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Abstract—Debugging wireless sensor networks (WSNs) is
notoriously difficult, due to the resource constraints on the sen-
sors and distributed running of the debugged programs. Many
bugs only manifest themselves during the actual operation of
a network, thus requiring runtime debugging of the sensor
program. A WSN debugger has to meet two important design
criteria, namely saving energy and preserving responsiveness
to normal system/network events during debugging. In this
paper, we propose Stethoscope, a sustainable runtime debugger
for WSNs. In Stethoscope, we devise a new technique called
Quick Switch, which enables dynamic binary instrumentation
in the RAM instead of the program flash. By incorporating
a light-weight hooking mechanism, Stethoscope ensures run-
time responsiveness of the debugged program. We implement
Stethoscope and demonstrate its advantages with respect to
efficacy, energy consumption, and memory cost.
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I. INTRODUCTION

Software debugging is crucial for ensuring the correctness
and efficacy of computer programs. As a type of network
that closely interacts with the physical environment, wireless
sensor networks (WSNs) update their programs at a rela-
tively high frequency, due to reasons like bug fixing and
functionality upgrade. Debugging thus becomes a crucial
task that needs to be conducted throughout the operational
lifespan of a WSN.

Due to the distributed nature of WSNs [1], software
debugging becomes a complex and challenging issue. The
common-off-the-shelf sensor motes are usually constrained
with respect to power source and memory space. A sus-
tainable WSN debugger actually means the extremely low
cost of debugging with respect to energy and storage.
The frequent debugging must not add up too much power
consumption or memory cost. Another challenge is that
debugging must be conducted during the runtime of a WSN,
i.e. when the WSN is deployed and operates in realistic con-
text. In such a networking system that inherently interacts
with the physical world, many program bugs only manifest
themselves during the runtime and cannot be uncovered
by offline tests. Then it incurs another extremely difficult
problem, namely how to make a debugged program correctly
responsive to both the debugging commands and normal
system/network events.

Some existing approaches for WSN debugging propose to
wire additional debugging device [2] to the debugged sen-

sor nodewhich are clearly labor-intensive and cannot scale
with the network size. Another class of approaches debug
in an offline manner [3]. Under pre-configured debugging
contexts, those approaches debug programs with symbolic
inputs. Such approaches are likely to miss many critical
bugs that only appear during the network runtime. Recent
works propose to insert debugging agents into the source
code [4]. By inputting debugging commands at the sink side,
a programmer may control the debugging process via the
agents, who are not easily adapted to online modifications
of debugging tasks. Moreover, the agents are likely to
intervene into the normal running of the debugged programs,
potentially leading to Heisenbug problems [5].

In this paper we propose Stethoscope, a sustainable
runtime debugger for WSNs. Stethoscope incorporates two
novel techniques, Quick Switch and Hooking. Quick Switch
makes dynamic binary instrumentation in the RAM space
and enables fast transitions between contexts of debugging
and normal program execution. The light-weight Hooking
mechanism reinforces the debugger with a customizable
interface to define program behavior under debugging com-
mands and normal network/system events. Our contributions
can be summarized as follows.

1. We propose Quick Switch, a novel technique to perform
dynamic binary instrumentation in the RAM space. This
makes the debugged program component(s) completely run
in the RAM, saving a lot of energy from flash writes/erases.

2. We devise the Hooking mechanism to include rede-
fined interrupt processing functions in the debugger. The
debugger is thus able to respond appropriately to normal
system/network events even when a debugging command is
being executed.

3. We implement Stethoscope on common-off-the-shelf
sensor motes and conduct extensive experiments to demon-
strate the efficacy and efficiency.

The rest of this paper is organized as follows. In Section
II we discuss the related work. Section III elaborates on the
design of Stethoscope. Section IV presents the evaluation
results. We conclude in Section V.

II. RELATED WORK

The existing WSN debugging approaches can be classified
into three categories.
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The first category mainly does offline debugging, namely
testing the functionalities of programs before the sensor node
is practically deployed. A typical example is KleeNet [6],
which is a debug environment running unmodified sensor
network programs on symbolic inputs. It can automatically
injects non-deterministic failures to simulate network run-
time conditions. Other related works include FSMGen [7], T-
check [8] and so on. Those approaches have limited efficacy
for ensuring program correctness in practice, because they
are unable to debug the networking behavior of sensor
programs. They also fail to consider various uncertain factors
in real deployments, e.g. environmental dynamics.

