 transceiver. We apply the
TinyOS 2.1 as our software development platform and
have evaluated different diagnosis approaches using in-
formation collected from our prototype.

We collected three types of packets, and the content
of each packet contains sensing information (96 bytes),
neighbor information (96 bytes), and network statistical
information (101 bytes). We use part of three packets’
information for different diagnostic tools. Some of the
approaches cannot be implemented in our system, such
as Powertracing[19], since we do not have the power
meter supply to set up such an independent diagnostic
system. Some typical diagnosis approaches in represent
of D-vector points are illustrated in Table 4.

The goal of the evaluation is two-fold. Firstly, we
evaluate the D-vector points in represent of typical dia-
gnostic tools to validate the effectiveness of our ap-
proach. Secondly, we guide the design of diagnostic
tools in GreenOrbs with selected skyline points, which
shows the efficiency of D-vectors in design approaches
for sensor networks.

Fig.8. Physical topology of our prototype. Our prototype con-

tains 61 TelosB motes and the physical topology shows the data

retrieval process. The blue links represent the ongoing data col-

lection period, and the gray links show once two nodes have been

communicated.

Table 4. D-Vector Points in Represent of Typical

Diagnosis Approaches

Diagnostic D-Vector (DC, Granularity, Overhead,

Tool Network Reliability, Tool Reliability)

PAD (0.312 2, 3, 0.05, 0.82, 0.89)

Powertracing (0, 3, 1, 0.82, –)

Sympathy (0.693 8, 2, 0.12, 0.82, 0.85)

TinyD2 (0.892 0, 2, 0.03, 0.82, 0.94)

Clairvoyant (– , 1, 0.42, 0.82, –)

Note: Due to the implementation constraints, some values
are missing.

7.2 Methodology

We implement diagnostic tools in two different gra-
nularity levels. One is out-network information level,
and we compare two typical diagnostic tools, called
PAD[11] and Powertracing[19]. The other is in-network
information level, and we compare Sympathy[10] and
TinyD2[18] in this level. Since the diagnostic tools of
global information level usually contain code level de-
bugging tools, we cannot employ this change after the
network is established. Thus the results do not contain
such tools, and even if the code level debugging tools
are used, the system may still face faults coming from
the interactions of non-faulty components. We set the
duty cycle as 10 minutes, so as to take different dia-
gnosis approaches.

The metrics of each diagnostic tool we choose are
shown in Table 5. For different diagnostic tools, we com-
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Table 5. Metrics Taken to Evaluate Different Diagnostic Tools

Diagnostic Tool Metrics

Sympathy Connectivity metrics Routing table, neighbor list

Flow metrics Packet transmitted, packet received, sink packet transmitted, sink packet received,

sink last timestamp

Node metrics Uptime, good packet received, bad packet received

TinyD2 Connectivity metrics Routing table, neighbor list, RSSI, ETX, LQI

Flow metrics Packet transmitted, packet received, packet retransmit.

Node metrics Packet transmitted, packet received, self-transmitted, parent change time

PAD Network topology

Powertracing Current pattern (measured by power meter)

Note: Powertracing is a power meter aided method. We cannot acquire the power meter supply to implement the evaluation,
therefore we get the results from [19].

pare the D-vector points and the detected fault types.
For the implementation of skyline query, we generate
potential D-vector points based on the combination of
existing diagnosis approaches.

7.3 Fault Types and Skyline Query Results

Table 6 shows the detected fault types of typical dia-
gnostic tools. Although TinyD2 is a more efficient dia-
gnostic tool, DC also stays high according to Table 4.
That is to say, even though TinyD2 can detect more
failures, the tool still meets a high risk of unreliable
diagnosis. Since it heavily relies on the statistical data
collected from the sensor nodes.

Table 6. Fault Types Detected by Various Diagnostic Tools

Typical Fault Types Detected

Diagnostic Tool

Sympathy Node crash, node reboot, no neighbors, no
route, bad path to node, bad node trans-
mit, bad path to sink

PAD Physical damage, software crashes, network
congestion, environmental interference, ap-
plication flaws

Powertracing Router failure, antenna failure, OS crash,
power outage, short circuit, system reboot

TinyD2 Node crash, node reboot, no neighbors, no
route, bad path to node, bad node transmit,
bad path to sink, parent change, duplicate
packet

Note: TinyD2 can detect more failures than other diagnostic
tools (i.e., Sympathy, PAD, Powertracing) in our experiment.

