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Abstract—On-air access of individual sensor node (called re-
mote control) is an indispensable function in operational wireless
sensor networks, for purposes like network management and
real-time information delivery. To realize reliable and efficient
remote control in a wireless sensor network (WSN), however, is
extremely challenging, due to the stringent resource constraints
and intrinsically unrealizable wireless communication. In this
paper, we propose TeleAdjusting, a ready-to-use protocol to
remotely control any individual node in a WSN. We develop a
coding scheme for addressing on the cost-optimal reverse routing
tree. In the address of each node, all its upstream relaying
nodes are implicitly encoded. Then through a distributed prefix-
matching process between the local address and the destination
address, a packet used for remote control is forwarded along a
cost-optimal path. Moreover, TeleAdjusting incorporates oppor-
tunistic forwarding into the addressing process, so as to improve
the network performance in terms of reliability and energy
efficiency. We implement TeleAdjusting with TinyOS and evaluate
its performance through extensive simulations and experiments.
The results demonstrate that compared to the existing protocols,
TeleAdjusting can provide high performance of remote control,
which is as reliable as network-wide flooding and much more
efficient than remote control through a pre-determined path.

I. INTRODUCTION

Wireless sensor networks have been widely applied in
many scenarios, such as environmental monitoring [1][2],
disaster forecast [3], agricultural surveillance [4] and microcli-
mate control [5], etc. In most sensor network deployments, it
has been reported [6] that the predefined configurations often
hardly adapt to the diversity and dynamics of environments [7]
[8]. The optimal network configuration is usually achieved by
lots of tuning and online adjustment. Due to the unattended
locations of sensor nodes, remote control, namely delivering
control packets from the sink to a certain node via multi-hop
relay, is deemed as a key technique for network management.

Some efforts have been made to achieve remote control
in the past few years. They can be classified into two main
categories, i.e., unstructured and structured. In unstructured
approaches [10][11][16], nodes flood control packets to their
neighbors and the neighboring nodes likewise broadcast the
message until the destination node (or target node) receives
the control packets. Unstructured approaches guarantee the
reliability by periodical advertisement and on-demand queries.
Although flooding is efficient for network-wide dissemination,
it consumes excessive energy and bandwidth for each control
message on adjusting individual nodes. Therefore, unstructured
approaches have poor applicability in practice. In contrast,

structured approaches deliver control packets to the destination
node along predefined paths to meet different design criteria.
The paths are constructed based on some topology structures
like reverse routing tree [17][18] or connected dominating
set [19]. However, due to the resource-constraint on sensor
nodes, it is generally inefficient to construct end-to-end paths
for all nodes. Moreover, the topology structure is frequently
changing due to the intrinsically unrealizable wireless links
[21][23]. Therefore, the reliability of network tuning is hard
to guarantee.

In this paper, we propose a novel way for remote control
aiming to guarantee both the efficiency and reliability prop-
erties. To guarantee this end, several challenges should be
taken into account. First, the structured path with the optimal
cost of packet delivery should be constructed in a distributed
manner. Second, the convergence speed, communication cost,
computation overhead, and scalability of the path construction
process should adapt to the diversity and dynamics of a
network. Finally, to accommodate network dynamics, other
nodes around the optimal relaying path should be involved
to deal with lossy links and pursue opportunities of further
improving packet delivery performance.

To address the above challenges, we propose TeleAdjusting,
a ready-to-use remote control protocol for large-scale wireless
sensor networks. First, according to the cost-optimal reverse
routing tree [17] obtained by data collection protocol (e.g.,
CTP [20]), TeleAdjusting develops a coding based addressing
scheme. In the address of each node, all the upstream relaying
nodes from the node to the sink are implicitly encoded. Each
node’s address is assigned by its parent node. Then through a
distributed prefix-matching process between the local address
and the destination address, control packets are forwarded
along a cost-optimal path. Moreover, TeleAdjusting incorpo-
rates opportunistic forwarding into the addressing process.
The earlier wake-up nodes, which are much closer to the
destination, around the optimal relaying path are exploited
to relay the control packet, so as to improve the network
performance in terms of reliability and energy efficiency.

The contributions of this work are as follows:

•We propose a ready-to-use remote control protocol,
TeleAdjusting, to reliably and efficiently deliver control packets
from the sink to any individual node in large-scale wire-
less sensor networks. TeleAdjusting can be easily extended
to application scenarios of one-to-all or one-to-many packet
dissemination.
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•TeleAdjusting develops a novel distributed coding based
addressing scheme that inherits the advantages of both struc-
tured and unstructured approaches. By incorporating oppor-
tunistic forwarding into our design, TeleAdjusting can simul-
taneously reduce the total transmission count and end-to-end
latency.

•We implement TeleAdjusting with TinyOS [33] and con-
duct extensive simulations and experiments on real testbeds.
As the experimental results show, TeleAdjusting can provide
high performance of remote control, which is as reliable as
network-wide flooding and much more efficient than remote
control through a pre-determined path.

The rest of this paper is organized as follows. The back-
ground and motivation of this work is given in the next
section. Section III introduces the detail design of TeleAdjust-
ing. Sections IV presents the simulation and evaluation result.
Section V discusses the related works. Section VI concludes
this paper.

