
Towards Constant-Time Cardinality Estimation
for Large-Scale RFID Systems

Binbin Li∗†, Yuan He‡, Wenyuan Liu†§

∗School of Economics and Management, YanShan University, China
†School of Information Science and Engineering, YanShan University, China

‡School of Software, TNLIST, Tsinghua University, China
§The Key Laboratory for Computer Virtual Technology and System Integration of HeBei Province, China

ysulbb@gmail.com, he@greenorbs.com, wyliu@ysu.edu.cn

Abstract—Cardinality estimation is the process to survey the
quantity of tags in a RFID system. Generally, the cardinality
is estimated by exchanging information between reader(s) and
tags. To ensure the time efficiency and accuracy of estimation,
numerous probability-based approaches have been proposed,
most of which follow a similar way of minimizing the number
of required time slots from tags to reader. The overall execution
time of the estimator, however, is not necessarily minimized. The
estimation accuracy of those approaches also largely depends on
the repeated rounds, leading to a dilemma of choosing efficiency
or accuracy. In this paper, we propose BFCE, a Bloom Filter
based Cardinality Estimator, which only needs a constant number
of time slots to meet desired estimation accuracy, regardless of
the actual tag cardinality. The overall communication overhead is
also significantly cut down, as the reader only needs to broadcast
a constant number of messages for parameter setting. Results
from extensive simulations under various tagIDs distributions
shows that BFCE is accurate and highly efficient. In terms of
the overall execution time, BFCE is 30 times faster than ZOE
and 2 times faster than SRC in average, the two state-of-the-arts
estimation approaches.

Keywords—RFID; Cardinality Estimation; Bloom Filter;

I. INTRODUCTION

Radio Frequency IDentification (RFID) systems have been
becoming important platforms for a variety of application-
s, such as access control [1][2], object identification [3],
inventory management [4], transportation and logistics [5],
localization [6][7][8], and tracking [9][10][11][12]. Researches
on RFID have received wide interests from both industrial and
academical communities. Typically, a RFID system consists of
a large volume of tags, one or multiple readers and a back-end
server that stores the information of tags.

As mentioned in the literature, the problem of cardinality
estimation is of primary importance in many RFID systems and
applications. Because it is infeasible to get the exact count of
all tags in a very short time, most existing works in this area
follow the way of probabilistic estimation, such as PET [13],
ZOE [14], SRC [15] and A3 [16], etc.. Taking time efficiency
as the first-place performance metrics, the state-of-the-art
approaches can make the estimation in O(log log n+ 1

ε2) time
slots, where n denotes the actual number of tags and ε denotes
the confidence interval of estimation requirement.

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

6
n=200000,ε=0.05 and δ=0.05

Time from reader to tags (seconds)

T
im

e
fr

o
m

 t
ag

s
to

 r
ea

d
er

 (
se

co
n

d
s)

PET [11]
ZOE [12]
SRC [13]
A3 [14]
Expected

Fig. 1. The design space of RFID cardinality estimation.

An important fact, however, is often neglected. The number
of time slots for estimation does not necessarily determine
the total time of cardinality estimation. The temporal over-
head of every communication between reader and tags, is
usually a more impacting factor of the estimation efficiency.
Taking ZOE [14] as an example, each frame in ZOE only
contains one time slot, while ZOE totally requires at least

m = [cσ(x)max

e−λ(1−eελ)
]2 slots to get the final estimation result,

where (ε, δ) are the estimation accuracy requirement, c is a
constant determined by the error probability of the accuracy
requirement, σ(x)max = 0.5 and λ is a parameter associated
with the actual cardinality. Note that in ZOE, the reader needs
to broadcast a 32-bits random seed in each slot, so that each tag
can determine whether or not to participate in the current slot.
The temporal overhead of communication from reader to tags
(m×32), rather than the overhead of communication from tags
to reader (m×1), is accounted as the major component in the
overall execution time of ZOE. Other approaches like SRC[15]
only require a limited number of estimation rounds, but their
estimation accuracy is largely determined by the number of
time slots. That leads to a dilemma of choose efficiency or
accuracy, while in practice people often desire to ensure both
these two performance metrics. Figure 1 presents the design
space of RFID cardinality estimation, comparing our expected
result with the existing works.

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

810

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

809

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

809

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

809

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

809

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.90

809

Based on the above discussion, one may immediately raise
a crucial but open problem: For an arbitrary set of tags, is
there any way to estimate its cardinality in constant time and
simultaneously achieve a desired estimation accuracy? In this
paper, we propose Bloom Filter based Cardinality Estimator
(BFCE) to efficiently estimate the tag cardinality of large-
scale RFID systems. BFCE consists of two phases, i.e. a rough
estimation phase to get the lower bound of cardinality and an
accurate estimation phase to get the exact result. In each phase,
BFCE lets all the tags construct a w-bits Bloom Filter vector
B in a distributed manner, using k independent hash functions
and a persistence probability p. Intuitively, the number of 0s
or 1s in B must have relationship with the tag cardinality. By
modeling the relationship between the tag cardinality n and the
ratio of 0s or 1s in B, BFCE can estimate the tag cardinality
with very low communication overhead. Specifically, the first
phase of BFCE uses a specific p to get a rough lower bound
estimation of n (denoted by n̂low), while in the second phase,
BFCE employs the optimal p with n̂low, so that the final
estimation result can meet the accuracy requirement.

Our contributions can be summarized as follows.

