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Abstract—Smartphones nowadays are installed with diverse
applications, each of which consumes energy and bandwidth.
As more and more applications are crowded into a smart-
phone, they cause serious problems with regard to battery
life and bandwidth utilization. Existing proposals to tackle
such challenges usually resort to two ways: avoiding energy-
consuming network activities or improving communication
efficiency in terms of power consumption. Those approaches
either affect the smartphone users’ experience, or offer little
benefit in prolonging the battery life. Motivated by insightful
understanding of users’ habit, we in this paper propose a novel
approach to orchestrate network activities of smartphone ap-
plications, based on user’s habit. We implement our approach
on smartphones as a middleware service called NetMaster. The
performance evaluation with real traces shows that NetMaster
reduces energy consumption of network activities by 77.8% in
average and increases network bandwidth utilization by over
200%. The user experience is surprisingly well preserved. The
chance of undesired interrupt during normal usage is less than
1%.

Keywords-energy; mobile computing; optimization

I. INTRODUCTION

The market of smartphone Apps (applications) dramatical-
ly grows in recent years. Smartphones nowadays are crowed
with numerous diverse applications. Most of the applications
(e.g. Facebook, weChat) require using the cellular network,
which means considerable cost in battery power and network
bandwidth. Hence, a natural but critical challenge on smart-
phone platforms is the conflict between the high demand
of network usage by various Apps [1] and the constrained
energy and bandwidth resources [2]. The amount of Apps on
smartphones is ever growing, but for many years and in the
foreseeable future, we do not see remarkable innovation in
battery technology. Solving the above-mentioned challenge
becomes a crucial and urgent task in the area of embedded
systems and mobile computing.

Various approaches have been proposed [3, 4, 5] to
address the energy issue of smartphones, which usually
resort to two ways: 1) improving communication efficiency
in terms of power consumption [3, 4, 5, 7] or 2) avoiding
energy-consuming network activities [2, 4, 9]. Nevertheless,
both of them have apparent limitations: the first class of
approaches indeed bring limited benefit [3, 5] with respect
to energy. The applicable scenarios [4, 10] of improving

communication efficiency are severely restricted as well.
The second class of approaches [2, 11, 12] suffer a high
risk of harming user experience. The fundamental problem
behind this dilemma is the lack of in-depth understanding
of smartphone users’ behavior. The subtle tradeoffs among
energy efficiency, user experience, and network utilization
have great significance but often neglected by the existing
works.

To address the above problems, we collect real traces
from 8 users over 3 weeks for analysis. Further based on
the results of existing measurement studies [9, 13, 14], we
have two important findings: first, the screen-off network
activities account for a significant portion of all network
usage but have fairly flexible timing requirement. Second,
the users’ behavior of using smartphones exhibits highly
regular patterns. Such interesting findings indicate great
potential space to optimize energy efficiency of network
activities under constrained bandwidth and simultaneously
guarantee user experience .

In this paper, we propose a novel approach which predicts
user behavior of network usage based on user habit mining.
Accordingly, an online optimization algorithm is proposed
to maximize energy saving and bandwidth utilization while
also guarantee user experience. Our contributions are sum-
marized as follows:
• We collect and analyze the real traces of 8 smartphone

users for over 3 weeks, which reveal that smartphone
users usually have strong habits in using smartphone
Apps. We also measure the network traffic on smart-
phones at different time, so as to indicate a great
potential to improve energy efficiency and network
utilization.

• We propose a user habit oriented approach to predict
smartphone usage and model the scheduling of network
activities as a combination of multiple knapsack prob-
lems, which is proved to be NP-hard. We then propose a
1−ε
2 approximate solution, which synthetically consider

energy efficiency, network utilization, and user experi-
ence. To the best of our knowledge, we are the first
to provide a scheduling approach of smartphone Apps
with guaranteed performance with respect to energy
efficiency.
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(a) Network activity distribution
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(b) Bandwidth utilization

Figure 1: Network activity profiling. In average, 40.98% of total network activities happen in screen-off state. For bandwidth
utilization, 90% data transfer in the screen-off state are below 1kBps while 90% in the screen-on state are below 5kBps.

• We implement our proposal as a middleware service on
smartphones called NetMaster. We evaluate NetMaster
with real traces and compare its performance with the
existing approaches. The results demonstrate the high
efficiency and good generalizability of NetMaster. It
reduces the average energy consumption of network
activities by 77.8% and increases the network band-
width utilization by over 200%, while surprisingly well
preserves the user experience. The chance of undesired
interrupt to normal usage is less than 1%.