II. BACKGROUND AND MOTIVATION

A. Background

During the last several years, learning from the real expe-
riences of large-scale wireless sensor networks deployments,
i.e., GreenOrbs [2] and CitySee [12], we become increasingly
aware of the importance of remote control as an approach to
achieve the optimal configuration of whole network. Specif-
ically, with the change of network (topology, energy and
environment, etc), the predefined protocol parameters may not
be adaptive to current status for some nodes, such as the
observed network anomaly in previous works [13][14][15].
The difference between the current status and the expected
status might incur performance degradation.

In the projects of GreenOrbs and CitySee, nodes are usually
deployed on the trunk of tall trees, with on average 180 cen-
timeters above the ground. It is impractical and laborintensive
to manually adjust the operation mode of these nodes. Hence, it
urgently needs an efficient and reliable remote control protocol
to automatically adjust the network configuration.

B. Motivation

As we have known, there are several approaches that can
be used to deliver control packets from sink to an appointed
destination. Nevertheless, there exists two main drawbacks for
current solutions. First, it is energy inefficient to disseminate
control packets to individual nodes by network-wide flooding.
Second, it is vulnerable for remote control to deliver control
packets along a predefined path which is constructed and
maintained by sink. These methods just do a tradeoff between
energy efficiency and reliability, which motivates us to build
an new remote control protocol with these two properties
simultaneously.

III. DESIGN OF TELEADJUSTING

TeleAdjusting targets on developing a ready-to-use remote
control scheme for various scales of sensor networks by
integrating the structured path with gossip communication. In
this section, we first give an overview of TeleAdjusting, and
then detailedly introduce the construction of path code and the

Fig. 1. Overview of TeleAdjuting for remote control from sink to an individual
node.

adopting of opportunistic forwarding for reliable and efficient
control packet forwarding.

A. Overview

The operation overview of TeleAdjusting is shown as
Figure 1. Sensor nodes are scattered in monitoring area. All
of them forward the collected data packets toward sink along
a cost-optimal path. After receiving a data packet, the sink
will further forward it to the remote data center (controller
in the figure) through mesh node. On the controller side,
network manager will monitor the abnormal situation by real-
time data analysis. Once detecting an anomaly, the manager
utilizes network diagnostic methods to confirm the root cause.

Each node has a path code (or reverse path code mentioned
in following sections) where all its upstream relaying nodes
are implicitly encoded. And such code will be reported to the
remote controller. By obtaining the root cause of an abnormal
behavior, the manager needs to send a control packet to adjust
its corresponding operation mode. Here, the control packet
that contains the path code of destination and related control
parameters generated by the controller is delivered to the
sink by the mesh. Then, the sink forwards the control packet
downwards along the encoded path, which is indicated as
red bold line in Figure 1. We will next elaborately discuss
the forwarding strategies. Specifically, the control packet is
opportunistically forwarded in the area around the encoded
path toward the destination, denoted as shadow region.

In Figure 1, assume that sink s has a control packet with
d as its destination. Here, the line with arrow means parent-
child relationship. And the neighbor relationship is denoted
as dotted line. The encoded forwarding path, generated by
the attached path code, goes through s, a, b, c, e, and d.
Practically, the control packet can be passed through different
paths, such as path s, a, f, g, or path s, h, i, c, e. It is because
TeleAdjusting takes full advantage of forwarding opportunities
from temporally available neighbors, who can assist to improve
the reliability of remote control and reduce the end-to-end
latency.

To achieve this goal, several problems should be solved.
The first is how to efficiently encode the reverse path infor-
mation as nodes’ path code address. The second problem is to
design a distributed and light-weight algorithm for each node
to identify whether it is on the reverse path given by sink.
The last problem is to adopt opportunistic forwarding against
dynamic wireless links. We introduce the details next.
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Fig. 2. Concept of path code construction. The parent node’s valid path
code is the prefix of any child node’s path code. Parent node allocates unique
position to each child node.

TABLE I. CHILD NODE TABLE, MAINTAINING CODE INFORMATION

FOR SON NODES.

Child Position New code Old code Flag

A 1 00001000 00001000 1

B 2 00010000 00011000 1
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B. Path Information

In this section, we introduce the process that TeleAdjusting
generates reverse path code, by which the path from sink to
an individual node is indicated as a short binary bit string and
can be identifiable to any node in the network.

1) Concept of reverse path code: In this paper, we will use
the concept of reverse path code to construct the forwarding
path from sink to any specific node, rather than the fixed
routing information. The reverse path code means an array
of 0-1 string that contains certain potential relationship with
other nodes. Any node in the filed, once overhearing a control
packet from its neighbors, it should use its reverse path code
to determine whether it would be the encoded relay node or a
better one than the encoded relay node toward the appointed
destination. Figure 2 shows the procedure of constructing such
code. TeleAdjusting iteratively generates a unique path code
for each node starting from sink, which initially sets its code
to 00000000 with only one valid bit (path code length is 1).
Note that each node should select an upstream node as its
parent according to link quality and the distance between the
node and sink, e.g., A and M select S as their parent node.
Through local coordination, S knows A and M select itself
as their upstream node in the reverse path, so S provides
a two bits space (two bits space can accommodate up to 4
positions and is enough for the discovered two children nodes
and the potential hidden children nodes) and allocates different
positions to them, which are 01 and 10, respectively. Hence,
by appending the prefix code of parent node, the path code
of A and M are 00100000 and 01000000, respectively, with
3 valid bits. Iteratively, after setting the path code, A and
M allocate different positions to their downstream (children)
nodes. Eventually, each node is allocated with a unique path
code with specific valid bits, such as B’s 00101000 with 5
valid bits, E’s 00101010 with 7 valid bits, and D’s 00110010
with 7 valid bits etc.