The second category is remote debugging [4], [9], [10],
[11], which is indeed desired by WSN applications. Dust-
Miner [12] and LiveNet [13] eavesdrop on messages in the
network for visibility into network operations and interac-
tivities without consuming much node resources. EnviroLog
[14] logs non-deterministic events to produce efficient in-
network execution replay. Sympathy [15] collects a small
amount of data to identify the cause of network failures.
Marionette [16] provides remote access to source-level sym-
bols and statements in the source code of programs on the
sensor nodes. Those approaches all require certain amount
of prior knowledge, especially concerning the potential bugs
and anomalies, by nature limiting their ability to uncover
unknown bugs.

The third category is based on the technique of binary
instrumentation. Typical examples include Clairvoyant [4]
and Declarative Tracepoints [17]. They both include an
agent-like module on the remote sensors to receive and
interpret debugging commands from the sink. Declarative
Tracepoints provides a programmable interface for describ-
ing debugging operations. The associated information can be
downloaded and executed on the nodes at runtime, enabling
convenient remote debugging. Clairvoyant [4] generates a
modified binary, where the debugging modules are inserted.
The binary are then burned to the program flash on sensors
before deployment.

There are some other related works, which do not belong
to debugging approaches but also have certain effect in
improving the program correctness. Using compiler [18] and
virtual techniques, a debugger can debug a wired sensor
node connected via the serial port and virtualize a network
for debugging at the same time. Safe TinyOS [19] is a
compiler toolchain that executes mandatory memory check
for variables and modules defined in user programs.It may
warn a developer about unsafe code and instruments the
code with safety annotations. The work in [20] proposes
a discrete event simulator to support functional debugging
for TinyOS-based programs, which allows a user to compile
the nesC source code and run the program under TOSSIM.
Those approaches can simulate the runtime of a sensor node
to a certain extent [21], but fail to characterize the runtime
interactivities among multiple sensor nodes in the network
[1]. As a result, programs passing tests are not guaranteed

to behave correctly.

III. DESIGN

We start with a brief overview of the design architecture
and work flow of Stethoscope. Then we respectively intro-
duce the two core techniques, namely Quick Switch and
Hooking. Some implementation details like how a debugging
command is processed are introduced in Section III-D. Other
important issues related to the design will be discussed in
III-E.

A. Overview

Stethoscope mainly consists of three components: binary
generator, command generator, and debug agent.

The binary generator is on the programming host, where
the binary program image is generated and deployed to
the sensors. The command generator is on the sink. It
generates debugging commands at runtime according to
the programmers debugging purposes. In general practice,
the host and the sink are usually a same computer that is
connected to the rest of a WSN. The program binary images
may be either burned to the sensors before deployment or
delivered to the sensors via wireless reprogramming[22].

The debug agent is on every sensor, which is used to
receive and interpret the debugging commands and perform
corresponding operations. The modules of Quick Switch and
Hooking are included in an agent.

For clarity in introducing the design and implementation
of Stethoscope, we use TinyOS 2.1.x and TI MSP430
16xx series MCU as the example software and hardware
platforms. Later in the subsection of discussion, we will
show that the design and implementation can be easily
generalized to many different sensor platforms.

At the host side, the binary generator modifies the original
binary program image, changing direct function calls into
indirect ones and adding a switch table to support debugging
context switching. Sensors programmed with the modified
binary image are deployed for normal operation. When the
programmer wants to debug the program, the command
generator generates a debugging command according to
the programmers input and sends it to the target nodes.
On receiving the command, the debug agent residing in
a target node accordingly performs debugging operations.
Multiple sensor nodes in the network can be debugged
simultaneously.

At the sensor side, the debug agent plays the role of
managing the debugging process. It has an interpreter, which
parses the received debugging commands and calls different
executors to perform corresponding operations for different
commands. For example, upon receiving a watch, log, or
other similar commands, Stethoscope accordingly modifies
the code in RAM (socalled dynamic binary instrumentation
in the RAM), which is much easier and more light-weight
than modifications to the program flash. For the watch
command, Stethoscope finds the address of the variable to
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Figure 1. Illustrates the workflow of Stethoscope.

instructions

instruction

instruction

instruction

……

Debugger Trampoline

Save Current user Context

Debugger
command
s execute

Recover user Context

Return to user Application

Freeze App

Delete Active 
Breakpointerinstruction

…….

instruction

debuger
………

1
2

3

4

5

67

8

2

9

(modify)

Figure 3. Conventional DBI for debugging.

watch and transmits the value back to the base station.
When a step or continue command is received, the control
needs to be transferred back to the user application. In that
case, a traditional debugger modifies the program flash by
replacing the jmp instruction with the original instructions.
In Stethoscope, the control is transferred back to the user
application by directly restoring the address in the switch
table. No writes/erases on program flash are required.