The rest of paper is organized as follows: Section II de-
scribes the related work. Section III presents our motivation
why we should eliminate the screen-off network activities.
We present methodology design in Section IV. The system
design and implementation of NetMaster is demonstrated
in Section V. Section VI gives the system performance.
We discuss the major concern in Section VII. Finally, we
conclude our work in Section VIII.

II. RELATED WORK

Network optimization receives increasing attention in
recent years. Due to its complexity, researchers propose
various methodologies focusing on different dimensions. We
categorize them as follows.

Profiling. Several works have been proposed to charac-
terize network activities in cellular networks. For example,
the work in [3] profiles the usage patterns by tracking 255
smartphones. The work in [4] characterizes the relationship
between users’ application interests and their mobility prop-
erties. The work in [5] applies a passive measurement of
mobile devices and shows that mobile traffic is dominated
by multimedia content and mobile downloading applications.
Overall, those works illustrate the diversity of user habits [6]
and network activities [7]. However, they fail to propose
efficient methods for optimizing energy consumption of
network activities which will be addressed in our paper.

Data transfer optimization. To achieve energy saving at
data transfer level, several efforts have been made. The work
in [8] studies the impact of channel state on data transfer and
reveals that good channel state can enhance energy efficiency
of data transfer. Pathak et al. in [9] propose a comprehensive
analysis of different methods on optimizing periodic data
transfer. Huang et al. [2] characterize the screen-off data
transfer using UMICH data set. They use batch and fast
dormancy for off-line analysis. Although being effective,
there still exist a large gap between off-line analysis and
online optimization due to limited knowledge of user habits.

III. MOTIVATION

Usually, an App falls into dormancy when we push
”POWER” button to shut down the screen. But it can still
remain normal activities in the background. To obtain a deep
understanding of this mechanism, we collect real traces of 8
smartphone users for over 3 weeks. The users have sufficient
diversity, at the ages of 20-30 and with different professions.
By analyzing the traces, we find they involve different back-
ground network activities at the screen-off state. Moreover,
as depicted in Fig. 1(a), network activities at the screen-off
state accounts for 40.98% of all the activities. As stated in
[2], this portion of network activities is low responsive and
can be optimized aggressively. On the other hand, we find
the radio utilization at the screen-on state is low as well. The
radio utilization ratio refers to the percentage of screen-on
time with active network communication. As illustrated in
Fig. 2, the average radio utilization ratio is only 45.14%. It
indicates that over 50% of radio-on time is wasted without
any communication activities, though the screen is on. In
addition, as shown in Fig. 1(b), the bandwidth utilization of
90% data transfer at the screen-off state is lower than 1kBps
while 90% at the screen-on state is lower than 5kBps. This
is far lower than the bandwidth provided by the carriers.
The above mentioned findings clearly reveal great potential
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Figure 2: Screen-on time utilization profiling. By our anal-
ysis, the average radio utilization ratio in screen-on state is
45.14%.

space to improve radio utilization ratio at the screen-on state
and to eliminate screen-off network activities for energy
conservation.

The existing proposals to address the above issues, how-
ever, have limitations with different regards. The works in [2,
10] conduct off-line optimization by using simple methods
(e.g. batch, delay) to aggregate or delay data transmissions.
Intervals of 180s [10] and 100s [2] are adopted, respectively.
Nevertheless, according to the user traces we collect, 17%
user interactions fall just between two adjacent screen-off
slots with intervals below 100 seconds. It reveals that the
normal usage suffers a risk of being interrupted by those
“interval-fixed delay” methods, because the user’s habit is
not appropriately taken into account.

Understanding user habit is of great significance for a
solution against screen-off network activities. We conduct
3-week experiments with 8 users for user habit analysis and
get two key observations. First, different users have rather
distinctive usage patterns. To analyze the difference between
two usage patterns, we introduce the Pearson parameter.
Pearson parameter is used to estimate the correlation of two
vectors with the same dimensions. It is calculated by:

ρX,Y =

∑
(X −X)(Y − Y )√∑

(X −X)2
∑

(Y − Y )2
(1)

