
Connecting the Dots: Reconstructing Network

Behavior with Individual and Lossy Logs
Jiliang Wang∗, Xiaolong Zheng∗, Xufei Mao∗, Zhichao Cao∗, Daibo Liu† and Yunhao Liu∗

∗ School of Software and TNLIST, Tsinghua University
† School of CSE, University of Electronic Science and Technology of China

{jiliang, xiaolong, xufei, caozc, yunhao, dbliu}@greenorbs.com,

Abstract—In distributed networks such as wireless ad hoc net-
works, local and lossy logs are often available on individual nodes.
We propose REFILL, which analyzes lossy and unsynchronized
logs collected from individual nodes and reconstructs the network
behaviors. We design an inference engine based on protocol
semantics to abstract states on each node. Further we leverage
inherent and implicit event correlations in and between nodes
to connect interference engines and analyze logs from different
nodes. Based on unsynchronized and incomplete logs, REFILL
can reconstruct network behavior, recover the network scenario
and understand what has happened in the network. We show
that the result of REFILL can be used to guide protocol design,
network management, diagnosis, etc. We implement REFILL
and apply it to a large-scale wireless sensor network project.
REFILL provides a detailed per-packet tracing information based
on event flows. We show that REFILL can reveal and verify
fundamental issues, like locating packet loss positions and root
causes. Further, we present implications and demonstrate how
to leverage REFILL to enhance network performance.

I. INTRODUCTION

A. Background

In many distributed networks, local and lossy logs are

often available on individual nodes. For example, in wireless

sensor networks and data center networks, local logs are also

commonly available and may also be lossy due to log-write

failure or even node failure. On the other hand, those local logs

are an important resource, if not the only, to recover the in-

situ network status for further network management, diagnosis

and other purposes. For example, in wireless ad hoc networks,

wireless nodes are relatively isolated individuals connected by

fragile and lossy wireless links, making it difficult to learn

about the accurate and complete running status of individual

nodes in a real-time manner. Currently, there are many real-

time network measurement methods and tools proposed in

the literature [8] [16] [20] [5] [9] [14]. However, collecting

measurement information from the network with data traffic

may impact network performance. Thus more information are

recorded on local logs and retrieved later. Thus local log is

an important resource to understand what has happened in the

network.

B. Motivation

Considering the detailed information recorded in local logs,

our main idea is to design and exploit local log files (originally

saved at individual nodes, commonly available on different

distributed systems [17], containing a collection of events and

far from being fully utilized) to recover information from the

network. By combining local logs from different nodes, we can

further reconstruct the network-wide behavior that is otherwise

difficult to reveal. We define the network-wide behavior as

network event flows, i.e., sequences of events according to their
occurrence in the network. The event flow reflects the running

status of the network. It can also provide information for

network diagnosis and answers to questions such as “what’s

happened on earth in the network?”.

To reconstruct network behavior, we need to exploit local

logs and combine logs from different nodes. Though there

are a large collection of approaches for log analysis, existing

approaches usually focus on analyzing local logs from a

single node (e.g., PC), or assume a complete and correct

log [21] [17] [19] [18]. Those approaches cannot be used

to reveal information with lossy logs from different nodes in

distributed networks. Wit [10] proposes a method to analyze

the sniff logs from different nodes in the network. However,

Wit exploits sniff logs collected by multiple overhearing nodes.

Different overhearing nodes may receive the same packets

and thus common events are recorded. Wit can use those

common recorded events to synchronize and combine logs

from different nodes. In other scenarios, logs recording local

events on individual nodes contain no such kind of commons

events and thus logs cannot be combined.

To analyze lossy logs from different nodes, there are several

challenges. First, each individual node only has a local view

of its state. Logs collected from different nodes are usually not

synchronized. Logs should be combined to derive a complete

view of the entire network. Second, unlike logs assumed to

be recorded on a reliable node and collected through reliable

links, logs in distributed networks may be incomplete due to

reasons such as malfunction of nodes (as commonly observed

in distributed system), fragile links, wireless interference,

buffer limitation and so on. Third, logs should be analyzed

according to protocol semantics. Protocol interactions among

different nodes should be considered while analyzing logs

from different nodes.