B. Quick Switch

In order to illuminate the advantages of Quick Switch
and the idea behind it, we first introduce the design of con-
ventional DBI (Dynamic Binary Instrumentation) in Figure
3. DBI is a method of analyzing the behavior of a binary
program at runtime through the injection of instrumentation
code. The injected instrumentation code executes as part
of the normal program. Using DBI, a programmer can
dynamically insert debugging operations into the binary
program image, however, at the cost of frequent write/erase
operations to the program flash. When a breakpoint com-
mand is received, control is transferred to the debugger. To
insert the breakpoint, a conventional DBI approach replaces
the instruction at the breakpoint line with a jmp instruction,
which points to a trampoline in the program image. When
the breakpoint is reached at runtime, the program jumps
to the trampoline, which then (i) saves application context,
(ii) executes instrumented code for debugging, and (iii)
jumps back to the application code after command finishes.

Such debugging techniques require writing program flash
multiple times for a single debugging command, which
incurs excessive time/power overhead.

Quick Switch changes the above workflow of DBI and
performs debugging operations without any program flash
modification. That means potential energy saving by orders
of magnitude. To achieve this goal, Quick Switch generates
in the RAM a mirror image of the debugged code block
and modifies the mirror image according to debugging
requirements. Now that the debugged code block is kept
in the RAM, we need to address an immediate question:
how to make the runtime of the debugged program switch
between flash and RAM, without affecting the continuous
program execution?

To solve this question, Quick Switch incorporates a two-
step approach.

First, let’s trace back to the source code compilation
phase. Quick Switch generates a switch table according to
the code. It analyzes the code, identifies all the function
calls to the functions that need to be debugged, changes
those direct function calls into indirect function calls. The
true function addresses are stored in the switch table while
the indirect function calls are made pointed to the addressed
in the switch table.

Second, when a debugging command is received during
the program runtime, Quick Switch changes the function
address in the switch table, making it point to the new
function address in the RAM. By doing this, any call to
this function during the debugging process will be quickly
directed to the new modified function. Accordingly, program
runtime is switched from the program flash to the RAM.
When the debugging process finishes, the address in the
switch table is restored, making a function call quickly
switched back to the original function in the program flash.

For better understanding of the Quick Switch technique,
Figure 2 plots the debugging process with Stethoscope.
When a breakpoint is set, instead of replacing the in-
structions in the program flash, Stethoscope (i) locates the
function which contains the breakpoint, (ii) saves the corre-
sponding function address in the switch table, (iii) makes a
copy of the function in the RAM and accordingly modifies
it and (iv) changes the corresponding function address in
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Figure 2. Quick Switch for debugging with Stethoscope.

the switch table, directing it to the new function location in
the RAM. When the breakpoint is reached during program
runtime, the modified function in the RAM will be executed.

From the above description, we can see Quick Switch
realizes continuous program execution that dynamically
switches between the program flash and the RAM. Because
program execution in the RAM is generally very fast, Quick
Switch incurs extremely low processing overhead. More
importantly, the debugged code, as well as the debugging
operations on it, is executed entirely in the RAM, saving a
large amount of energy from program flash writes/erases.

C. Hooking
A common challenge of debugging tools is to deal with

interrupts. Generally, when the program runs in the debug
mode, a single interrupt with higher priority may block
the current operation in the debugging process and lead to
unexpected consequence.

For example, when the program runs in the debug mode,
a hard interrupt preempts the current debugging process,
changes the program state, and results in unexpected ex-
ecution path as shown in Figure 4. It is worth noticing
that simply disabling interrupts cannot solve the problem,
because interrupts of debugging components will be disabled
as well. The debugger also needs to receive debugging com-
mands. Disabling radio interrupts makes the node unable to
behave correctly upon receiving debug commands. Actually,
disabling interrupts is likely to isolate the debugged sensor
node from the rest of the network, failing to meet the runtime
debugging conditions.