In this equation, X and Y represent two usage vectors. Each
vector have 24 dimensions representing the usage intensity
in 24 hours. The intensity refers to the total times of usage in
an hour. If the result is large, then X and Y are highly corre-
lated which means two users share similar usage patterns. As
depicted in Fig. 3, the average Pearson parameter of all users
is 0.1353 which shows low correlation. This implies a one-
fit-all method, e.g. delay or batch with fixed intervals [10][2],
cannot be found for all users. Second, the Pearson parameter
of the same user is much higher. By analysis, the average
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Figure 4: Pearson parameter for one user, ID=4
(Avg=0.8171)

Pearson parameter of each user is 0.54, including days with
scattered user behaviours, which indicates a much higher
correlation. For example, as illustrated in Fig. 4, the average
Pearson parameter of user 4 is 0.8171 including the days
with low values, e.g. the value between Day 3 and Day 7 is
0.464. This implies that for a single user, its usage pattern
follows a regular daily pattern and is thus highly predictable.
Overall, the above mentioned observations motivate us to
develop a dynamic optimization scheme based on user habit
prediction.

IV. METHODOLOGY DESIGN

In this section, we discuss the methodology to eliminate
screen-off network activities for saving energy online while
also guarantee normal usage will not be interrupted. To
realize this goal, the methodology contains three steps:
predicting when user will use the smartphone; predicting
when screen-off network activities will happen; determining
the scheduling scheme to maximize the total energy saving
while minimize the probability of interrupting users. More
specific definitions will be discussed as follows.
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Table I: Notations

Parameter Description
ti time slot i
nj network activity in time slot tj
u(ti) using phone in time slot ti
u(ti)j using phone in time slot ti of day j in

history. u(ti)j = {0, 1}
n(pm, ti) network activity of App m in time slot ti
n(pm, ti)j network activity of App m in time slot ti of

day j in history. n(pm, ti)j = {0, 1}
V (n) data size of the network activity n
Pr[n(ti)] probability of using network in time slot ti
Pr[u(ti)] probability of using phone in time slot ti
thr(u) probability threshold to judge whether a time

slot will contain user interaction
et average energy consumption ratio
ΔE energy saved by scheduling scheme
ΔP penalty caused by scheduling scheme
C(ti) the capacity of slot ti

A. Problem formulation

To formulate this problem, we will follow the previously
mentioned steps.
Step 1: Predicting user active slots. User active slots
mainly refer to the time slots of using the phone, i.e. the
screen is on and the keyboard is unlocked. Assuming we
have k days records, we define a time slot ti to be a user
active slot if it satisfies:

Pr[u(ti)] =

∑k
j=1 u(ti)j

k
≥ thr(u) (2)

in which thr(u) is the probability threshold for user active
slot detection. We should mention that ti doesn’t have a
fixed length. For all time slots satisfying equation (2), we
merge them into a set U called user active slot set, in which
U = {∀ti|Pr[u(ti)] =

∑k
j=1 u(ti)j/k ≥ thr(u)}.

Step 2: Predicting screen-off network active slots. Screen-
off network active slots refer to the time slots when screen is
off but there is still data transmission over mobile network.
Similarly, we define a time slot ti to be a screen-off network
active slot if it satisfies:

Pr[n(ti)] =

∑
∀m

∑k
j=1 n(pm, ti)j

mk
≥ 0, (ti /∈ U) (3)

Then, for all time slots satisfying equation (3), we merge
them into a set Tn called screen-off network active slot set.
For each time slot ti ∈ Tn, we use ni to denote the network
activity happening in ti and also add it into Tn. For each
ni, we use the sum of all data transferred/received in ti to
denote V (ni).

Step 3: Determining scheduling scheme. After getting
U and Tn, the next step is finding the scheduling scheme
to incorporate nj into U . It should maximize saved energy,
ΔE while minimize the penalty ΔP .

The saved energy mainly comes from reduced radio-on
time by eliminating screen-off network activities. For the
network activity nj in Tn, ΔEj from scheduling nj is

defined by ΔEj = g(tj) in which tj is the slot nj belongs
to. Function g denotes the power model for the radio-on
time. We use the results from [11] and [9] for g function.

For penalty, it denotes the probability of interrupting user
interactions. To scale with ΔE, we introduce a scaling factor
et to transform interrupting probability into energy [12].
Assuming we need to schedule a network activity nj from
tj ∈ Tn to tm ∈ U , ΔPj is defined by

ΔPj =

∫ tm

tj

etdt

∫ tm

tj

Pr[u(t)]dt (4)

in which
∫ tm
tj

Pr[u(t)]dt denotes the probability of using
phone during the interval from tj to tm. Typically, if the
scheduling schemes of ni and nj have overlapped slots, ΔP
for overlapped parts will be calculated only once.