Our approach exploits the implicit and inherent network

behavior correlations. We find that implicit network correla-

tions, which provide useful information to combine different

logs, can also be used to recover lossy logs and combine

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

171

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

170

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

170

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

170

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

170

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.26

170

logs from different nodes. First, there are intra-node behavior

correlations for operations on a single node. For example, a

sending operation on a node may imply that the corresponding

packet is already received and the receiving operation is al-

ready performed. Those correlations can be leveraged to reveal

the event flow and infer lost events (e.g., the receiving event)

on a single node. Second, logs from multiple nodes are also

implicitly correlated according to inter-node event correlations.

For example, a receiving operation on a receiver may imply a

corresponding sending operation on the corresponding sender.

Those correlations can be used to infer event ordering between

nodes and related lost events. Such intra-node and inter-node

correlations, while containing important information, are not

fully exploited in existing approaches. We leverage those

intrinsic correlations to recover the event flows.

This work is also motivated by a real project CitySee [11],

a CO2-monitoring wireless sensor network in an urban area

consisting of 1200 sensor nodes. While maintaining the net-

work, we find that the data delivery performance fluctuates

and there are many packet losses in the network. However,

based on collected data packets (including both sensory data

and status data), we can only obtain the macroscopic view of

the data, leading to challenges to diagnose and improve the

network. For example, although we know a portion of packets

are lost, it is difficult to know why those packets are lost.

On the other hand, we record events on individual nodes as

local logs. Those local logs are not fully explored. We resort

to leverage those event logs on individual nodes to provide

information to answer questions for network diagnosis.

C. Our Approach

In this work, we propose REFILL, an event flow based

approach contributing to fine-grained network management

such as network diagnosis and network measurement through

exploiting local logs on individual nodes. REFILL first derives

an inference engine based on finite state machine to mod-

el single node operations. Then REFILL connects inference

engines on different nodes based on implicit network event

correlations. Therefore, REFILL synchronizes logs from d-

ifferent nodes with correlated events, and infers lost events

for incomplete logs by leveraging implicit intra-node and

inter-node event correlations. Then REFILL reconstructs event

flows in the network (e.g., packet tracing can be depicted

as a series of event flows), and derives network diagnosis

information. Unlike traditional log analysis approaches which

usually assume a complete and synchronized log from a

single node, REFILL processes lossy and unsynchronized logs

collected from different nodes in a distributed environment

and provides network related information that are otherwise

difficult to obtain.

The contribution of the paper is summarized as follows.

• Event analysis and event flow recovery with individual
lossy and unsynchronized logs. We propose to use local

logs for revealing event flows in large-scale distributed

networks. To work with unsynchronized and incomplete

logs from different nodes, we design an inference engine

based on finite state machine to abstract states on each

node. We formally define inherent and implicit event

correlations in and between nodes, and leverage event

correlations to synchronize different nodes and infer lost

events.

• Implementation of REFILL system. We implement RE-
FILL to evaluate the performance in wireless sensor

networks. The implementation consists a component on

sensor node and a component on the PC for analysis.

• Application to a real distributed network. We apply

REFILL to CitySee, a large scale wireless sensor network.

We show that REFILL can provide fine-grained network

management (e.g., efficient packet tracing and locating

causes of packet losses). Further, we present the implica-

tions of REFILL to wireless sensor network design.

The organization of the remaining part is as follows. Sec-

tion II shows the network model and the problem definition.

Section III introduces the challenges for REFILL design.

Section IV introduces the REFILL system design. Section V

presents the implementation and evaluation results of REFILL.
Section VI presents the related work. Section VII concludes

this work.

TABLE I: Examples of events in the network

Event Description

n1 − n2 recv The packet from n1 is received at node n2.
Recorded on node n2.

n1 − n2 overflow There is no space on node n2 for the packet
from n1 and thus the packet has to be discarded.
Recorded on node n2.

n1 − n2 dup A duplicated packet is received by n2 from n1.
Each node keeps a buffer of received packets
and duplication event happens when a received
packet is identical to any packet in the buffer. The
duplication event is often due to routing loops.

n1 − n2 trans The packet is transmitted by n1 to n2. Recorded
on node n1.

n1 − n2 ack recvd the packet from n1 to n2 is acked by the receiver,
i.e., an acknowledgement is received. Recorded on
node n1.