When a node overhears a control packet, by checking

Fig. 3. One hop position allocation. p provides 5 bits space for child nodes
a, b, c, and d, etc. prefix is p’s path code.

whether its valid path code or a neighbor’s valid path code
is the prefix of the destination’s code, and whether it is much
closer (with a longer matched prefix of code of the destination)
to the destination than the transmitter and the attached expected
relay, the node decides to forward the control packet or not.
Take Figure 2 as an example, assuming M is the neighbor of
S and C, if M overhears a control packet transmitted by S
attaching the content: the identification of the destination D,
the path code of D (00110010), the expected relay A, and
the valid path code length of A (3). M knows it can assist
to forward the control packet to C, no matter M knows A’s
path code or not, because A’s valid path code length is less
than C’s path code length, and C is also on the given path
from sink to the destination D. By using this mechanism,
TeleAdjusting can successfully decode node’s implicit path and
achieve opportunistic forwarding to improve control reliability,
reduce single hop latency and total transmission hops.

2) Initial construction: The reverse path code is construct-
ed starting from the sink and sequentially generated according
to the hop count from sink to each node. Due to the serious
network dynamics at the stage of network initialization, the
operation of generating path code should not be started during
this stage to reduce control overhead. As mentioned above,
a node starts to generate its path code when the selected
parent node (which is the same to the parent node in data
collection protocol at the beginning of building a network)
has published its path code and provided the appropriate bit
space. In the construction of network topology, if there is
no further finding of new child node (sometimes also called
son node) for ten rounds of routing beacons (the duration is
10×wake-up interval) after the trigger of parent found event,
TeleAdjusting estimates the appropriate size of bit space (π)
considering the number of child nodes (N ), shown in Line 1-6
of Algorithm 1. And then, as a parent node, it deterministically
allocates different positions to each child node by coordination.

As Figure 3 shows, a, b, c, d et al. are with the same
parent node p. The path code of p is a binary string denoted
as prefix. By providing 5 bits space, which can support up to 32
child nodes, each child node is allocated a sequence number
(position) followed by prefix as its path code. For example,
c selects the third position of the space, hence its path code
is prefix:00010. The space size is determined by the actual
number of child nodes. The detail allocation strategy is shown
as follows, containing the deterministic position allocation,
position request, and allocation acknowledgement.
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Algorithm 1 Initial Position Allocation Algorithm

Input: meet the condition of initial construction, approximate number of
children nodes, N , in children nodes set S shown as Table I;

Output: initial position allocation.
1: Computing the needed number χ of positions for the discovered and

potential hidden child nodes: χ = N + �10, N
2
�;

2: i = 1;
3: while χ ≤ 2i do
4: i++;
5: end while
6: π ← i; // π is the space size
7: for i = 1; i < N ; i++ do
8: Si ← unique(position); // allocate unique position in [0 : 2π ]
9: Flag(Si)=0; // unconfirmed flag;

10: Consecutively broadcast two TeleAdjusting beacon attaching all
<child, position, flag> information;

11: end for

3) Deterministic position allocation: Once knowing the
overall of children nodes, each node first determines the size
of bit space. As a parent node, it allocates a unique space
position to each known child node in deterministic way. The
deterministic allocation is broadcasted as a TeleAdjusting bea-
con, containing the entries which consist of the identification
(ID) of children nodes, the corresponding allocated positions,
and the corresponding flags, shown as the first, the second, and
the last columns of child node table (Table I). The process of
initial position allocation is given in Algorithm 1. And then,
the flag of each entry is set to unconfirmed status (0). The
status will be changed to confirmed (1) if it is confirmed
by a routing beacon sent by the child node containing the
same allocated position. The information of all child nodes
is maintained by TeleAdjusting in Table I. When a node
overhears a TeleAdjusting beacon from its parent containing an
allocated position for it, it generates its path code according
to the parent’s code and the allocated position according to
the rules mentioned in Section III-B1. Furthermore, it replies
a confirmation frame indicating the successful receipt.

Algorithm 2 Parent Node’s Interaction Algorithm

Input: receiving a routing beacon or position request frame from child node
ID; p is the allocated position of ID; <S, P, F> is the maintained child
node table in Table I, where S denotes the child node set, P denotes the
corresponding position set, and F denotes the corresponding flag set,
respectively, the size of these sets is M ;

Output: consistency of position allocation.
1: for i = 0; i < M ; i++ do
2: if ID==Si && p==Pi && Fi==0 then
3: Fi←1; // confirmed flag
4: else if ID==Si && p�=Pi then
5: Fi←0; reallocate a position to ID;
6: Send an allocation acknowledge frame;
7: else if ID /∈S then
8: if no free position then
9: Extend bit space;

10: end if
11: Allocate a free position k to ID;
12: Si←ID, Pi←k, Fi←0;
13: send an allocation acknowledge frame;
14: end if
15: end for

4) Position request and allocation acknowledgement: If
a node is not allocated a position by its parent, or did not
overhear its parent’s TeleAdjusting beacon, by overhearing a
beacon (e.g., a beacon sent by its parent node or a neighbor
with the same parent) which indicates its parent has allocated

positions to children nodes, it sends a position request frame
to its parent requesting a position in deterministic way. Once
receiving this type of frame, as a parent node, it selects a
free position and allocates it to the requester by feeding back
an allocation acknowledge frame, and then sets the related
flag to unconfirmed status. If there is no free position, it first
extends the bit space without changing all children nodes’
positions discussed later, and then allocates a free position to
the requester and notifies the change to all children nodes by
broadcasting a TeleAdjusting beacon. The space extension will
trigger all children nodes to update their path codes, and we
discuss it detailedly in Section III-B6.