• For the first time in the community, we propose
a constant-time estimator BFCE for cardinality esti-
mation in large-scale RFID systems. With constant
number of 1024 + 8192 bit-slots in just one round,
BFCE can get the final estimation, while the temporal
overhead is constant.

• Compared with the existing approaches, BFCE signif-
icantly reduces the overall temporal overhead between
reader and tags, and requires no complicated compu-
tation or extra storage on RFID tags.

• We carry out extensive simulations to compare BFCE
with the state-of-the-arts approaches under different
settings and tagIDs distributions. The results demon-
strate the advantages of BFCE in terms of time effi-
ciency and estimation accuracy.

The rest of the paper is organized as follows. We discuss
related works in Section II. In Section III, we present the
system model and introduce basic concepts of tag cardinality
estimation. In Section IV we elaborate on the design and
analysis of BFCE. Section V presents extensive simulations
to evaluate the performance of BFCE, and comparison results
with recent related works. We conclude this work in Section
VI.

II. RELATED WORK

As the number of tags may be up to hundreds of thousands
and there are always collisions at the reader side, it is infeasible
to identify all the tags one by one for the purpose of cardinality
estimation. A series of probabilistic approaches have been
proposed to achieve the approximate tag cardinality efficiently.

M. Kodialam et al. propose the cardinality estimation
scheme UPE in [17], which needs to distinguish the slots to
empty, single or collision slots, and utilizes the number of
empty or collision slots in the frame to get the estimation. In
[18], M. Kodialam et al. propose another enhanced Framed-
Slotted-Aloha based estimator EZB, which takes the average
number of zeros in the frame as clues for estimation. In [19],

C. Qian et al. propose LOF, which employs the geometric
distribution hash functions to itemize all tags in order, so as
to make estimation quickly. H. Han et al. propose another tag
estimation scheme called First Non Empty Based estimator
(FNEB) [20], which is based on the size of the first run of 0s
in the frame. With the goal of minimizing power consumption
of active tags, T. Li et al. [21] propose an estimation scheme
called Maximum Likelihood Estimator (MLE) for active tags.
In [22], V. Shah-Mansouri et al. propose a multi-reader tag
estimation scheme, but it is based on an unrealistic assumption
that any tag covered by multiple readers only replies to one
among them. Shahzad et al. [23] propose Average Run based
Tag estimation (ART), which uses the average run size of 1s
to estimate the tag cardinality.

On the basis of a Probabilistic Estimating Tree (PET),
Zheng et al. [13] further improve the estimation efficiency
to O(log log n) time slots. In [14], Zheng et al. propose
another efficient estimate scheme Zero-One-Estimator (ZOE),
which only needs O(log log n) time slots. B. Chen et al.
[15] establish strong lower bounds for both the single-set and
multiple-set problems. They also design new protocols SRC
that is more time-efficient than existing schemes. In [16], W.
Gong et al. propose a new mechanism, Arbitrarily Accurate
Approximation (A3), to reliably estimate the number of tags
with arbitrary accuracy requirement.

Limitations of the existing approaches mainly lie in the
following aspects. First and foremost, it does not guarantee
to minimize the overall time for estimation, when one simply
takes the number of required slots as indicator of time efficien-
cy. Second, some existing works require prior knowledge of
the rough magnitude of cardinality, so that they can reasonably
tune the parameter settings for accurate estimation. Last but not
least, the accuracy of existing estimators largely depends on
the number of repeated rounds, and can not get the accurate
estimation within a controllable length of time. The above
problems either hurt the efficiency and accuracy of cardinality
estimation, or limit the usability of those schemes in practical
scenarios. Such facts motivate our work in this paper.

III. PRELIMINARIES

A. System Model

Consider a large-scale RFID systems which consists of a
large volume of tags, one or multiple readers and a back-
end server. And we only consider the cases of large-scale
tags, e.g. there are more than 1000 tags in the RFID systems,
as it is easy and fast to get the exact number of tags by
using traditional identification protocols when the cardinality
is small. Each tag is assigned an unique identification (tagID),
with capacity of simple computations and communications
with reader through RF signal. We assume that all the tags are
within the communication range of readers, and all the readers
are connected to the back-end server via Ethernet. The back-
end server can coordinate and synchronize all the readers, so
if multiple readers are deployed, these readers can be logically
considered as one reader [14].

The communication model between the reader and tags is
Reader-Talks-First and time-slotted, which follows the EPC-
global C1G2 standard [24]. To enhance the efficiency of RFID
systems, a number of parallel protocols[25][26] have been

811810810810810810

Reader

T1

T2 T3

(a)

T1

T2

T3

0 1 0 0 0 1 1 0

0 1 0 0 0 0 1

0 0 1 0 0 1 0 1

Idle Collision Single

1 0 0 1 1 0 0 1

tags respond in the selected slots with probability p reader

(b) (c)

1

w=8

k=3

p=1/2

Fig. 2. A simple example of BFCE. (a) The reader first broadcasts w, k, p and random seeds R. (b) Each tag responds in the k selected bit-slots with
probability p. (c) The reader senses the physical channel in all the w bit-slots, so as to get a vector B and does the estimation with B.

proposed in recent years. In those parallel protocols, tags are
allowed to transmit short information (such as 1bit) in the same
slot, the reader only needs to sense the physical channel and
distinguish the slots to busy or idle. If there is a busy channel,
the reader gets one bit ’1’. Otherwise, it gets one bit ’0’. For
presentation clarity, we call such a slot as bit-slot.