In order to solve the above problem, we propose the
Hooking mechanism. It analyzes the executable program
after the compilation process. Then it changes the interrupt
vectors, making them point to interrupt processing functions
in the debugger module of Stethoscope. Hooking actually
“hijacks” the interrupt handling process as a step before the
interrupt handler is actually triggered.

To avoid loss of any incoming interrupt during debug-
ging, we have analyzed all kinds of interrupts and invoked

User apps
…………
mov #1, r15;
ret;
clr    r15;
……………

1

Interrupt Service 
Routines

Hardware
interrupter

oc
cu

rs

22

Debug Mode

X

unexpected 
execution

Interrupt Vector
ffe0: 3a40
ffe2: 3b46
ffe4: 6251
………

3

…

Figure 4. A hardware event invokes an unexpected execution.

corresponding processing functions in Stethoscope. In this
way, Stethoscope is able to control the processing flow of
all kinds of interrupts and direct them to the right handlers.
Figure 5 shows the detailed workflow of Hooking. When a
hard interrupt event occurs, the modified interrupt vector
may lead the program to the handler which can handle
this interrupt event correctly. As shown in Figure 5, only
a redirection module and a Hooking module need to be
added, which count for 276 bytes of memory. The additional
processing delay of Hooking is nearly negligible, according
to our experimental results presented later.

D. Implementation Issues

Switch Table: Here we introduce the details of generating
a switch table. First we introduce the memory allocation of
a typical program. Normally, a program contains the .text
section (for program instructions), .data section (for initial
values of data in the program) and .vector section (containing
the addresses for interrupt handlers). New sections may be
added by special compilation options.

Stethoscope first analyzes the function table generated
from the code. Based on the function table, Stethoscope
knows the corresponding address of each function. Then,
Stethoscope processes the program (.text) section, finds all
the direct function calls and substitutes them with indirect

253253



Hooking module in debugger
4bbe  : mov   #0,   &0x113a ;    # set interrupt type 
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Figure 5. Hooking Mechanism for debugging with Stethoscope.

ones. Stethoscope places the original address of a function in
the switch table and makes the indirect function call point to
the corresponding address in the switch table. In this way, the
indirect function call can invoke the right function, while no
program flash write is required. We use the binary program
image generated after this step to program a sensor node.

The switch table is stored in a new section (.switch) which
can be defined in the linking process. The mspgcc linker
gives the user convenient interfaces to modify the definition
of sections in the program image. The address range of
(.switch) section can be easily calculated according to the
end address of .data section, and the size of the switch table.

Interrupt Hooking: Based on the hooking mechanism,
Stethoscope modifies the original interrupt vectors with a
set of meticulous values which record the interrupt type and
direct to the Stethoscope interrupter handler. The detail is as
follows: Stethoscope uses a tool (hook.exe) to modify the
original interrupt vectors with a redirection module. In the
redirection module, Stethoscope first records the interrupt
type, and then jumps to the hooking module which runs
some operations if demanded, and returns to the original
interrupt service routine.

For example in Figure 5 , in the first step, the original
interrupt vector value is modified from 0x403a to 0x4bbe
which directs to the redirection module. Then the redirection
module saves the interrupt type in 0x113a and jumps to the
hooking module at (0x5c56). In this way, every interrupt
event is handled by Stethoscope before the original interrupt
service routine starts, which guarantees the correctness of
debugging process as well as the responsiveness to normal
system/network events.

E. Command Generator

A debugging command usually specifies a location in the
source code and the corresponding debugging operations.
For example, to set a breakpoint at a line, the programmer
(the person who debugs the program) needs to decide the line
number in the source code. According to the line number,
the command interpreter at the host side determines the
function where the specified code line lies (we call it host

function of the code line). Then the name and address of
the host function is determined, which is stored in the
switch table. After that, the line number is translated into
an offset to the starting address of the host component, and
the setbreakpoint command is translated into a two-element
tuple <host function ID, offset>. When a debugging com-
mand is received, Stethoscope finds the function address
from the switch table according to host function ID. offset
is used to calculate the concrete location of the instructions
to break.

F. Discussion

1) Extra Advantage of RAM-based Debugging: The volt-
age requirement of the existing WSN debugging tools is
often too high, because they mostly require frequent writes
to the program flash, while the latter generally has to work
under a higher voltage. Consequently, during the major
portion of the batterys lifespan, the debugging tool simply
cannot work. Stethoscope enables debugging in the RAM,
typical lowering down the required voltage from 2.4v to
1.8v.