In addition, for each ti in U , its capacity is defined by:

C(ti) = Bandwidth · ti (5)

in which Bandwidth is the average bandwidth provided by
the carrier. Based on the above mentioned definitions, the
scheduling scheme is straightforward: given U and Tn, we
want to find a scheduling scheme S = {sti, ..., stm} which
maximizes net saved energy ΔE −ΔP . For each sti ∈ S,
it contains network activities from Tn which are scheduled
into ti ∈ U . The optimization formula can be expressed as
follows:

Max
∑
∀nj

(ΔEj −ΔPj)

s.t.

k∑
j=1

V (nj) ≤ C(ti), ∀nj ∈ sti

(6)

To solve this problem, we transform it into a multiple
knapsack problem. For each ti, it denotes a knapsack. C(ti)
is the capacity of knapsack ti. In addition, each network
activity nj denotes an item and for each item, its profit
is defined by ΔEj − ΔPj and its weight is V (nj). The
scheduling scheme is the most profitable packing scheme
given capacity constraints. However, our problem is much
harder because for any two adjacent user active slots, they
share an overlapped itemset. In addition, for each item in
one itemset, its profit is not independent because its ΔP
might be overlapped with others. Therefore, we first refer
to the solution under optimal condition to shed light on the
original problem.

B. Solution under optimal condition

Assuming that we can obtain the user active slot set and
the screen-off network active slot set accurately, then the
scheme is to schedule every nj ∈ Tn into adjacent ti ∈ U .
By that means, we can get the maximized profit without
incurring any ΔP . Furthermore, to solve the “overlapped
itemset” problem, we first duplicate each nj to create
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independent itemset for each ti ∈ U . Under this setting,
the original problem has been reduced to the combination
of single knapsack problem.

The single knapsack problem is known as an NP-hard
problem and well studied by researchers. Due to the limita-
tion of the article, we will omit NP-hard prove here. Based
on dynamic programming, Ibarra et al. in [13] propose a
fully polynomial approximation algorithm. This algorithm,
denoted by SinKnap, can give us a (1−ε)−approximation
and the detailed proof can be found in [13]. Inspired by
their work, we design a 1−ε

2 − approximation algorithm
(ε ∈ [0, 1]) for our problem. It mainly contains four steps,
as illustrated in Algorithm 1:

1) Duplication. For each ni in Tn, we duplicate it.
2) Sorting. Sort the network activities of each user active

slot according to their profit-to-weight ratios in the
nonincreasing order.

3) Dynamic programming. Apply SinKnap[13] to find
the best heuristic solution based on ε. It returns
packing scheme for each sti ∈ S.

4) Filtering. For each nj ∈ Tn, check whether it appears
twice in S. If nj appears twice, choosing sti ∈ S
with smaller C(ti)− V (nj) and delete the other one.
After filtering all duplicated ones, applying a greedy
algorithm to add items for each sti ∈ S if possible.

Lemma IV.1. The algorithm guarantees a 1−ε
2 approxi-

mation ratio for proposed multiple knapsack problem with
overlapped itemsets.

Proof: Firstly, since all network activities are duplicat-
ed, we define OPTdup(ti) as the optimal solution under this
condition for slot ti ∈ U and OPT (ti) under the original
condition. Since we may merge more network activities
under duplicated condition into ti, OPTdup(ti) ≥ OPT (ti).

Based on SinKnap[13], let sti denote the heuristic solution
for slot ti. It can guarantee that given any ε < 1, the sti
satisfies the following equation:

OPT (ti)−sti
OPT (ti)

< ε which is
also equivalent to sti is a (1− ε)-approximate solution.