We adopt the bit-slot mode in BFCE. As described in
Figure 2, the reader initializes the communication by sending
out a request message (e.g., estimate), together with a series of
parameters, such as the length of Bloom Filter w, the number
of hash functions k, k random seeds R and a persistence
probability p. Once receiving the estimation request, each tag
uses k independent hash functions to randomly pick k bit-slots,
and responds with probability p in each selected bit-slot. The
reader then only needs to sense the physical channel and does
the estimation with B, which represents the status of all the w
bit-slots. The clocks of tags are synchronized by the reader’s
signal. The communication channel is assumed to be perfect
(without channel error) in our work.

B. Problem Description

We formally describe the tag cardinality estimation prob-
lem as follows: Given an accuracy requirement of (ε,δ)-
approximation, we expect an estimation result n̂, which sat-
isfies Pr{|n̂ − n| ≤ εn} ≥ 1 − δ. For example, if there are
actually 500000 tags in the whole system, with (ε = 5%, δ
= 5%) approximation, we expect to get an estimation result
within the interval [475000,525000] with a probability of 95%
or above.

For tag cardinality estimation, there are several essential
principles. First, the estimation accuracy must be guaranteed.
Second, since the communication range of a reader can be
up to 30 feet. The number of tags in the range may easily
exceed tens of thousands. Hence the estimation scheme should
be time-efficient and scalable as much as possible. Moreover,
the temporal overhead between reader and tags, which is often
ignored in prior literature, should be minimized.

IV. BLOOM FILTER BASED CARDINALITY ESTIMATION

In this section, we introduce the detail of BFCE. Table I
summarizes the symbols used across this paper.

TABLE I.
SYMBOLS USED IN THE PAPER

Symbols Descriptions
n Actual number of tags

n̂ Final estimated number of tags

n̂r A rough estimation of n
n̂low A rough lower bound of n
ε Confidence interval

δ Error probability

H(·) Uniform hash functions

R Random seeds set and ‖R‖ = k
B Bloom Filter vector at reader side

w Length of vector B
k Number of hash functions

p Persistence probability

ps Specific persistence probability

po Optimal persistence probability

X A bernoulli random variable

Xi The observation of ith slot in B
ρ The ratio of 1s in B
c A constant coefficient used for rough es-

timation

d A constant determined by δ

A. Overview

To get an accurate estimation of tag cardinality in the
reader’s communication range, the reader first tries to construct
a bitmap which can well reflect the actual cardinality, and then
does the estimation with this bitmap. Specifically, the reader
first constructs a w-bit Bloom Filter vector B. All the bits
in B are initialized to be 0s. Then the reader sends out the
estimation command, together with several parameters, such
as the length of bloom filter vector w, k random seeds R
(k = |R|), and a persistence probability p. The reader then
waits for the response from tags in the following w bit-slots.

Once receiving the estimation command, each tag ran-
domly selects k different bit-slots with k independent hash
functions, whose value ranges in [1,w] and follows an uniform
distribution. Then the tag transmits a short signal (e.g. 1 bit)
with a probability p in each selected bit-slot.

For the arbitrary ith slot, the reader only needs to sense the
physical channel. If the channel is idle, it means there is no
tag participating in this bit-slot. Correspondingly B(i) is set
to 1. And if the channel is busy, which indicates that at least
one tag transmits in this bit-slot, so B(i) is set to 0. After w
bit-slots, the reader can get a w-bits vector B, which is filled
with 0s and 1s.

812811811811811811

2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of tags (×104)

N
u

m
b

er
 o

f
0s

 a
n

d
 1

s
w=8192, k=3

0s when p=0.1
1s when p=0.1
0s when p=0.2
1s when p=0.2

Fig. 3. The feasibility of BFCE.

Intuitively, the number of 0s or 1s in B is associated with
all the parameters as aforementioned. Without distinguishing
the difference of hash functions and the random seeds, the
number of 0s or 1s is only associated with the number of tags
n, the length of bloom filter vector w, the number of hash
functions k, and the response probability p. Figure 3 shows
the interrelation between n and the numbers of 0s and 1s in B,
when we fix w=8192, k=3 and set p=0.1, p=0.2 respectively.
From the figure, we can see that there is linear relationship
between the number of tags and the number of 0s or 1s in
the vector B. Intuitively it is feasible to accurately estimate
the number of tags n̂ according to the w-bits bitmap B, k and
p. The concrete design will be introduced in the rest of this
section.

B. Generic Algorithm

Assuming that all hash functions follow uniform distribu-
tion, the probability of the arbitrary ith bit in B being 0 or 1
can be calculated using Theorem 1.

Theorem 1: Let n be the actual tag cardinality, w be the
length of Bloom Filter vector, k be the number of hash func-
tions and p be the persistence probability (i.e., the probability
for a tag participates in each selected bit-slot), then,

Pr{B(i) = 1|i ∈ [1, w]} = e−λ, (1)

Pr{B(i) = 0|i ∈ [1, w]} = 1− e−λ, (2)

where λ = kpn
w .

Proof: Because all hash functions follow uniform distri-
bution in the range [1, w], the probability that a hash function
of arbitrary tag being the ith bit-slot in B is

Pr{H(·) = i|i ∈ [1, w]} = 1

w
.

With the persistence probability p, the probability for the
tag responds in the ith bit-slot is p

w , and the probability for
the tag doesn’t respond in ith slot is 1− p

w .

In B, the probability of the arbitrary bit i (where i ∈ [1, w])
being 1 is

Pr{B(i) = 1} = (1− p

w
)kn,

which means all the kn hash functions of n tags have not
selected the ith bit-slot.