2) Generalizability: There are some sensors that do not
support program execution in the RAM, e.g. the early
MiCA series using Atmega128L microcontroller [23]. Those
sensors are not widely applied nowadays and not deemed as
the mainstream of future sensor platforms.

As for the supply voltage issue of RAM-based debugging,
we find through survey that many currently applied sensor
platforms have a lower voltage requirement to execute pro-
grams in RAM than to programming the flash memory. (e.g.
MSP430AFE2x series, MSP430G2x series) [24]. However,
the benefit of Stethoscope in saving energy/time consump-
tion of program flash writes/erases is still remarkable, as we
will demonstrate in the evaluation section.

IV. EVALUATION

In this section, we evaluate the performance of Stetho-
scope in terms of different metrics, such as memory cost,
computational overhead, energy consumption, and lifespan.
We also compare Stethoscope with the DBI based approach,
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Table I
MEMORY COST OF DIFFERENT COMPONENTS OF STETHOSCOPE.

(BLINKTORADIO [25])

Switch based In-RAM debugging and present the design of 
Stethoscope. The proposed debugger works just like a 
stethoscope for diagnostic purposes - It is able to track the 
activities inside a human body 

Telosb Mote BlinktoRadio Project_1 
# of the other components in 
the source code 

5 10 

Switch table (RAM) 10 Bytes  20 Bytes 
Hook mechanism 276 Bytes 

program flash 
276 Bytes 

program flash 
Stethoscope main module ~10 KB program flash 

 

 

Telosb Mote DBI-based Stethoscope 
Save registers ~0.0177 ms ~0.0177 ms 
Recover registers ~0.0156 ms ~0.0156 ms 
Switch interrupt vector ~3.48 ms 

 
~3.05*10-4 ms 

(use Hook) 
Switch to debug mode ~35.76 ms 

(use DBI) 
~0.018 ms 
(use QS) 

Switch to normal mode ~19.34 ms 
(use DBI) 

~0.016 ms 
(use QS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commands Erase/Write 
Program Flash 

DBI-based 

Increased RAM operations 
by Quick Switch 

Stethoscope 

connect id 0 0 
disconnect id 0 0 
continue (IP, IP) <=ND 
step (1MI, 1MI) 0 
stepi (1, 1) 0 
next (UI, UI) 1 
breakpoint 
[file:]line|func 

(IP, IP) <=ND 

condition 
[n] [expr] 

 (IP, IP) <=ND 

watch expr (2MI, 2MI) 0 
delete [n] (IP, IP) <=ND 
print /format [expr] 0 0 
set var=expr 1 0 
call func (IP, IP) 0 
frame [n] 0 0 
list 0 0 
log (IP, IP) <=ND 
radio (IP, IP) <=ND 
IP: The number of active insertion points; MI: The number of machine 
instructions executed; UI: The number of statically unpredictable control-
transfer instructions; ND: The number of the components in source code. 
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Table II
COMPARISON IN SWITCH OVERHEAD BETWEEN STETHOSCOPE AND A

DBI-BASED APPROACH.

Switch based In-RAM debugging and present the design of 
Stethoscope. The proposed debugger works just like a 
stethoscope for diagnostic purposes - It is able to track the 
activities inside a human body 

Telosb Mote BlinktoRadio Project 1 
# of the other components in 
the source code 

5 10 

Switch table (RAM) 10 Bytes  20 Bytes 
Hook mechanism 276 Bytes 

program flash 
276 Bytes 

program flash 
Stethoscope main module ~10 KB program flash 

 

 

Telosb Mote DBI-based Stethoscope 
Save registers ~0.0177 ms ~0.0177 ms 
Recover registers ~0.0156 ms ~0.0156 ms 
Switch interrupt vector ~3.48 ms 

 
~3.05*10-4 ms 

(use Hook) 
Switch to debug mode ~35.76 ms 

(use DBI) 
~0.018 ms 
(use QS) 

Switch to normal mode ~19.34 ms 
(use DBI) 

~0.016 ms 
(use QS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Command Erase/Write 
Program Flash 

(Times) 

Increased RAM operations 
by Quick Switch 

(Times) 

connect id 0 0 
disconnect id 0 0 
continue (IP, IP) <=ND 
step (1MI, 1MI) 0 
stepi (1, 1) 0 
next (UI, UI) 1 
breakpoint 
[file:]line|func 

(IP, IP) <=ND 

condition 
[n] [expr] 

 (IP, IP) <=ND 

watch expr (2MI, 2MI) 0 
delete [n] (IP, IP) <=ND 
print /format [expr] 0 0 
set var=expr 1 0 
call func (IP, IP) 0 
frame [n] 0 0 
list 0 0 
log (IP, IP) <=ND 
radio (IP, IP) <=ND 
IP: The number of active insertion points; MI: The number of machine 
instructions executed; UI: The number of statically unpredictable control-
transfer instructions; ND: The number of  functions or components in source 
code. 
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the technique used in state-of-the-arts debugging tools. The
sensor node we use in the experiments is TelosB mote with
MSP430F1611 MCU, 10KB RAM and 48KB program flash.