Getting the (1− ε)-approximate solution for single knap-
sack problem, we need to filter out those duplicated network
activities. After this step, we guarantee that every nj∗ ∈ S
only appears once. Therefore, for any knapsack ti, we have:∑

∀ti

∑
∀nj∗∈ti

ΔEj∗ ≥ 1

2

∑
∀ti

∑
∀nj∈ti

ΔEj (7)

≥ 1− ε

2

∑
∀ti

OPTdup(ti) (8)

≥ 1− ε

2

∑
∀ti

OPT (ti) (9)

≥ 1− ε

2
OPT (10)

where OPT is the optimal solution for total sets. Therefore,
given (1−ε) approximation for single knapsack subproblem,

we get a 1−ε
2 -approximate solution for multiple knapsack

problem with overlapped itemset as desired. Proved.
In addition, after filtering out duplicated ones, there also

exist probability to add new network activities. So we adopt
choosing scheme based on residual capacity to maximize
the probability of adding new ones. Since duplicated nj

gives same profit in two slot ti and ti+1, we choose the
slot with less residual capacity C(ti)−V (nj). This provides
more potential probability to merge more network activities.
However, no matter what scheme we choose, the solution is
constrained by:

εOPT ≤ OPT −
∑
∀ti

∑
∀nj∗∈ti

ΔEj∗ ≤ 1 + ε

2
OPT (11)

Therefore, the performance of “adding new ones” is lower
bounded by εOPT in the worst case. So we apply a greedy
algorithm for this part to control the computational overhead.

Algorithm 1: Algorithm for overlapped knapsack prob-
lem
Input: U for user active slot set, Tn for network active

slot set
Output: S, scheduling scheme
S = ∅; for j = 1; j < length(Tn); j ++ do

for every adjacent pair ti, ti+1 ∈ U do
if ti < nj < ti+1 then

sti = sti
⋂
nj ; //Duplication

sti+1 = sti+1

⋂
nj ;

for each sti ∈ S do
Sort nj ∈ sti according to: ΔEj/V (nj) in
nonincreasing order; //Sorting
sti = SinKnap(sti); //Dynamic programming

for every nj ∈ Tn do
if nj ∈ sti && nj ∈ sti+1 then

if C(ti)− V (nj) ≥ C(ti+1)− V (nj) then
Delete nj ∈ sti ; else

Delete nj ∈ sti+1 ; //Filtering

GreedyAdd(S);
return S;

C. Prediction based optimization

In the real-world environment, we cannot accurately know
when and how long users will use smartphones. Hence,
to schedule screen-off network activities, we should make
predictions on both users and apps. However, making pre-
dictions faces two critical challenges.

First, fine-grained accuracy is hard to achieve. Based on
our observation, users have nearly random usage patterns in
the minute level, not to say the second level. On the contrary,
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Figure 5: One week program pattern (ID=3). By analyzing
the traces, we find only 8 (out of 23) apps have been used
in one week and also have network activities.

the user habit is highly predictable at the hour level, as stated
in Section III. Hence, we develop a light-weight hour-level
prediction method to guarantee prediction accuracy.

Second, making predictions cannot guarantee 100% ac-
curacy given randomness of user interactions. In addition,
there also exist passive user interactions caused by accidental
network activities which can not be predicted, e.g. new
coming emails. This means eliminating screen-off network
activities thoroughly may affect normal usage under this
condition. Therefore, to handle those unpredictable inci-
dents, we develop a real-time adjustment strategy.

1) Hour-level prediction method: To guarantee prediction
accuracy, we propose a light-weight hour-level prediction
method. We define “intensity” as the total times of usage
in an hour. Usually, in some particular hours, the intensity
stays nearly unchanged, e.g. there are near zero usage
from 2am to 6am in our traces. While in others, there
are intensity changes from day to day. Hence, our goal is
to limit the impact caused by this change. As mentioned
before, predicting user active slots needs thr(u). To avoid
interrupting normal usage, we develop a impact-based s-
trategy of determining thr(u). Basically, the threshold is
defined as the max probability of interrupts, denoted as δ.
Given the predicted user active slots, δ is the max value
of Pr(u) in the inactive slots. By carefully choosing δ, we
can minimize the expected interrupt on users. Considering
the different lifestyles during weekdays and weekends, we
apply different δ strategies for them. In our experiments, we
choose rather small δ to lower the probability of interrupting
user activities, i.e. δ = 0.2 for weekdays and δ = 0.1
for weekends. However, making hour-level predictions also
faces limitations. First, optimal δ is hard to choose. On
one hand, large δ limits the number of slots in U which
saves a large part of energy but suffers a high risk of
interrupting normal usage. On the other hand, small δ
can limit the probability of harming user experience but
contributes little to energy saving. Second, finding optimal δ
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Figure 6: NetMaster Architecture. It has three components:
monitoring component, mining component and scheduling
component. A database (DB) is used to store user data.

incurs large overhead. Since choosing optimal value requires
a deep understanding of user’s lifestyle. it needs weeks
of experiments, large storage and sufficient computational
ability which cannot be afford by mobile devices.