Using the approximation of

lim
x→∞ (1− 1

x
)x = e−1,

the above equation can be simplified as

Pr{B(i) = 1} = (1− p

w
)kn ≈ e−

kpn
w = e−λ,

where λ = kpn
w .

Correspondingly, the probability of B(i) being 0, which
means more than one tag respond in the ith bit-slot, can be
calculated by

Pr{B(i) = 0} = 1− Pr{B(i) = 1} ≈ 1− e−λ.

We define a random variable X which takes value 1 with
probability Pr{B(i) = 1} ≈ e−λ and takes value 0 with
probability Pr{B(i) = 0} ≈ 1− e−λ. Then we have

Pr{X = 1} = e−λ, P r{X = 0} = 1− e−λ.

It is not hard to get that the random variable X follows
the Bernoulli distribution. Therefore, the expectation and the
standard deviation of X are as follows:

E(X) = e−λ, σ(X) =
√
V ar(X) =

√
e−λ(1− e−λ).

Theorem 2: Let ρ = 1
w

∑w
1 X(i) be the average of w

independent observations, where X(i) denotes the ith obser-
vation of random variable X . Then the tag cardinality can be
calculated by

n̂ = −w ln ρ

kp
. (3)

Proof: Assuming that all the trials of Xi (1 ≤ i ≤ w) are

independent, we have E(ρ) = E(X) and σ(ρ) = σ(X)√
w

.

According to thelawoflargenumbers, when w is large
enough we have

ρ = E(ρ) = E(X) = e−λ.

So we can estimate λ as follows,

λ̂ = − ln ρ.

The observation of ρ can be used to estimate the tag
cardinality as follows,

n̂ = −w ln ρ

kp
.

From Equation 3, we can get that w, k, p and ρ all influence
the estimation accuracy of n̂. Particularly, the estimator will
not work when ρ =0 or ρ=1, which means that all bits in
vector B are identical (0s or 1s). They are the two exceptions
we should to avoid.

The parameter k in Equation 3 whose value denotes the
number of hash functions is introduced to cope with the various

813812812812812812

Fig. 4. The variation of γ = − ln ρ
3p

, when both persistence probability p
and the ration of 1s ρ are varied in the range (0,1).

distribution of tagIDs. It can’t be too small. A small k will lead
to a great variance of n̂ because of the pseudo-random of hash
functions. On the other hand, it is also time-consuming for tags
to get k random numbers when k is large. The communication
overhead between reader and tags will also be increased, as the
reader needs to broadcast more random seeds to all the tags.
Taking all these factors into consideration, we empirically set
k=3 in BFCE for a reasonable tradeoff between overhead and
accuracy.

When it comes to w, similar situations occur. A large w
will cause both the exception of all 1s in B and high temporal
overhead for BFCE, while a small w will also cause another
exception of all 0s in B. Besides, we should also take the
scalability of BFCE into account when determining the value
of w. We define γ = − ln ρ

kp , where k is set to 3. As both p
and ρ vary in the range (0,1), we can get the variation of
γ with different p and ρ, as depicted in Figure 4. Then we
can find 0.000326≤ γ ≤2365.9. According to Equation 3,
we get 0.000326×w ≤ n̂ ≤2365.9×w. That is to say, the
value of w actually bounds the scalability of the estimator.
In our work, to achieve a constant-time estimator, we set
w=8192, which is scalable enough for most RFID systems.
Under this setting, the maximum cardinality that the estimator
can estimate exceeds 19 millions, which is sufficient for almost
all kinds of application scenarios.

The reasons why w is set at 8192 is two fold. First,
the cardinality of tags in a practical scenario is not infinite-
ly large. Setting w to an appropriate value enables one to
simultaneously obtain good scalability of the estimator and
sufficient capacity to accommodate all the tags in a reader’s
communication range. Second, the overhead of implementing
hash functions should also be considered. We may control this
overhead by adopting a reasonable length of the Bloom filter,
namely w.

Algorithm 1 regulates the behavior of the RFID reader.
Depending on which phase the estimator is in, the reader either
gets a specific persistence probability for rough estimation of
the lower bound of cardinality, or calculates the approximate
optimal persistence probability p for accurate estimation (line
4). The reader initiates the estimation process by sending out
w, R and p (line 5). After that, the reader senses the channel

Algorithm 1 BFCE algorithm for reader

1: B = 0 //8192bits
2: w ←8192
3: k = 3
4: Get p for rough or accurate estimation
5: Initiate the estimation, broadcast w, k, R and p
6: for i← 1 to w do
7: if there is no response in the slot then
8: B(i)← 1
9: else
10: B(i)← 0
11: end if
12: end for
13: ρ← 1

w

∑w
1 B(i)

14: return n̂← −w ln ρ
kp

Algorithm 2 BFCE algorithm for RFID tag

1: Receive w, k, R, p
2: S ← Hj(tagID,Rj , w), j = 1 · · · k
3: for i← 1 to w do
4: S ← S − 1
5: if any s in S equals 0 then
6: Respond with a probability of p immediately
7: else
8: Keep silent
10: end if
11: end for

and records the status into the vector B (line 6-12). The ratio of
1s ρ in B is calculated after all the w bit-slots end (line 13).
Finally, the estimation of tag cardinality is calculated using
Equation 3 (line 14).

Each tag performs simple tasks as regulated in Algorithm
2. In each estimation phase, when receiving an estimation
command, the tag computes the selected S bit-slots with k
different hash functions (line 2). If any s in S equals 0, the
tag sends a response with a probability of p. Otherwise, it
keeps silent (line 3-11).