5) Position maintenance: Wireless link burstiness might
result in packet loss, so as to cause inconsistent confirmation
between parent and children nodes. To guarantee the consis-
tency, each child node will notify its position attaching to
routing beacon. Once overhearing a routing beacon sent by
child node, the parent checks whether the attached position
has been allocated for the child node. If the position has been
allocated for the child node, the parent sets the corresponding
flag to confirmed in Table I, otherwise the parent immediately
deterministically reallocates a free position to the child node.

6) Space extension: Although TeleAdjusting has provided
enough space to against the joining of new children nodes,
like the computation of space size in Algorithm 1, the sudden
increase of children nodes caused by network dynamics can
result in insufficient space. Then, TeleAdjusting extends one
bit based on previous bit space once it knows the shortage
of the bit space. After the extension, the previous allocated
positions for children nodes remain unchanged, but TeleAd-
justing notifies the expansion of space to all children nodes
and neighbors by broadcasting a TeleAdjusting beacon. Once
a child node overhears the notification, it updates its path code
and iteratively notifies the change to downstream nodes.

Algorithm 3 Children Nodes’ Interaction Algorithm

Input: receiving a TeleAdjusting beacon from parent; extracting child
information sets <S, P, F> from the beacon with size M ; ID is this
node’s identification and its allocated position is p;

Output: consistency of position allocation.
1: for i = 0; i < M ; i++ do
2: if Si==ID then
3: if Pi==p && Fi==0 then
4: Send a confirmation frame; generate path code;
5: else if Pi �=p then
6: p←Pi; send a confirmation frame; generate path code;
7: else if Space extension then
8: Update path code; notify its change to child nodes by broad-

casting a TeleAdjusting beacon;
9: end if

10: end if
11: end for
12: if ID /∈S then
13: Send a position request frame;
14: end if

The main processes of the maintenance of position consis-
tency between parent node and all children nodes is given by
Algorithm 2 and Algorithm 3. The consistency is maintained
by sending a broadcast beacon or a unicast frame without
resetting the default routing beacon frequency of original
protocol stack.

By understanding how to construct path code, in the
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following section we give the detailed specification of ex-
ploiting path code to opportunistically forward remote con-
trol packets. In addition to child node table, each node al-
so maintains its own path code and records all neighbors’
path codes in a neighbor code table with entries of form
(neighbor, new code, old code). The old code for each neigh-
bor will be remained for a period of time to guarantee reliable
control against code change caused by network dynamics. The
form of new code and old code just like the third and forth
columns in Table I, respectively.

C. Forwarding Strategy

To forward downwards a control packet, the current relay
attaches an expected relay, which means the practical next
relay in the encoded path towards the destination should not
be farther than the expected one. Once overhearing a control
packet attaching the ID of an appointed destination, the path
code of the destination, an expected relay node, and the
valid path code length of the expected relay, a node should
receive and relay the control packet if at least one of the
three conditions is satisfied: (1) it is the expected relay; (2)
it is a relay in the encoded path, and much closer to the
destination than the expected relay, or (3) one of its neighbor
is belong to the second case. Through prefix-match queries,
the node can effectively check whether it satisfies one of the
three conditions. With this forwarding strategy, TeleAdjusting
can forward a control packet downwards from sink to any
individual node through a path around the given one implicitly
encoded in the path code of the appointed destination. The
detailed forwarding strategies are given as follows.

1) Forwarding along the encoded path: As Figure 4(a)
shows, the red bold line denotes the encoded path from sink
(S) to the destination (D), going through A and C. For each
downwards forwarding, the practical relay is just happen to
be the expected relay. Hence, the control packet is actually
forwarded downwards along the given path implicitly encoded
in the destination’s path code.

2) Opportunistically exploiting available relays: However,
for a duty-cycled wireless sensor network, nodes’ wake-up
schedule is likely different, especially in an asynchronous
network. Hence, when a node forwards a control packet, the
currently available relays might change over time. To reduce
transmission count and end-to-end latency from sink to the
destination, if possible, TeleAdjusting opportunistically utilizes
temporally available relays without strictly residing in the
encoded path. Specifically, if there is an awake node which
can forward the control packet toward destination providing
more progress than the expected relay, it acknowledges the
transmitter and assists to relay it. Otherwise, when the expected
relay wakes up, it receives the control packet and continuously
forwards downwards.

As Figure 4(b) shows, S intends to forward downwards
a control packet to D, by setting A as the expected relay.
C overhears the packet before A. By matching the path
code between C and D, C confirms that it is in the path
from S to D (the path code of C is the prefix of D’s path
code), and it can provide much more routing progress than
A toward D because the prefix size of C is larger than that
of the expected relay (A). C immediately acknowledges the

(a) Forwarding along a given path (b) Exploiting temporal available link

(c) Exploiting neighbors around the
encoded path

(d) Forwarding completely different
to the encoded path

Fig. 4. Forwarding strategies. The solid lines with arrow denote the parent-
children relationship, the red bold line denotes the encoded path from sink to
D, going through S, A, and C, the dotted lines denote neighbourhood, and
the black node holds the control packet now.

control packet and forwards it by setting D as its expected
relay. This case shows the utilization of temporally available
relays to reduce transmission count and latency. In low power
wireless networks, asynchronized wake-up schedule and link
burstiness are two significant feature. Hence, the utilization of
earlier wake-up and temporally available relays can improve
the performance of TeleAdjusting.