II. NETWORK MODEL AND THE PROBLEM

Logs are commonly recorded on individual nodes for net-

work management, diagnosis, etc. Usually, a log statement

in the program records a corresponding event. For example,

in data transmission scenario, a log statement may be added

to the position where a packet is sent and thus the sending

operation is logged as an event. More specifically, an event

indicates that the program has reached the corresponding

position in the program and it has corresponding related

information upon reaching the position. Intuitively, we can see

that the ordering of event occurrence on different nodes can

be used to recover the program running status and network

behavior. The related information may contain different kinds

of information depending on the log operations. For example,

for a sending event, the sender and receiver may be recorded

as the related information. When an error is recorded as an

event, the corresponding error type may be recorded as the

172171171171171171

related information. In our approach, we do not have specifical

requirement for the related information in the log. We use

the related information to find the correlation between nodes.

Given more related information, more correlations between

nodes can be found. However, it is not mandatorily required

for each event.

We denote an event as a tuple E = (V,L, I), where

V denotes the event type, L denotes the location where

the event happens and I is the related information, e.g.,

the sender and receiver information for the sending event.

Such kind of event is often available in practical system

logs [21] [17] [19] [18]. I can also be empty for some event

types. The event occurrence time is not required to be logged.

This is practical for real systems, e.g., different nodes may not

be precisely synchronized in distributed system. For simplicity

of presentation, we implicitly add the occurrence time T for

each event. We assume a network consists ofN nodes, denoted

as {1, 2, . . . , N}. Each node in the network can log events

locally. We use Ei,j = (Vi,j , Li,j , Ii,j , Ti,j) to denote the jth
event on node i. An event flow is an ordering of all events.

Denote F̃ as the event flow, we should have

F̃ = Ei1,j1 , Ei2,j2 , . . . , EiK ,jK (1)

where ∀1 ≤ m < n ≤ K, we have Tim,jm < Tin,jn .
For example, a packet in the network can trigger different

events, such as sending event, receiving event and etc. The

event flow is to recover the correct order of all the events

related to the same packet in the network. With the event

flow, the detailed behavior of the packet can be revealed,

e.g., the path of the packet, where the packet is lost and the

occurrence of loop for the packet can be revealed. Further,

the packet related information, e.g. per-packet delay, packet

retransmission, packet loss, can also be revealed. The protocol

behavior for different nodes in the network can be recovered

with the event flow.

In practical networks, according to different event types,

there may be different related information for different events.

For example, a network event has information about related

packets and related nodes. Many network operations have two

related nodes, i.e., the sender and the receiver, denoted as

sender−receiver. For example, Table I shows some examples

of events for packet reception, queue overflow, packet duplica-

tion, packet transmission, and packet acknowledgement. Since

the sender or receiver already contains the information of L,
hereafter, for brevity, we use (sender−receiver, event type, L)
to denote an event. L is omitted when there is no ambiguity.

III. CHALLENGES

In practical networks, there are several challenges to analyze

event logs. We show with examples for the challenges.

Incomplete information. First, the logs collected from

different nodes are incomplete. Intuitively, a straightforward

method to analyze the logged events is based on the protocol

semantics. For example, if a node n records a trans event

and does not have an ack event for a packet. This packet is

considered lost on node n since the acknowledgement (ack)

TABLE II: A simple example with logs from 3 nodes.

Case Node 1 Node 2 Node 3

complete log 1−2 trans 1−2 recv 2−3 recv
1−2 ack recvd 2−3 trans

2−3 ack recvd
Case 1 1−2 trans Lost 2−3 recv
Case 2 1−2 trans

1−2 ack recvd
Case 3 1−2 ack recvd

1−2 trans
Case 4 1−2 trans 1−2 recv 2−3 recv

1−2 ack recvd 2−3 trans 3−1 trans
3−1 recv 2−3 ack recvd 3−1 ack recvd
1−2 trans 2−3 trans
1−2 ack recvd

of the packet is not received. However, this may not always

be true. The logs may be incomplete and the ack event may

be lost. We need to correctly analyze the events even with

incomplete logs.