C. Rough Lower Bound Estimation Phase

Before performing the final (ε,δ) estimation, we first try
to get a rough lower bound of tag cardinality (denoted by
n̂low). Nevertheless, since we don’t have any prior knowledge
about the tag cardinality n, we turn to get a rough estimation
(denoted by n̂r) of n firstly. According to Equation 3, as long
as the ratio ρ �= 0 and ρ �= 1, we can get an estimation of n.

We set a specific persistence probability ps= 23

210 , and observe
the received Xs in the coming 32 bit-slots. If all the 32 slots
are idle slots, which means there are no response in all slots,
we adjust the response probability ps to ps + 2

210 . On the
contrary, if all the 32 bit-slots are busy slots, which indicates
the probability ps is too large for the current cardinality, we
reduce it to ps− 1

210 . This procedure is immediately terminated
once both idle and busy slots appear in the 32 bit-slots.

Through several tests, we can get a valid persistence
probability ps quickly. With this ps, BFCE starts a new round
to get n̂r according to Algorithm 1. As we only expect a
rough lower bound of n, rather than the actual n, we can

814813813813813813

terminate the estimation at any time (e.g. after 1024 bit-slots).
The feasibility of using only 1024 trials of Xs to get the rough
estimation is that we assume all the hash functions follow
uniform distribution. So the E(ρ) of 1024 trials theoretically
equals to the E(ρ) of 8192 trials. That is to say, the ρ of 1024
bit-slots could approximately represents the ρ of 8192 slots.
However, there may be difference between n̂r and n. So we
take c ∗ n̂r as the rough lower bound, namely

n̂low = c ∗ n̂r

where the value of c ranges in [0.1· · · 0.9], and we also em-
pirically set c = 0.5 in BFCE which can guarantee n̂low ≤ n
hold in most cases as validated in Section V.

D. Final Accurate Estimation Phase

Different from previous literature, which require numerous
rounds to get an approximate ρ, we tune the value of p to
get an accurate estimation of ρ in just one round, and then
get the cardinality estimation result that meets the accuracy
requirement Pr{|n̂− n| ≤ εn} ≥ 1− δ. Next, We will show
how to get an approximate optimal p with the rough lower
bound estimation n̂low.

Theorem 3: Given the accuracy requirement of (ε,δ), n̂ is
an (ε,δ) estimation of n if

f1 ≤ −d and f2 ≥ d, (5)

where f1 = e−λ(1+ε)−e−λ

σ(X)√
w

, f2 = e−λ(1−ε)−e−λ

σ(X)√
w

, and d =
√
2erfinv(1− δ).

Proof: Because λ = kpn
w , according to Equation 3, the

estimation accuracy requirement can be represented by

Pr{e−λ(1+ε) ≤ ρ ≤ e−λ(1−ε)} ≥ 1− δ. (6)

Based on the fact that the variance of ρ is reduced if the
experiment is repeated for many times (e.g. w=8,192 times),
we define a random variable Y = ρ−μ

σ , where μ = E(ρ) =

e−λ, and σ = σ(ρ) = σ(X)√
w

. Thus, Equation 6 becomes

Pr{f1 ≤ Y ≤ f2} ≥ 1− δ, (7)

By thecentrallimittheorem, we know Y is approximately
a standard normal random variable. Given a particular error
probability δ, we can find a constant d that satisfies

Pr{−d ≤ Y ≤ d} = 1− δ. (8)

Combining Equations (7) and (8), one can guarantee the
accuracy requirement Pr{|n̂ − n| ≤ εn} ≥ 1 − δ if the
following conditions are satisfied:

f1 ≤ −d and f2 ≥ d.

BFCE takes the minimal p that satisfies Equations 5 as the
optimal po, so we can guarantee that n̂ is a (ε,δ) estimation
of n. Therefore, the optimal po is usually small (e.g. p =
3

210), especially when n is large. However, it is impossible to
get the optimal po by solving Equation 5, as the actual value
of n is unknown. To get the optimal value for po, we first

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4
w=8192 and ε=0.05

n (×104)

f1
 a

n
d

 f
2

f1 when p=3/1024
f2 when p=3/1024
f1 when p=4/1024
f2 when p=4/1024

Fig. 5. The monotonicity of f1 and f2 when the persistence probability p
is small.

take both f1 and f2 as functions of n. As shown in Figure 5,
when po is small, given w = 8192, k = 3 and the confidence
interval ε = 0.05, f1 and f2 are monotonically decreasing
and increasing functions of n, respectively. So we have the
following Theorem.

Theorem 4: Let n̂low be a rough lower bound estimation of
n, which has been obtained in the previous estimation phase,
i.e., n̂low ≤ n. let po be the minimal probability that satisfies

f1(n̂low) ≤ −d and f2(n̂low) ≥ d. (9)

Equation 5 holds when using this po.

Proof: Because f1, f2 are monotonically decreasing and
increasing functions of n, respectively, we have

f1(n) ≤ f1(n̂low) and f2(n) ≥ f2(n̂low). (10)

Combining Equations 9 and 10, Equation 5 holds.

Based on the above analysis, we get the approximate

optimal po via brute-force calculation (from 1
210 to 210−1

210)
with priori knowledge of n̂low (which has been obtained in
the first rough estimation phase). We take the the minimal po
that satisfies Equation 9 as the approximate optimal persistence
probability, since po is usually small. With this po, we can
guarantee the result calculated with Equation 3 is an (ε,δ)
estimation.