Given the above limitations, we deem that hour-level
prediction is also not sufficient for achieving satisfactory
energy saving. Therefore, we develop a real-time adjustment
strategy as a supplement.

2) Real-time adjustment strategy: The real-time adjust-
ment strategy is responsible for powering on the radio when
the screen is off or turning off the radio in the user active
slots timely. To implement real-time control, we borrow the
idea of duty cycle scheme in [14] with ”Special Apps” as a
supplement.

“Specific Apps” are the apps which have been used at
least once along with network activities. For instance, as
depicted in Fig. 5, only 8 (out of 23) apps are profiled
as “Special Apps” for user 3. Moreover, com.tencent.mm,
also known as weChat, is used for 669 times during one
week and accounts for 59% of all usage. Therefore, by
tracking activities of those apps, we can accurately detect
user interactions and network activities while decreasing
computational and storage overhead. When meeting a new
installed app, we first recognize it as “Special Apps” to avoid
making false operation. In addition, we also implement a
duty cycle scheme in this strategy. This scheme is mainly
used for imperfect predictions and accidental network activ-
ities which may cause user interactions. When the screen is
off, this scheme will make the radio work in duty cycled
manner: it wakes up the radio periodically to let “Special
Apps” use the network. In addition, to save energy cost by
falsely waking up the radio, we implement an exponential
sleeping scheme. After setting the initial sleep interval T ,
when no user interactions and network activities are detected
in the following wake-up period, the radio will sleep for 2T ,
4T and etc. Intuitively, we set this interval to be 30s in our
experiements. By implementing this scheme, we can reduce
energy cost of periodically waking up the radio while also
guarantee user experience.

In words, the special cases handled by Real-time adjust-
ment strategy are summarized as follows:
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Figure 7: Trace analysis

• Usage outside the predicted slots. If the user uses
the smartphone outside the predicted slots, we’ll check
whether the foreground app is one of “Special Apps”.
If it is “true”, then we will power on the radio. After
usage, when no network activity is detected, the radio
will be turned down by the duty cycle scheme.

• Wasted radio-on slots. When no network activity
is detected, the duty cycle scheme takes control and
implements the exponential sleep scheme.

V. SYSTEM IMPLEMENTATION

We implement the above-introduced scheme as a cross-
App middleware, NetMaster, to schedule network activities.
It works as a middle layer between applications and hard-
ware, which mainly consists of three components: the moni-
toring component, the mining component and the scheduling
component: Monitoring component records the information
from users and Apps. The information is stored in the
database on the smartphone. Mining component utilizes the
database for hourly prediction. The prediction results will
be broadcasted to the scheduling component. Scheduling
component determines the scheduling strategy and executes
it hereafter.

A. Monitoring component

There are four features that are recorded by the monitoring
component: time, App, cellular network and screen.

We implement a hybrid model for accurate and energy-
efficient recording. This model contains two triggers: event
and time. The event trigger is used for catching changes of s-
tate variables, e.g. screen state. We register four broadcasters
for each group and the corresponding receivers in NetMaster.
When any state variable changes, the broadcasters will issue
a message to the receiver.

To record non-state variables, e.g. received and transmit-
ted bytes, we implement the time-triggered model. Consid-
ering different usage intensity in the screen-on state and the
screen-off state, we set two timers for each of them. At the
screen-on state, the user intensity is heavy, so a one-second
timer is active. Otherwise, a longer timer set at 30 seconds
is kept active in the screen-off state.

Moreover, frequently writing records to flash is energy-
inefficient and slower than writing to memory [15]. To
reduce energy and time cost, we use 500KB cache in
memory to batch multiple writes together.

B. Mining component

This component makes hourly predictions for user active
slots and network active slots at the screen-off state. It uses
the prediction methods in Section IV and passes the results
to the scheduling component.

C. Scheduling component

The scheduling component determines the scheduling s-
trategy and executes real-time adjustment. It mainly consists
of two parts: decision making and real-time adjustment.

1) Decision making This part manages activity distribu-
tion based on the previously mentioned algorithm in
the optimal condition. The ε is set at 0.1 to guarantee
good performance while control the computational
overhead.