A. Memory Cost

We first measure Stethoscope’s memory cost in both the
program flash and the RAM. In our implementation of
Stethoscope, the debugger’s main module on the sensor node
only occupies about 10KB program flashes, as shown in
Table I. In comparison, a GDB-based debugger typically
needs at least 33KB of program flash memory. As for the
RAM, we compare the memory cost when debugging differ-
ent programs with Stethoscope. Specifically, the switch table
of Stethoscope incurs very low RAM cost (each function
requires only 2 Bytes of RAM). We can see from Table I that
debugging programs of BlinkToRadio [25] and Project 1
(the program used in our previous measurement study [26])
only cost 10 Bytes and 20 Bytes of RAM space, respectively.

We also measure the memory cost of the hooking mod-
ule. Still using BlinkToRadio and Project 1 programs as
examples, we can see that the hooking module only costs
276 Bytes of RAM in both scenarios. This is because the
MSP430F1611 only has 16 registers, resulting in a constant
memory cost in RAM.

B. Computational Overhead

The computational overhead of Stethoscope mainly con-
sists of two parts: One of them is the overhead incurred
by switching between different modes and contexts for
debugging purposes. The other is the overhead of executing
debugging commands.

We first evaluate the switching overhead, including the
overhead to save registers, recover registers, switch inter-
rupter vector, switch to the debug mode, and to switch to

Table III
COMPARISONS IN THE TIMES OF ERASE/WRITE PROGRAM FLASH

BETWEEN DBI AND STETHOSCOPE, AND THE TIMES OF RAM
OPERATIONS INCREASED BY QUICK SWITCH.

Switch based In-RAM debugging and present the design of 
Stethoscope. The proposed debugger works just like a 
stethoscope for diagnostic purposes - It is able to track the 
activities inside a human body 

Telosb Mote BlinktoRadio Project 1 
# of the other components in 
the source code 

5 10 

Switch table (RAM) 10 Bytes  20 Bytes 
Hook mechanism 276 Bytes 

program flash 
276 Bytes 

program flash 
Stethoscope main module ~10 KB program flash 

 

 

Telosb Mote DBI-based Stethoscope 
Save registers ~0.0177 ms ~0.0177 ms 
Recover registers ~0.0156 ms ~0.0156 ms 
Switch interrupt vector ~3.48 ms 

 
~3.05*10-4 ms 

(use Hook) 
Switch to debug mode ~35.76 ms 

(use DBI) 
~0.018 ms 
(use QS) 

Switch to normal mode ~19.34 ms 
(use DBI) 

~0.016 ms 
(use QS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commands Erase/Write 
Program Flash 

DBI-based 

Increased RAM operations 
by Quick Switch 

Stethoscope 

connect id 0 0 
disconnect id 0 0 
continue (IP, IP) <=ND 
step (1MI, 1MI) 0 
stepi (1, 1) 0 
next (UI, UI) 1 
breakpoint 
[file:]line|func 

(IP, IP) <=ND 

condition 
[n] [expr] 

 (IP, IP) <=ND 

watch expr (2MI, 2MI) 0 
delete [n] (IP, IP) <=ND 
print /format [expr] 0 0 
set var=expr 1 0 
call func (IP, IP) 0 
frame [n] 0 0 
list 0 0 
log (IP, IP) <=ND 
radio (IP, IP) <=ND 
IP: The number of active insertion points; MI: The number of machine 
instructions executed; UI: The number of statically unpredictable control-
transfer instructions; ND: The number of the components in source code. 
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the normal mode. The comparison results between the DBI-
based approach and Stethoscope are shown in Table II. The
overhead is quantified in terms of the processing latency.