E. Analysis and Discussion

1) Overhead Analysis: As we mention in the previous
sections, BFCE finishes estimation in just one round, which
consists of two phases, namely a rough estimation phase and
an accurate estimation phase. In each phase, the reader only
needs to transmit constant number of parameters, and then
senses the physical channel to get a bloom vector B within
8192 bit-slots. In the rough estimation phase, as we only expect
a rough lower bound of the tag cardinality, we may terminate
the phase in just 1024 bit-slots. Hence the temporal overhead
of this phase, denoted by t1, is calculated by

t1 = (lw + lk + k ∗ lR + lp) ∗ tr→t + tint + 1024 ∗ tt→r,

where lw, lk, lR, and lp are the length of w, k, random
seeds, and p, respectively tr→t is the time for the reader to

815814814814814814

(a) (b) (c)

Fig. 6. Three tagIDs sets used in the simulation under different distribution.

transmit 1-bit information, tint is the time interval between two
consecutive transmissions from the reader to tags or vice versa,
and tt→r is the time for the tags to transmit 1-bit information.
Since both w=8192 and k=3 are constant, we can preload them
to tags and need not transmit them at runtime. Therefore, t1
can be simplified as

t1 = (3 ∗ lR + lp) ∗ tr→t + tint + 1024 ∗ tt→r.

Similarly, the temporal overhead of the accurate estimation
phase, denoted by t2, is calculated by

t2 = tint + (3 ∗ lR + lp) ∗ tr→t + tint + 8192 ∗ tt→r.

Based on the above analysis, the overall temporal overhead
of BFCE (denoted by t) is the summation of t1 and t2, which
is

t = t1 + t2
= (6 ∗ lR + 2 ∗ lp) ∗ tr→t + 3 ∗ tint + 9216 ∗ tt→r.

According to the EPCglobal C1G2 standard[24], the time
for a reader to transmit one-bit information is 37.76μs. The
time interval is 302μs. The time for tags to transmit one-bit
information is 18.88μs, namely tr→t=37.76μs, tint=302μs and
tt→r=18.88μs. If we restrict the lengths of both the random
seeds lR and the persistence probability lp to be 32 bits, the
overall temporal overhead of BFCE is less than 0.19s. It means
that BFCE can rapidly get the final accurate estimation within
constant-time, regardless the actual tag cardinality and the
estimation accuracy requirement.

2) Implementation of the hash functions: In BFCE, all the
tags are required to select k = 3 bit-slots using hash functions
and respond in the selected slots with a probability of p. Instead
of storing many hash functions on resource-constrained tags, a
32-bits random number (denoted by RN in the binary form) is
prestored on each tag, prior to the RFID system deployment.
To implement the hash functions, the reader generates three
uniformly distributed random seeds (denoted by RS[i] in the
binary form, where i ∈ 1, 2, 3) at the very start of each phase
and broadcasts them to all the tags. When receiving the random
seeds, each tag computes the three hash values by

H(id) = bitget(RN ⊕RS(i), 13 : 1),

where ⊕ denotes the bitwise XOR operation and bitget is a
function to get the lowest 13 bits of the XOR results. Such a
simple method only requires the tags to perform lightweight

bitwise XOR computation and bitget operations to get the hash
values.

3) Setting the persistence probability: Then, most existing
works implement the persistence probability p by virtually
extending frame size for 1

p times, i.e., the reader announces

a frame size of w/p and terminates the frame after the first
w slots. This scheme seems not usable in BFCE, because the
value of p is usually small. The size of virtual vector after
being extended will be large and slows down the hash function
related computations. Instead, we let the reader broadcast the
numerator of p (denoted by pn) rather than the actual p. On
receiving pn, each tag randomly selects 10 bits from the pre-
stored random number. If the selected value (in the decimal
form) turns out to be smaller than pn-1, the tag will respond in
current bit-slot. Otherwise, the tag will keep silent. In this way,
we also get a lightweight p-persistence. All the conclusions and
theorems proved before still hold under this setting.

V. PERFORMANCE EVALUATION

We conduct extensive simulations under various tagIDs
distributions to evaluate the performance of BFCE. First, we
assess the estimation accuracy of BFCE with varied cardinal-
ities of tags under different settings. We then compare BFCE
with two typical state-of-the-arts approaches, ZOE[14] and
SRC[15], in terms of estimate accuracy and time efficiency.

A. Setup and Metrics

We first generate three tagID sets following different distri-
bution as the input data for our simulations. As shown in Figure
6, the first set (denoted by T1) follows uniform distribution
between 1 and 1015. The second tag sets(denoted by T2)
follows an approximate normal distribution. And the third tag
sets (denoted by T3) follows normal distribution.

Instead of repeating hundreds rounds of estimation and
taking the average as the final outputs in previous approaches,
we just take the result of one round estimation as the final
result. We adopt a relative metric to evaluate the accuracy,
namely

Accuracy =
|n̂− n|

n
,

where n̂ denotes the estimation result and n refers to the actual
number of tags. A good estimator is expected to return an
estimation result close to the actual value. The closer it is to
0, the higher the estimation accuracy is.

816815815815815815

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1
ε=0.05,δ=0.05 and c=0.5

n (× 104)

A
cc

u
ra

cy

T1
T2
T3

(a)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1
n=500000,δ=0.05 and c=0.5

ε

A
cc

u
ra

cy

T1
T2
T3

(b)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1
n=500000,ε=0.05 and c=0.5

δ

A
cc

u
ra

cy

T1
T2
T3

(c)

Fig. 7. Estimation accuracy with different n, ε and δ under different tagIDs distribution.