As in Table II, we list examples of events collected from

different nodes. The first row shows the case for a complete log

of events on three nodes (node 1, 2 and 3). For case 1, events

from node 2 are lost and only events from node 1 and 3 are

collected. It is difficult to derive the event flow with traditional

approaches and derive further information. For example, the

packet can be considered lost on node 1 since there is no ack

event. In fact, this packet is not lost on node 1 since node 3

has received the packet from node 2. The key insight here is

that an event can be used to imply other useful information.

A recv event on node 3 implies that the corresponding packet

is received on node 2.

Unsynchronized events. The collected events are not syn-

chronized, resulting in different event ordering in event flow.

The order of events on each node determines the real network

behavior. For example, it is normal that a trans event is

followed by an ack event. As shown in case 2, an ack event is

followed by a trans event. This is significantly different from

case 3. In case 3, an ack event precedes the trans event. In

such a case, node 1 should receive and forward the packet

twice, which actually indicates duplications or routing loops

in the network. When there are unsynchronized information

from different nodes, it is difficult to analyze the events.

Distributed environment. Moreover, events are logged

and collected from different nodes in a distributed manner.

Information from different nodes should be connected and

combined to derive a correct network-wide event flow. Even

when there is no lost event, it is still difficult to analyze

events from different nodes. As in case 4, it seems that all

transmissions are acked if we solely look at the trans and

ack event. In fact, there is a loop in the network if we look

at those events and their corresponding occurrence ordering.

The packet is lost at node 2 since the second transmission

from node 2 to node 3 fails. While processing events from

different nodes collected in distributed environment, we should

consider the state correlation on different nodes. Otherwise, it

is difficult to reveal correct network-wide information.

173172172172172172

REFILL

connecting inference engine

Mesh
Node

Sensor Network

Sink

Base station

Sink

Mesh Network

 inference engines

event flow

merge

network
diagnosis/measurement

Fig. 1: The REFILL system overview.

IV. SYSTEM DESIGN

To address those problems, we propose the design of RE-
FILL. The system overview of REFILL is shown in Figure 1.

The first step is to collect events from the network. Logs

containing events from different nodes are first merged with

ordering of events from the same node preserved. The second

step is to associate events with node state. In this step, we build

inference engines for different nodes by leveraging intra-node

correlations. By intra-node event correlation, we can improve

those inference engines and enable them to process lossy logs

on individual nodes. The third step is to connect events from

different nodes. Based on inherent inter-node correlations,

we can connect inference engines from different nodes. The

connected inference engine takes the merged events as input

and outputs the event flow.

A. Inference Engine

The first step is to build an inference engine for each node.

We use the finite state machine (FSM) based inference engine

to model the states on each node. Since the event log is coupled

with log statements and their positions that produce the log,

the FSM can be generated according to the log positions.

The FSM can be generated manually [21] or with automatic

tools [6]. The original FSM is generated according to the

original program. When there is no lost event, the generated

FSM can transit correctly with the collected events. Figure 2

shows a simplified example of two FSMs for inference engine.

The FSM is modeled as a directed graph G = (S, T , E), where
S = s1, s2, . . ., sn are n vertices corresponding to n states,

T are the directed edges and E are the corresponding events

on the edges. In the transition graph, we have

• transition ti,j : the edge from si to sj , which corresponds

to the transition from si to sj . A transition ti,j can also

be denoted as si → sj .
• event ei,j : the event on edge si → sj . It should be noted

that ei1,j1 may be equal to ei2,j2 for i1 �= i2 or j1 �= j2.
This means that multiple transitions may have the same

type of event. An event may lead to different transitions.

• transition sequence TSn = ti1,i2 , ti2,i3 , . . . , tin−1,in . A

transition sequence is a directed path on the transition

graph.