We may notice that the two approaches have the same
processing overhead in register-related operations, because
those two factors are determined by the capacity of MCU.
Another important result is that Stethoscope significantly
saves the processing overhead in switching. Specifically,
the total switching overhead of the DBI-based approach
is around 58ms. In comparison, the switching overhead of
Stethoscope is less than 0.035ms. The great advantage with
respect to switching overhead is mainly because Stethoscope
does not need to write program flash for switching, but the
DBI-based approach needs. Processing on RAM is naturally
much faster and more efficient than processing on the
program flash.

We continue to compare the overhead to execute debug-
ging commands, measured in the number of program flash
writes and the number of RAM operations. The comparison
results in Table III show Stethoscope does not need to
modify the program flash at all.

Nevertheless, quick switch in Stethoscope does induce
some operations on the RAM. For comprehensive under-
standing of the computational overhead, we list the number
of RAM operations incurred by quick switch in Table III.
We can see quick switch incurs very few RAM operations.
In total, the number of RAM operations incurred by any
debugging command under quick switch is not more than
the total number of components in the source code, because
such an amount of RAM operations are sufficient to shift
all components into RAM. Moreover, the RAM operations
are by nature much more efficient and energy-saving than
operations on the program flash.
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Figure 8. Comparison of debugger life time in a
real system.
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Figure 9. Execution cost of command radio in
different frequency.
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Stethoscope

Figure 10. Execution cost of injecting a breakpoint
in a debugged component of different sizes.
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Figure 6. Instantaneous voltage of debugger operation with Stethoscope
and the DBI-based debugger captured by an oscilloscope.
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Figure 7. Accumulative energy consumption of essential debugger
operation with Stethoscope and the DBI-based approach.

C. Energy Consumption

Now we evaluate the energy consumption of Stethoscope
for executing a debugging task, which mainly consists of
four steps: context switch, debug mode switch, execution
of the debugged component (about 1000 instructions in
the test case), and user mode switch. In order to make a
fair comparison between Stethoscope and the DBI-based
approach, we use a typical testing series circuit to compare
the instantaneous voltage along the same task execution
process.

Figure 6 shows that it takes 2.99 ms for Stethoscope to
finish the above test case, while it takes 54.7 ms for the
DBI-based approach to finish the same task. Stethoscope is

18.3 times faster than the DBI-based approach. Compared
with the DBI-based approach (0.2483mAh), Stethoscope
reduces the energy consumption by 96.69%, consuming
only 0.0082mAh, as shown in Figure 7. In other words,
Stethoscope not only executes the debugging tasks very fast,
but also significantly saves energy consumption.

D. Lifetime of Debugger

According to our previous discussion, on many sensor
platforms Stethoscope can extend the debugger lifetime,
because it has relatively low voltage requirement. Figure
8 presents an intuitive evaluation result of the debugger
lifetime on several randomly selected nodes in Project 1.
The sensor node is TelosB mote with two AA batteries.
As we can see from the figure, Stethoscope extends the
debugger lifetime for at least three times, compared with
the debugger lifetime using DBI-based technique.

E. Impacting Factors

In this section, we evaluate the impact of two factors when
applying Stethoscope to real WSNs. The two factors are the
execution frequency of debugging commands and the size
of the debugged component.

Figure 9 shows the relation between the time consumption
and the execution frequency of debugging commands. Using
the radio command as an example, we can see that even
performing radio operations 4 times per second, the total
time to finish executing the 4 operations (22.66 ms) is
still acceptable. The average time consumption of one time
execution of a command is around 5ms. That meets the
requirement of a wide variety of scenarios and can be applied
to computation intensive applications.

F. On the Size of Debugged Component

Figure 10 shows the relationship between the compo-
nent size and time consumption for injecting a breakpoint.
Intuitively, the time consumption will increase when the
size of the debugged component increases, because a larger
component needs more copy operations on the RAM. But it
is worth noticing that operations on the RAM are extremely
fast and the time consumption to inject a breakpoint is only
a few milliseconds. The result in Figure 10 indicates that the
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size of the debugged component is clearly not a dominating
factor on the execution efficiency of Stethoscope.

V. CONCLUSION

Low-cost networked computing devices get ubiquitous
in the world nowadays. While those computers play in-
creasingly important roles, how to ensure them behave
correctly remains an open problem. Our work in this paper
addresses an important issue, i.e. the runtime applicability
and sustainability of WSN debugging. Our proposal, named
Stethoscope, incorporates the techniques like Quick Switch
and Hooking. The implemented debugger is highly energy-
efficient and effective in resolving all kinds of software
system requests. In the future, we plan to further investigate
the diversity of embedded operating systems and embedded
hardware. We will implement Stethoscope on those widely
adopted software/hardware platforms, and apply debugging
techniques in real system management.