0.5

n=500000,ε=0.05,δ=0.05 and c=0.5

T1

0.5

C
D

F

T2

46 48 50 52 54

0.5

Estimation Result (×104)

T3

Fig. 8. Cumulative distribution of BFCE under different tagIDs distribution.

To evaluate the time efficiency of different estimators, we
take the overall execution time of estimators as the second
metric, the execution time of BFCE is the total time paid
for the communication between reader and tags. According
to EPCglobal C1G2 standard[24], any two consecutive trans-
mission from the reader to tags or vice versa are separated
by a waiting time of 302μs. The transmission rate from the
reader to tags is 26.5Kb/s. It takes 37.76μs to transmit 1 bit.
Assuming that the length of a random seed is 32bits, it totally
takes 1,510μs for the reader to broadcast a 32-bits random
seed. The rate from a tag to the reader is 53Kb/s, it takes
18.88μs for a tag to transmit 1 bit. So the time for tags to
transmit l bits signal is approximately 18.88×l+302μs.

B. Performance under Different Settings

We first examine the accuracy of BFCE with different
parameters settings under all the three tagIDs distributions.
Figure 7(a) presents the different estimation accuracy to get
an (0.05,0.05) estimation under different actual cardinality n .
The results under all the three distributions are shown together.
Recall that c = 0.5 is the constant coefficient used in the
rough lower bound estimation phase. From this figure, we
can see that the accuracies are very close to 0 regardless of
the actual tag cardinality, and always can meet the desired
accuracy requirement in all cases. This group of experiments
reveal that different tagIDs distributions have little impact on
the estimation accuracy.

Then we fix the actual tag cardinality n=500000, and
evaluate the estimation accuracy with different ε and δ. Figure
7(b) plots the accuracy when ε is varied from 0.05 to 0.3
and other parameters are fixed. Whatever ε is, BFCE always
achieves estimation accuracy below 0.04, which is far better
than the required ε. We see similar results when δ is varied
from 0.05 to 0.3 under all the T1, T2 and T3 distributions as
shown in Figure 7(c).

To further validate the stability of BFCE, we run the BFCE
for 100 rounds when n=500000, ε=0.05 and δ=0.05. Figure 8
presents the cumulative distribution of the estimation results
in T1, T2 and T3 respectively. According to the simulation
results, we find that the estimation results of BFCE are tightly
concentrated around the actual cardinality under all the three
tagIDs distributions. It means that BFCE offers more accu-
rate estimation after multiple runs. Compared with previous
approaches which need to be executed hundreds of repeated
rounds, we can achieve an extremely accurate estimation in no
more than 100 rounds.

C. Comparison

We compare the performance of BFCE with two typical
state-of-the-art schemes, ZOE[14] and SRC[15]. Note that
ZOE requires a rough estimation of n as input to get the final
accurate estimation, we slightly modify ZOE, and add a rough
estimation phase to ZOE. For simplicity, we invoke LOF [19]
and run it for 10 rounds. We then use LOFs output as the rough
estimation input of ZOE. To achieve an (ε, δ) estimation with
SRC where δ is smaller than 0.2, we repeat the second phase
of SRC for m rounds, where m is the smallest integer that
satisfies

∑m
i=(m+1)/2(

m
i)× 0.8i × 0.2m−i ≥ 1− δ.

we conduct performance comparison with all the three
tagIDs distributions. Due to the page limit, Figure 9 and
Figure 10 present the accuracy and execution time in only
one distribution (T2). As shown in Figure 9, both ZOE and
SRC can achieve the desired estimation in almost all the case
except several exceptions. Specifically, when n=50000, the
accuracy requirement is set to ε=0.05 and δ=0.05, SRC gets a
final estimation 53430, and the accuracy is about 0.68. Given
n=500000, ε=0.05 and δ=0.3, ZOE outputs an estimation result
537656, which also exceeds the desired confidence interval.
The reason for the exceptions of ZOE and SRC is as follows.
The estimation results of ZOE and SRC largely depends on
the accuracy of rough estimation, namely the output results of
the first estimation phase in ZOE and SRC. In contrast, BFCE

817816816816816816

(a) (b) (c)

Fig. 9. The comparison of accuracy with different n, ε and δ in one of tagIDs set T2.

(a) (b) (c)

Fig. 10. The comparison of overall execution time with different n, ε and δ in one of tagIDs set T2.

always can achieve the desired accuracy in all the cases in only
one round, because BFCE’s final estimation is only concerned
with the rough lower bound of cardinality, rather than an exact
value of roughly estimated cardinality.

In Figure 10, we examine the overall execution time of
BFCE, compared with that of ZOE and SRC with different
parameters settings in the distribution T2. We can see from the
figures that the execution time of ZOE is usually large, about
several seconds in all the cases, and even goes up to 18s in the
worst case. There are two reasons for the poor performance
of ZOE. First, ZOE needs to continually broadcast 32-bits
random seeds for each slot, so the communication time from
the reader to tags accounts for the major portion of execution
time. Second, the number of required slots of ZOE has great
relationship with the output of the rough estimation phase. An
estimation that fairly deviates from the actual cardinality will
lead to a sharp growth of the required time slots. Although the
overall execution time of SRC is much shorter than ZOE’s,
there are still apparent variance because the execution time
of SRC also has relationship with the accuracy of rough
estimation. In comparison, BFCE always gets the desired
estimation in a constant time, within just 0.19s, which is 30
times faster than ZOE, and 2 times faster than SRC in average.