2) Real-time adjustment This part mainly controls the
real-time network switch. This function is realized
in a lower layer: we start a new children process
and implement svc data enable or svc data disable
to switch the radio on or off. The ”Special Apps”
can be easily got by querying the database. The duty
cycle scheme is implemented as a background runtime
service.

In addition, data transmission that spans across screen-on
and screen-off states needs appropriate management. Typi-
cally, a transmission is not eliminated forcibly, considering
some long-lasting network activities started by the user, e.g.
stream video, Skype communication. We realize this func-
tion by polling system service of TELEPHONY SERVICE.
Only when no data transmission is detected, the duty cycle
scheme will take over the control.

VI. EVALUATION

We evaluate NetMaster on Android 4.1.1 and recruit
three volunteers to conduct comparison experiments. The
testing platforms are HTX One X, Lenovo A390T, and
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Figure 8: Off-line analysis on delay impact

Sharp 330T. We install NetMaster on each device and ask
volunteers to freely use them without any restriction. We
make this setting to allow the variability of user habits
such that NetMaster is tested under different circumstances.
The cellular network ISP is China Unicom, who provides
WCDMA communications. We evaluate NetMaster in two
dimensions: general performance and user experience. In
addition, we also compare it with the approaches proposed
in [10] and [2]. The impact of different parameter settings
is examined as well.

A. General Performance

We demonstrate the performance of NetMaster with three
metrics: energy savings, radio-on time and bandwidth uti-
lization.

In the experiments, we adopt the power model proposed
in [5, 8, 11] to estimate network energy consumption.
To compute the energy saving, we implement two class
experiments: with NetMaster and Without NetMaster. As
mentioned in [11], energy consumed in network commu-
nication take the majority of total energy consumption. So
we mainly focus on the reduced radio-on time on each
device. For comparison, we also implement “naive delay and
batch” proposed in [10] and [2], which uses a fixed interval
to aggregate/delay screen-off network activities. To test the
performance of different intervals, we use 10s, 20s and 60s
as testing intervals, which do not affect user interactions.
To obtain the ground truth, we apply off-line analysis to
derive the optimal results for each volunteer. The optimal
result refers to the minimal energy cost for the same network
activities. As illustrated in Fig. 7(a), NetMaster can save
77.8% energy consumption of network activities in average.
In 81.6% of all the tests, the gap between NetMaster and the
optimal result is below 5%. The reason is that NetMaster
not only eliminates screen-off network activities, but also
turns off radio whenever necessary. This operation greatly
reduces unnecessary radio-on time and increases bandwidth
utilization.

The energy savings offered by the “naive delay and batch”
scheme is 22.54% in average, which is apparently worse than
the performance of NetMaster. We also notice that even in

the worst case (e.g. volunteer 1), the gap between the optimal
result and NetMaster is only 11.2%, which is far beyond 0.45
approximation factor defined by ε. Furthermore, we profile
the performance in terms of radio-on time and bandwidth
utilization improvement, as shown in Fig. 7(b) and Fig.
7(c). NetMaster saves 75.39% inefficient radio-on time in
average. In addition, NetMaster achieves in average 3.84x
for download rate while, 2.63x for upload rate. However,
we also notice that NetMaster doesn’t increase the peak rate.
Note that the peak rate is determined by the channel state,
no matter what scheduling scheme is used. We include this
part in our future work.

B. User Experience

User experience refers to whether NetMaster makes
wrong decisions and blocks network when there are user
interactions. In the experiments, we told the volunteers to
turn on 3G network if the radio is turned off, as long
as they need to access the network. Hence, we can track
the appearance of com.android.settings, using the method
getMobileDataEnabled as the indication of false operations.
If this process appears foreground and the network switch
incurred by the user is detected, we will record this activity
sequence as the consequence of a “wrong decision”. Ac-
cording to our traces, in all the 319 times of appearance of
com.android.settings, only 1 wrong decision occurs. After
careful examination, we find that the unique instance is
due to the wrong return value of the method getSystem-
Service(TELEPHONY SERVICE).getDataActvity. That phe-
nomenon can be eliminated by powering on 3G network
before accessing the network. Generally, we can control the
possibility of interrupting users under 1%.

C. Comparisons

We also compare the performance of NetMaster with the
schemes of delay and batch, respectively. For each method,
we test it under different parameter settings to obtain a
comprehensive comparison with NetMaster.