The other cases of exploiting opportunistic forwarding are
shown as Figure 4(c) and 4(d). In Figure 4(c), although E is
not in the encoded path, by querying and matching neighbors’
path codes with the destination’s path code, it knows that
forwarding to a neighbor C or D is better than to A (no
matter A is E’s neighbor or not). Then, the control packet
will not be strictly forwarded downwards along the encoded
path, but forwarded downwards around the path by exploiting
any possible relay superior than the expected relay. To make
full use of all available relays, E sets C rather than D to be its
expected relay (superior than A) in the following forwarding.
In the case of Figure 4(d), F is not in the encoded path,
locating between E and D. By overhearing the control packet
from E, it can relay the packet to D without the participation
of C. This case indicates the practical forwarding path may be
different to the encoded path to a great extent. However, the
difference can improve the performance of TeleAdjusting, such
as reduced end-to-end latency and less transmission count. It
is noteworthy that the opportunistic forwarding strategy can
guarantee the control packet won’t be far from the encoded
path, and finally will be forwarded to the destination.
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(a) Backtracking forwarding (b) The destination unreachable prob-
lem and the countermeasure

Fig. 5. Backtracking forwarding and the mechanism against unreachable
problem, where the crosses on lines denote the failed links, and the curve-line
from E to S in (a) denotes the backtracking forwarding.

3) Backtrack: As mentioned above, to forward a control
packet, each neighbor of the current relay will try to assist
it by replying an acknowledgement as long as it can forward
the packet much closer to the destination. Otherwise, if no
one could overhear the control packet due to link burstiness,
or the destination is unreachable through any neighbor due to
network dynamics or node failure, the transmission will not
be acknowledged. By recognizing this case after several trans-
mission fails, the relay infers that it is temporally unreachable
to the destination downwards through itself. Hence, the packet
should backtrack to the previous upwards relay.

Take Figure 5(a) as an example, when E overhears a
control packet and acknowledges it, the links from E to C and
D are temporally failed. By setting C as the expected relay,
E repeatedly forwards the control packet (e.g., more than 5
times). However, E is not acknowledged. Hence, E deems
it unreachable to further forward toward the destination, and
returns the control packet to S using a feedback packet, also it
temporally sets an unreachable flag in the entries of the related
neighbors (such as C andD) in neighbor table until it hears the
corresponding routing beacon from them again. If A overhears
the feedback packet from E to S, A will continue to forward
the packet downwards because it knows the accessibility from
A to D, going through C. Then, A acknowledges E to stop
the transmission of E’s feedback packet.

If S finally overhears the feedback packet of E, S will try
to forward downwards the control packet again, setting A as
the expected relay. Due to the infeasible path through E to D,
E won’t relay the packet, and then it is forwarded by A.

4) Against destination unreachable problem: In the worst
case, if sink node deems to unable to successfully forward
control packet to the destination along the path implicitly
encoded in the destination’s path code, sink node returns
this case to controller, requesting a neighbor node of the
destination with different path code to the greatest extent.
And then the sink forwards the packet to the destination’s
neighbor, instructing it to directly deliver the control packet
to the destination. Note that as a controller of a deployed
sensor network, the local topology information of each node is
necessary and likely known. For example, in Figure 5(b), the
controller knows that K is a neighbor of D with a different
path code and the link quality between them is high. Hence,

once node D is unaccessible through A and C, S will forward
the control packet to K along the path through M denoted as
green line, and then K directly delivers it to D by unicast
forwarding.

5) End-to-end acknowledgement: Once receiving a new
control packet, the destination will send an acknowledgement
packet to sink to notify the reception. For simplicity, TeleAd-
justing transmits the acknowledgement as a data packet. Note
that if the destination receives the control packet in broadcast-
ing way, which implies the packet is forwarded downwards
along the path indicated by the destination’s path code, it
sends the acknowledgement to its parent in deterministic way.
However, if the destination receives the control packet from a
neighbor in deterministic way, denoting the packet is forward-
ed downwards from another path contrary to the destination’s
path code and the path from its parent to sink is possible
blocked, hence, the destination forwards the acknowledgement
back to the neighbor. And then, the acknowledgement will be
forwarded upwards along another path to sink.

IV. EVALUATION

We implemented TeleAdjusting in TinyOS 2.1.1 [33]. The
RAM and ROM consumption of the program are 896 bytes
and 4516 bytes, respectively. To verify the feasibility and
scalability of TeleAdjusting, we test the path code length and
convergent rate of each node by simulation in 225 nodes
networks and evaluation in indoor testbed with 40 Telosb
nodes. Then, we test the performance of TeleAdjusting.

A. Simulation

In order to understand the performance of TeleAdjusting in
generating path code under numerous network settings, in this
section, we conducted our experiments in a low-level TinyOS
simulator TOSSIM [27].