VI. CONCLUSION

In this paper, we propose a Bloom Filter based Cardinality
Estimation (BFCE) scheme for tag cardinality estimation in
RFID systems. BFCE achieves guaranteed estimation accuracy
in constant time. Moreover, implementing BFCE only requires
slight updates to the EPCglobal C1G2 standard and fits a wide

variety of application purposes. We conduct extensive simu-
lations to evaluate the performance of BFCE under different
settings. The experiment results demonstrate that BFCE out-
performs state-of-the-arts schemes in terms of time efficiency
and estimation accuracy.

ACKNOWLEDGMENT

This work is supported in part by National Natural Science
Foundation of China (NSFC) (No.61272466, No.61303233,
No. 61170213 and No. 61373181) and National Science Fund
for Excellent Young Scientist (No. 61422207).

REFERENCES

[1] W. Gong, K. Liu, X. Miao, Q. Ma, Z. Yang, and Y. Liu, “Informative
counting: fine-grained batch authentication for large-scale rfid systems,”
in Proceedings of ACM Mobihoc, 2013.

[2] W. Gong, Y. Liu, A. Nayak, and C. Wang, “Wise counting: fast and ef-
ficient batch authentication for large-scale rfid systems,” in Proceedings
of ACM Mobihoc, 2014.

[3] H. Vogt, “Efficient object identification with passive rfid tags,” in
Pervasive Computing, pp. 98–113, Springer, 2002.

[4] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale
rfid systems,” IEEE/ACM Transactions on Networking, vol. 21, no. 3,
pp. 924–934, 2013.

[5] S. Qi, Y. Zheng, M. Li, L. Lu, and Y. Liu, “Collector: A secure rfid-
enabled batch recall protocol,” in Proceedings of IEEE INFOCOM,
2014.

[6] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location
sensing using active rfid,” Wireless networks, vol. 10, no. 6, pp. 701–
710, 2004.

[7] J. Wang and D. Katabi, “Dude, where’s my card?: Rfid positioning that
works with multipath and non-line of sight,” in Proceedings of the ACM
SIGCOMM, 2013.

818817817817817817

[8] T. Liu, L. Yang, Q. Lin, Y. Guo, and Y. Liu, “Anchor-free backscatter
positioning for rfid tags with high accuracy,” in Proceedings of IEEE
INFOCOM, 2014.

[9] L. Yang, J. Cao, W. Zhu, and S. Tang, “A hybrid method for achieving
high accuracy and efficiency in object tracking using passive rfid,” in
Proceedings of IEEE PerCom, 2012.

[10] J. Han, H. Ding, C. Qian, D. Ma, W. Xi, Z. Wang, and L. Jiang,
Zhiping amd Shangguan, “Cbid: A customer behavior identification
system using passive tags,” in Proceedings of IEEE ICNP, 2014.

[11] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-
time tracking of mobile rfid tags to high precision using cots devices,”
in Proceedings of ACM MobiCom, 2014.

[12] J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang, and Z. Wang,
“Twins: Device-free object tracking using passive tags,” Networking,
IEEE/ACM Transactions on, 2015.

[13] Y. Zheng and M. Li, “Pet: Probabilistic estimating tree for large-scale
rfid estimation,” Mobile Computing, IEEE Transactions on, vol. 11,
no. 11, pp. 1763–1774, 2012.

[14] Y. Zheng and M. Li, “Zoe: Fast cardinality estimation for large-scale
rfid systems,” in Proceedings of IEEE INFOCOM, 2013.

[15] B. Chen, Z. Zhou, and H. Yu, “Understanding rfid counting protocols,”
in Proceedings of ACM MobiCom, 2013.

[16] W. Gong, K. Liu, X. Miao, and H. Liu, “Arbitrarily accurate approxima-
tion scheme for large-scale rfid cardinality estimation,” in Proceedings
of IEEE INFOCOM, 2014.

[17] M. Kodialam and T. Nandagopal, “Fast and reliable estimation schemes

in rfid systems,” in Proceedings of ACM MobiCom, 2006.

[18] M. Kodialam, T. Nandagopal, and W. C. Lau, “Anonymous tracking
using rfid tags,” in Proceedings of IEEE INFOCOM, 2007.

[19] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality estimation
for large-scale rfid systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 9, pp. 1441–1454, 2011.

[20] H. Han, B. Sheng, C. Tan, Q. Li, W. Mao, and S. Lu, “Counting rfid
tags efficiently and anonymously,” in Proceedings of IEEE INFOCOM,
2010.

[21] T. Li, S. Wu, S. Chen, and M. Yang, “Energy efficient algorithms for
the rfid estimation problem,” in Proceedings of IEEE INFOCOM, 2010.

[22] V. Shah-Mansouri and V. W. Wong, “Cardinality estimation in rfid
systems with multiple readers,” Wireless Communications, IEEE Trans-
actions on, vol. 10, no. 5, pp. 1458–1469, 2011.

[23] M. Shahzad and A. X. Liu, “Every bit counts: fast and scalable rfid
estimation,” in Proceedings of ACM MobiCom, 2012.

[24] EPCglobal, “Epc radio-frequency identity protocols class-1 generation-
2 uhf rfid protocol for communications at 860 mhz - 960 mhz version
1.2.0,” tech. rep., 2008.

[25] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable
low-power backscatter networks,” in Proceedings of the ACM SIGCOM-
M, 2012.

[26] L. Kong, L. He, Y. Gu, M.-Y. Wu, and T. He, “A parallel identification
protocol for rfid systems,” in Proceedings of IEEE INFOCOM, 2014.

819818818818818818