Fig.9 shows the composition pattern of detected
fault types with different diagnostic tools. The capabi-
lity of each tool is constrained by the granularity level.
We can see that Sympathy and TinyD2 receive a simi-
lar compositional pattern of the detected fault types,
since they are on the same granularity level. However,
PAD is a little different from Sympathy. And we cannot
derive the results of Powertracing neither in our proto-
type nor in [19]. The results of the fault compositional

pattern illustrate that the diagnostic tools which hold
similar capability are coming from the same granularity
level.

Fig.9. Fault compositional patterns of typical diagnostic tools.

SPs are the diagnosis approaches which contain more
delighted features that can be found through the combi-
nation of existing diagnosis approaches. Table 7 shows
the search results of all SPs in the space of potential
D-vector points. Powertracing is easy to validate, since
it is an independent diagnosis approach. It holds a DC
of 0, and on the out-network level, no other points can
dominate this point. TinyD2 is a low overhead dia-
gnosis approach, since it stores the diagnosis reports on

Table 7. Evaluation of Typical Diagnostic Tools in

Our Prototype

Diagnostic DC Granularity Avg. SPs

Tool Overhead

Sympathy 0.693 8 In-network 0.12 No

TinyD2 0.892 0 In-network 0.03 Yes

PAD 0.312 2 Out-network 0.05 No

Powertracing 0.000 0 Out-network 1.00 Yes
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the nodes and then transmits them to sink if the dia-
gnosis reports are required. On the in-network level,
there exist no other points than TinyD2, which can
dominate its overhead.

7.4 Impact of Overhead

The average overhead is used for evaluating different
diagnostic tools, and the results are described in Table
7. Overhead is an important factor that influences the
design of diagnostic tools. Some users may not find this
metric is important, and they deem the diagnostic tools
must be effective, whatever overhead they take. How-
ever, if they take more overhead than the application
code itself, it is meaningless to establish such a sensor
network application.

We need to choose the most effective tool under an
acceptable overhead. As we can see from Powertrac-
ing, the overhead to establish such a system is unpre-
dictable, and it is not scalable for large-scale sensor
networks.

7.5 Design Guidance for GreenOrbs

GreenOrbs is a large-scale working system which
contains up to 500 TelosB motes. In the operational
period, we can get three types of packets to judge if
there are faults happened during the deployment. The
procedure of how to use our proposed method to choose
diagnostic tool is shown in Fig.10.

Firstly, we classify the granularity level of candidate
diagnosis approaches into in-network level, and then
consider a D-vector is (D, 2, overhead, Rsensor, Rdiag).
Secondly, we find that the SP of the granularity is 2,
and TinyD2 is selected as the best approach that can
be achieved. Table 8 describes the property of TinyD2.
Since the granularity and the SPs are considered, the
diagnosis approaches can be selected efficiently. In or-

der to guide the design of efficient approaches, we reco-
mmend the diagnostic tool has a D-vector as (D, 2, 0.03,
0.82, Rdiag), with D 6 DCTinyD2 and Rdiag > Rdiag0.

Table 8. Chosen Approach for GreenOrbs Meeting

Requirements of Most Effective Tools

under the Granularity of 2

Diagnostic TinyD2

tool

DC 0.581 9

Granularity 2

Metrics Neighbor list, routing list, packet send/receive
time, number of packets transmitted/retran-
smitted, radio on time, number of duplicate
packets, number of parent changes

Fault types Node failure, link failure, routing failure,

detected ingress drop

8 Conclusions

This paper presents the D-vector to characterize var-
ious diagnostic tools. Working with a skyline query al-
gorithm, named NNS, we derived a set of diagnosis ap-
proaches with dominated features in every dimension,
which can be used as a guidance for future designs. As
far as we are concerned, it is the first effort on analyz-
ing and quantifying the correlation among properties
of different diagnostic tools under the adoption of real
data trace.

With adoption of the D-vector, we can efficiently
evaluate diagnosis approaches under the same system
settings, and it can also help users select a proper dia-
gnostic tool with low overhead. Furthermore, we also
took steps in understanding diagnosis in a different view
through extensive experiments on the design guidance
of diagnosis approaches. For future work, we may focus
on more practical ways of efficiently designing diagnosis
approaches in real applications.

Fig.10. Workflow for design guidance of diagnostic tools using analysis of skyline points from all potential D-vectors.
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