1) Simulation Setup: TOSSIM requires the user to supply
the gain of the links used in the simulated topologies. We
compute these gains using the Log Distance Path Loss model
with a path exponent of four, to approximate challenging signal
propagation environments. Furthermore, we model noise using
the CPM model [26] adopted by TOSSIM. All simulations
use the meyer-heavy.txt noise trace from [26]. We select radio
model parameters in the simulations strictly according to the
CC2420 radio hardware specification [28]. These parameters
accurately reflect the performance of MicaZ motes in that they
have the same modulation method, encoding method, frame
length and path loss exponent.

In the simulation, we set node wake-up interval to 512ms.
Network topology is constructed by CTP [20] with Trickle
algorithm [29]. We deployed 225 sensor nodes randomly in
a 200m×200m square field divided into 15×15 with high
gain and 60m×600m square field divided into 5×45 grids
with low gain, which are marked as Tight-grid and Sparse-
linear, respectively. Sink was positioned in the center of the
deployment field of Tight-grid and one endpoint of the field
of Sparse-linear, and each sensor node connects to the sink
over multiple hops. Then, we test the path code length of each
node with different hop count to sink. Further more, we also
generate path code in an indoor tested, deployed as 2×11 grid
networks providing up to 6 hops by setting the transmission
power of CC2420 to 2.
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Fig. 6. Simulation results on path code length, number of child nodes, convergent rate, hop count in different networks (Tight-grid and Sparse-linear) with
225 nodes. Tight-grid denotes a network with 225 sensor nodes randomly deployed in a 200m×200m square field divided into 15×15 with high gain, and
Sparse-linear is a network deployed in 60m×600m square field divided into 5×45 grids with low gain

TABLE II. NODES’ CODE LENGTH OF INDOOR EXPERIMENT.

Hop count 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

Avg. Code len 4.23 7.06 9.41 11.28 13.83 15.8

Min. Code len 3 4 5 7 8 12

Max. Code len 5 9 18 16 17 20

2) Path Code Length: As Figure 6(a) and Table II show,
path code length almost increases linearly with hop count, no
matter in simulated Tight-grid and Sparse-linear deployment
field, or in the testbed scenarios. In the network with 15×15
grids (Tight-grid), 5 bytes (40 bits) buffer space is enough to
identify a node’s path code. With the increasing of hop count
and decreasing of network density, such as the 5×45 grids
(Sparse-linear), the expected path code length is larger than
that of a tight network due to the waste of bit space in each hop
supporting for the joining of new children nodes. Figure 6(b)
shows the distribution of the number of children nodes in each
hop. Although some nodes can solicit multiple children nodes
in a tight network increasing the single hop bits space, it will
reduce the total hop count of the entire network, so as to reduce
the maximum path code length of the network. The simulation
results of Tight-grid and Sparse-linear can greatly support this
conclusion. In our indoor testbed experiment, a 6 hop network
costs no more than 20 bits to support the maximum path code
length given in Table II. From the simulation and evaluation
results on path code length, we can conclude that TeleAdjusting
can be efficiently adopted by existing protocols to provide
explicit path code, without strictly considering network scale
or network topology.

3) Convergent rate: As mentioned above, TeleAdjusting
allocates position, requests a position, and acknowledges the
allocation by attaching related information in routing beacon.
By hearing a routing beacon carrying with code information, a
node immediately maintains or updates the path information.
Note that TeleAdjusting is triggered after the occurring of
routing found event. As Figure 6(c) shows, after the trigger of
TeleAdjusting, nodes can quickly generate its own path code
and associate different positions for children nodes, without
exceeding 20 beacons (each 512ms) time no matter in Tight-
grid or Sparse-linear deployment field, and most of the nodes
completed it less than 10 beacons time. The convergent time
of TeleAdjusting is so little that it brings negligible control
overhead to construct and maintain path information.

4) Reverse hop count: Other than the dynamically changed
routing metric, the reverse path information is marked by a
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Fig. 7. The packet delivery ratio from sink to individual nodes (Drip, RPL,
Tele, and Re-Tele) of indoor testbed experiments with two scenarios: (a)
without being interfered by WIFI; and (b) interfered by WIFI.

string of bits code, so there is no need to dynamically update
the path information to avoid loops. Path information will be
changed after parent’s department or sharp degradation of link
quality. Hence, a routing change event possibly does not trigger
the change of path information. In a network, the reverse path
from sink to an individual node may be different to the routing
path from the node to sink. Figure 6(d) plots the reverse hop
count (downward hop count in the figure) of each node versus
the routing hop count which is constructed by CTP in our
simulations. As the figure shows, the reverse hop count is very
close to routing hop count. The ratio of average reverse hop
count on the average ctp routing hop count is only 1.08.

From the simulation results, we conclude that the path code
is adaptive to large-scale networks and diverse network topolo-
gies. TeleAdjusting can quickly converge after the routing
found event, and induce limited control overhead to maintain
and update path information. Although the reverse path is not
always consistent with the data collection routing path, its hop
count is very close to the path hop count of CTP.

B. Testbed Based Evaluation

In this section, we evaluate TeleAdjusting through in-
door testbed experiments. We compare the network reliabil-
ity, downwards forwarding efficiency, and the robustness of
TeleAdjusting against network dynamics. To clearly show the
performance of downwards forwarding using TeleAdjusting,
we compare its performance with two protocols: RPL[31] and
Drip[32].