VI. ACKNOWLEDGMENT

This study is supported in part by NSFC under grants
No. 61170213, No. 61572277, No. 61202359 and National
Science Fund for Excellent Young Scientist No. 61422207.

REFERENCES

[1] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru,
G. Zhou, Q. Cao, P. Vicaire, J. A. Stankovic et al., “Vigilnet:
An integrated sensor network system for energy-efficient
surveillance,” ACM Transactions on Sensor Networks, vol. 2,
no. 1, pp. 1–38, 2006.

[2] “MSP-FET430UIF,” http://www.ti.com/tool/msp-fet430uif.

[3] “The GNU Project Debugger(GDB),” http://sources.redhat.
com/gdb/.

[4] J. Yang, M. Soffa, L. Selavo, and K. Whitehouse, “Clair-
voyant: a comprehensive source-level debugger for wireless
sensor networks,” in Proceedings of the 5th ACM SenSys,
2007.

[5] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu, “Finding and reproducing heisenbugs in
concurrent programs.” in Proceedings of the 8th USENIX
OSDI, 2008.

[6] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle, “Kleenet: discovering in-
sidious interaction bugs in wireless sensor networks before
deployment,” in Proceedings of the 9th IEEE/ACM IPSN,
2010.

[7] N. Kothari, T. Millstein, and R. Govindan, “Deriving state
machines from tinyos programs using symbolic execution,”
in Proceedings of the 7th IEEE/ACM IPSN, 2008.

[8] P. Li and J. Regehr, “T-check: bug finding for sensor net-
works,” in Proceedings of the 9th IEEE/ACM IPSN, 2010.

[9] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. White-
house, “Macrodebugging: Global views of distributed pro-
gram execution,” in Proceedings of the 7th ACM SenSys,
2009.

[10] V. Krunic, E. Trumpler, and R. Han, “Nodemd: Diagnosing
node-level faults in remote wireless sensor systems,” in Pro-
ceedings of the 5th ACM MobiSys, 2007.

[11] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic
tracing for wireless sensor networks,” in Proceedings of the
8th ACM SenSys, 2010.

[12] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han,
“Dustminer: troubleshooting interactive complexity bugs in
sensor networks,” in Proceedings of the 6th ACM SenSys,
2008.

[13] B. Chen, G. Peterson, G. Mainland, and M. Welsh, “Livenet:
Using passive monitoring to reconstruct sensor network dy-
namics,” in Proceedings of the 4th IEEE DCOSS, 2008.

[14] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, and J. S-
tankovic, “Achieving repeatability of asynchronous events in
wireless sensor networks with envirolog,” in Proceedings of
the 25th IEEE INFOCOM, 2006.

[15] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin, “Sympathy for the sensor network debugger,”
in Proceedings of the 3rd ACM SenSys, 2005.

[16] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong,
J. Hui, P. Dutta, and D. Culler, “Marionette: using rpc for
interactive development and debugging of wireless embedded
networks,” in Proceedings of the 5th IEEE/ACM IPSN, 2006.

[17] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and
L. Luo, “Declarative tracepoints: a programmable and ap-
plication independent debugging system for wireless sensor
networks,” in Proceedings of the 6th ACM SenSys, 2008.

[18] “mspgcc,” http://sourceforge.net/apps/mediawiki/mspgcc/.

[19] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr,
“Efficient memory safety for tinyos,” in Proceedings of the
5th ACM SenSys, 2007.

[20] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate
and scalable simulation of entire tinyos applications,” in
Proceedings of the 1st ACM SenSys, 2003.

[21] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr,
“Surviving sensor network software faults,” in Proceedings of
the 22nd ACM SIGOPS, 2009.

[22] A. Chlipala, J. Hui, and G. Tolle, “Deluge: data dissemination
for network reprogramming at scale,” University of Califor-
nia, Berkeley, Tech. Rep, 2004.

[23] “Atmega128L microcontroller,” http://www.atmel.com/
images/doc2467.pdf.

[24] “Texas Instruments mixed signal microcontroller,” http://
www.ti.com.

[25] “TinyOS,” http://www.tinyos.net/.

[26] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, and X. Li, “Does
wireless sensor network scale? a measurement study on
greenorbs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 10, pp. 1983–1993, 2013.

257257