Delay method puts off network activities for some in-
tervals, during which the radio is shut down. In the experi-
ments, we use different intervals varied from 1 second to 600
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seconds. We test the performance in four dimensions: radio-
on time, bandwidth utilization, energy saving, and impact on
user activity. The results are shown in Fig. 8. In Fig. 8(a) and
Fig. 8(b), we can see that by increasing the delay interval,
the radio-on time can be reduced by 36.7% (interval=600s),
and the bandwidth utilization can be increased by 33.05%,
but the energy consumption is only cut off by 9.2%. This is
because it fails to avoid wasting radio-on time. In addition,
we also examine the affected user activities which occur in
the delay interval. By analyzing the traces, we notice that
the ratio of interrupted user activities increase along with the
delay interval. By applying 600 seconds delay interval, the
ratio exceeds 40% which indicates normal usage is affected
severely. On the contrary, applying small delay interval (e.g.
5s) gives little improvement on energy saving and bandwidth
utilization increase. Therefore, the gap between interrupted
usage and saving energy cannot be filled if using the delay
method alone.

For the batch method, we test it by aggregating different
maximum numbers of consecutive network activities. To
compare it with NetMaster, we limit the probability of
interrupting user activities to 1% or lower. As depicted in
Fig. 9(a) and Fig. 9(b), the performance is enhanced with
more aggregated network activities. The radio-on time can
be eliminated by 17.7% while the bandwidth utilization
can be increased by 17.6%. But its performance does not
improve when the max number exceeds five. The reason
may be that users do not usually start too many (larger than
5) network streams simultaneously, given the interrupting
probability constraint.

Overall, neither delay or batch can achieve good perfor-
mance alone. Compared with NetMaster, neither of them
can guarantee sufficient energy saving and low probability
of interrupting user interactions simultaneously.

D. On parameter settings

We investigate the impact of different parameter settings
through trace analysis. According to their functions, we

mainly focus on the impact of duty cycle and predicting
threshold.

We compare different sleep intervals for exponential duty
cycle scheme and the performances of other duty cycle
schemes. As shown in Fig. 10(a), the increase of sleep
intervals reduces the radio-on time significantly. In reality,
the interval can be tuned to satisfy different user require-
ments. In Fig. 10(b), we can see the exponential scheme
apparently outperforms the fixed and random sleep, which
also contributes a lot to energy saving.

As for the impact of different prediction thresholds, the
prediction accuracy is defined as the ratio of user activities
falling inside the predicted user active slots and the energy
saving is the ratio of the saved energy using tested threshold
to the oracle value. As shown in Fig. 10(c), the value of δ for
balancing between energy saving and prediction accuracy is
0.37. However, as stated in our design, preventing interrupt-
ing user activities is the first-place concern. Thus we choose
a smaller value δ = 0.2 for weekdays while δ = 0.1 for
weekends to eliminate the probability of interrupting users.
Under this setting, we can guarantee the expected chance of
undesired interrupt to normal usage is less than 1%.

VII. LIMITATIONS

Although conducting the comparison experiments for real
smartphone users, the number of volunteers is rather small.
We will recruit more volunteers to analyze their habits and
estimate the performance of NetMaster in our future work.

Some measuring errors may be introduced in the exper-
iments. In some recent works [3, 8, 11], they connect a
power monitor to the smartphones to analyze its energy
consumption. Although this method provides high accuracy,
it is not applicable in measuring energy consumption in
daily life. That is why we use a model-based approach,
which is less accurate than a device-based approach. To
improve the measuring accuracy, we will address the issue
of measurement accuracy in our future work.

The hidden impact exists with NetMaster as well. The hid-
den impact refers to the potential risk of interrupting normal
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Figure 10: Parameter analysis

usage. For example, in the user inactive slots, the duty cycle
of radio is very low. Some push services, like Facebook,
may be delayed and cause impact on user experiences. To
understand and eliminate this hidden impact, we will put
more efforts in analyzing user habits and App behaviours.

VIII. CONCLUSION

In this paper, we make insightful user habit analysis on
real-traces from 8 users over 3 weeks. In addition, we
propose a user habit oriented approach to predict smartphone
usage and first model the scheduling of network activities as
a combination of multiple knapsack problems. We derive a
1−ε
2 approximate solution and implement it as a middleware

service on smartphones called NetMaster. In real world
experiments, it reduces the average energy consumption
of network activities by 77.8% and increases the network
bandwidth utilization by over 200%, while surprisingly well
preserves the user experience. The chance of undesired
interrupt to normal usage is less than 1%.
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