RPL [31] is a routing protocol that provides any-to-any
routing in low-power IPv6 networks, standardized by the IETF
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Fig. 8. Accumulated transmission hop count of received packets in (a) TeleAdjusting, (b) Drip, and (3) RPL, vs. the corresponding CTP hop count of the
destination.

TABLE III. AVERAGE NETWORK-WIDE TRANSMISSION COUNT FOR

DELIVERING A CONTROL PACKET.

Protocol TeleAdjusting Drip RPL

Transmission count (26th channel) 4.43 109.35 5.17

Transmission count (19th channel) 4.59 116.35 5.52

in March 2012. Its design is largely based on CTP [20], the
reference data collection protocol for sensor networks. The
RPL topology is a DODAG (Destination-Oriented Directed
Acyclic Graph) built in direction of the sink. Any-to-any traffic
is routed first upwards, i.e., toward the sink, until a common
ancestor of destination and source is found, and then down-
wards, following the nodes’ routing table. In our experiments,
we only use the downward part of RPL protocol. Drip [32] is
a reliable dissemination (flooding) protocol for wireless sensor
networks. Although its efficiency is argued and improved by
a lot of research work, it has a very high performance of
the reliability of dissemination and convergence rate. In our
experiments, we compare the reliability and end-to-end delay
of TeleAdjusting to that of Drip.

We focus on three key metrics: (1) the Packet Delivery
Ratio (PDR) of control packets in end-to-end communication;
(2) the end-to-end latency of control packet; and (3) the energy
efficiency. We use transmission count and radio duty cycle
(using a packet collection protocol with the same IPI) as a
metric for energy efficiency. Unless otherwise mentioned, all
our experiments run for a period of raging from 3 hours to 9
hours. The results are averaged over at least 5 runs.

1) Evaluation Setup: We evaluate the performance of pro-
tocols on indoor testbed with 40 TelosB nodes (22 nodes on the
testbed board and 18 nodes scattered around the testbed). In the
experiments, we set the transmission power of CC2420 as 2 to
ensure multi-hop communication (the maximum hop count is
6). The network topology is constructed by CTP [20]. Nodes’
wakeup interval is set to 512ms and inter-packet interval is set
to 10 minutes. Sink node randomly selects a destination, and
sends a control packet to it every one minute. Once receives
the control packet, the destination immediately sends an end-
to-end acknowledge packet to sink. Each node records the
count of received control packets, and periodically sends these
counters to the controller through serial port of each node. In
addition, we use a node sitting near the testbed to broadcast
(using the highest power level 31) its time to all testbed nodes
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Fig. 9. The average radio duty cycle of each protocol of indoor testbed
experiments with nodes interfered by WIFI or not.

to provide global time synchronization.

2) Reliability: We conduct experiments in the indoor
testbed with two scenarios: nodes interfered by WIFI (using
the 19th channel of ZigBee) and without being interfered by
WIFI (using the 26th channel). By integrating Drip, RPL, and
TeleAdjusting into the same protocol stack (CTP built upon
LPL), we compute the average control packet delivery ratio
(PDR) of each hop nodes and plot the PDRs in Figure 7. In
the scenario of without being interfered by WIFI shown in
Figure 7(a), Drip provides the most reliable remote control
(PDR is almost 100% in the figure denoted as Drip) because
the mechanism of Drip can guarantee the control packet will
reach the destination after enough time. RPL’s PDR (denoted
as RPL) is decreased from 100% to 98% when hop count
increases from 1 to 6. We infer that RPL is susceptible to
network dynamics. Once occurring topology change (e.g., link
degradation), the existing path information maintained by sink
or each relay may be not consistent with the practical topology,
but RPL uses deterministic forwarding strategy according to
the maintained routing table, resulting in packet drop. TeleAd-
justing without using the against destination unreachable
problem mechanism (denoted as Tele in Figure 7) discussed in
Section III-C4 can forward 98.9% control packets to individual
nodes when hop count is 6, and by using the mechanism
(denoted as Re-Tele), it forwards more than 99.8% control
packet to the fixed destination although hop count is 6.

By suffering the interference of WIFI, network dynamics
increases. In this case, the drawback of deterministic for-
warding strategy is much more obvious than the experiment
using the 26th channel. The PDR of RPL is sharply decreased
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Fig. 10. The average end-to-end delay of control packet from sink to
individual nodes verse hop count of indoor testbed experiments with two
scenarios: (a) without being interfered by WIFI; and (b) interfered by WIFI.

from 100% to 90.1% when hop count increases from 1 to 6.
Interfered by WIFI, the PDR of TeleAdjusting is slightly
decreased from 100% to 96.9% along with the change of
hop count, compared with the change of RPL. By adopting
the mechanism against unreachable destination mentioned in
Section III-C4, the PDR of TeleAdjusting is increased to
99.3% when hop count is 6, which is a little lower than that
of Drip (99.7%).

From the experimental results, we can conclude that
TeleAdjusting can provide a high control packet deliver ratio,
which is very close to that of Drip and far better than that of
RPL especially when network is dynamic.

3) Efficiency: In each of the experiments mentioned above,
we also record the average number of in-network packet
transmissions. Table III lists the average transmission count
of all control packets in the indoor network (40 nodes).
Although Drip is the most reliable protocol for remote control,
the network-wide flooding causes a large number of redun-
dant transmissions. Compared with RPL’s 5.17 (5.52 in the
19th channel) transmissions and TeleAdjusting’s 4.43 (4.59)
transmissions under the experiments with 26th channel, the
total transmission count of Drip is 109.35 (115.35). Adopting
Drip to achieve remote control on individual nodes is energy
waste, sometimes the network-wide flooding may negatively
affect data collection. TeleAdjusting’s opportunistic forwarding
along a encoded path can further reduce the transmission
count. Compared with RPL, the average transmission count
(including duplicate transmissions) is reduced by more than
14.3% (16.8%). We also plot the accumulated transmission hop
count (ATHX) of each received control packet (no matter the
destination is set to the receiver or not) verse the corresponding
CTP hop count from sink to the node in Figure 8. Overall, the
ATHXs of incoming control packets of TeleAdjusting plotted in
Figure 8(a) is likely less than the corresponding CTP hop count
due to the opportunistic forwarding adopted by TeleAdjusting.
As Figure 8(b) shows, Drip adopts network-wide flooding to
guarantee reliability. However, it can not suppress inefficient
duplicate transmissions. The ATHXs of control packets in
RPL is likely equal to the CTP hop count because each relay
forwards a control packet strictly according to its routing table.
The exception in the top right of Figure 8(c) is possible caused
by network loop.

At same time, the average duty cycle of 40 nodes is plotted
in Figure 9. Since the network flooding consumes a great
portion of energy in our experiments (with very limited data
packets), the average duty cycle of Drip is 5.01% when the

work channel is set to 26, and the duty cycle is 5.42% suffering
the interference of WIFI. The duty cycle of RPL is 3.83% and
4.22% when the work channel is set to 26 and 19, respectively,
which is far less than that of Drip. Compared with Drip and
RPL, TeleAdjusting consumes the least energy due to the least
control packet transmissions. Generally, we can conclude that
TeleAdjusting can forward control packets to individual nodes
not only reliably but also efficiently.

4) Latency: We also compute the end-to-end delay of each
control packet forwarding from sink to each individual node,
and plot it in Figure 10. As it shows, no matter the network is
interfered by WIFI or not, by adopting network-wide flooding,
Drip can rapidly forward a control packet to the appointed
destination. Compared with Drip, the average end-to-end delay
of RPL is proportional to wakeup interval and hop count.
Between Drip and RPL, the end-to-end delay of forwarding
a control packets by TeleAdjusting is far less than RPL’s due
to its opportunistic forwarding strategy, but a little larger than
Drip’s, because Drip exploits all possible nodes to forward a
control packet, which makes full advantage of link burstiness
and the earlier wake-up neighbors. Consider both efficiency
and latency, TeleAdjusting can provide both efficient delivery
of control packet and low end-to-end latency.

V. RELATED WORKS

Some forwarding protocols have been proposed for remote
control in past few years. Most of them could be classified
into two categories, structured and unstructured. In unstruc-
tured approaches [10][16], nodes flood the control packets to
their neighbors until the destination receives these packets.
[16] introduces a reliable bulk data dissemination protocol
base on advertisement, requirement and data. [10] proposes
a forwarder chosen scheme by considering the link quality to
improve the energy efficiency. Moreover, some works [24][25]
further improve the energy efficiency of unstructured flooding
by noticing link correlation and utilizing network coding.
Instead of whole network-wide flooding, TeleAdjusting adopts
structured based path for remote control.

On the other hand, the control packets are forwarded to
the destination through predefined path to improve the energy
efficiency in structured approaches. The path is constructed on
some topology structures like reverse routing tree [17][18][22]
or connected dominating set [19]. [17] explores opportunistic
routing to reduce the end-to-end delay in low duty-cycle wire-
less sensor network. [18] explores constructive interference
to fulfil fast network-wide flooding. [19] is based on the
off-line trained dissemination structure. All above methods
are vulnerable to lossy links and topology change. ORPL
[22] is an opportunistic routing protocol that supports any-to-
any, on-demand traffic by using bitmaps and bloom filters to
represent and propagate sub-tree in a space-efficient way, but
the inherent false positive of bloom filter can incur multiple
rounds of ineffectual transmissions, especially in the large-
scale networks.

Additionally, opportunistic forwarding was applied early
on geographic routing protocols [35][36] [37] to achieve any-
to-any communication. In that case, the forwarding decision is
based on physical node locations. This approach is often used
analytically or in simulation, but is sometimes complex to put
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in practice, because real nodes do not always have location
information and because there is no direct mapping between
distance and radio connectivity.

Different from existing approaches, TeleAdjusting exploits
the adaptive coding based address scheme and opportunistic
forwarding strategy to achieve both reliability and efficiency
of remote control in wireless sensor networks.

VI. CONCLUSIONS

To realize reliable and efficient remote control protocol
is urgent for large-scale wireless sensor networks. In this
paper, we propose TeleAdjusting, a ready-to-use forwarding
protocol to simultaneously improve both network efficiency
and reliability for remote control. Based on the adaptive coding
based address scheme, TeleAdjusting mainly constructs path
code where all its upstream relaying nodes are implicitly
encoded. Moreover, TeleAdjusting incorporates opportunistic
forwarding into the addressing process, so as to improve
the network performance in terms of reliability and energy
efficiency, avoiding the bad influence incurred by lossy links.
We implement TeleAdjusting in TinyOS-2.1.1. The simulation
tests in TOSSIM and evaluation results in an indoor testbed
show that TeleAdjusting can reliably and efficiently control
individual nodes.
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