We say a state sin is reachable from state si1 (denoted as

si1 � sin) if and only if there is a transition sequence TSn

s1

s2

s3

s4

recv

trans
no ack

ack
recvd

s1

s2

s3

s4

recv

trans
no ack

ack
recvd

n1 n2

normal
transition

intra-node
transition

inter-node
transition

trans trans

ack
recvd

ack
recvd

ack
recvd

ack
recvd

recv

ack
recvd

Fig. 2: A simplified example of FSMs for the inference engine.

The solid line shows the original FSMs for the inference

engine.

from si1 to sin . This also means there exists a path from state

si1 to sin on the transition graph. We denote those transitions

on the original FSM as normal transitions.
More specifically, for a transition graph, we have the fol-

lowing definition.

Definition 4.1 (prerequisite transition): we say an event

ti1,j1 is a prerequisite event of ti2,j2 (denoted as ti1,j1 � ti2,j2)
if and only if ti2,j2 can occur only after ti1,j1 occurs.

Intuitively, if ti1,j1 is a prerequisite transition of ti2,j2 , it

means when ti2,j2 occurs, ti1,j1 must have occurred before

ti2,j2 . In other words, ti2,j2 should not occur if ti1,j1 has

not occurred. Meanwhile, the events corresponding to the

prerequisite transitions are denoted as prerequisite events. It

can also be noted that the prerequisite transition for a particular

transition can be on the same node or on another node. We

use the prerequisite transitions to build inter-node transitions.

It can also be seen that the prerequisite events are due to

inherent event correlations.

B. Transitions in Inference Engines

To combine logs from different nodes, we leverage the

network inherent correlations to connect states on the inference

engines. Besides the normal transition, there are two types of

event connections that we leverage to connect intra-node and

inter-node states on inference engines.

Intra-node transition. In the original FSM, the state can

only correctly transit when there are no lost events. We find

that a state on one node may indicate some prior states in the

same node. For example, as we have shown, a sending oper-

ation on one node actually indicates prior receiving operation

for the same packet on the same node.

Given an event ei,j , for all transitions si1 → sj1 , si2 →
sj2 , . . . , sim → sjm with the same event ei,j and for any state

sx in graph G, if there is one and only one state sjc in all states

174173173173173173

(a) cascading (b) 1-to-many (c) many-to-1 (d) mixed

Fig. 3: Event processing according to the transition algorithm and connected inference engine. Figure (a) shows inference

engines with cascading inter-node transitions. The resulted event flow is e1, e3, e5, e6, e4, e2. The transition algorithm

recursively processes the prerequisite transition to s6 and then s9. Figure (b) shows the inference engines with 1-to-many

inter-node transitions. The events e2 and e6 should occur before e4. The ordering between e1 and e5 cannot be determined in

this example. Figure (c) shows the inference engines with many-to-1 inter-node transitions. The event e3 must occur after e1
and e5. Figure (d) shows the mixed inter-node transitions.

sj1 , sj2 , . . . , sjm that is reachable from sx, i.e., sx � sjc , we
can add an intra-node transition from sx to sjc with event ei,j .
Intuitively, this means that for an event ei,j at state sx, this
event can only possibly be generated at the transition sic →
sjc since sjc is the only reachable state from sx which has

a transition with event ei,j . Therefore, if at state sx an event

ei,j occurs, even when there is not available normal transition

for event ei,j , this implies the state actually reaches sjc . This
may happen when there are event losses in the collected logs.

Thus we can directly jump from the state sx to the state sjc
with event ei,j . Meanwhile, an intra-node transition from sx to

sjc also indicates prerequisite events of ei,j on the transition

sequence si � sjc following normal transitions are lost. In

such a case, even in the presence of event losses, the state

transition can still move forward.

As shown in Figure 2, there are two simplified FSMs on two

nodes. The FSM of node n1 corresponds to the state transition

on node 1. The transitions represented with solid line are the

normal transitions. The dashed line represented the intra-node

transitions we add in the original FSM.

Inter-node transition. In order to process events for mul-

tiple nodes, we need to connect states on different nodes. For

network operations that related to multiple nodes, network

operations may change states on different nodes. For example,

an event (n1 → n2, recv) indicates that n2 has successfully

received this packet. Meanwhile, it also implies n1 has sent

the packet. At this time, the state on node n1 can transit to

the corresponding state. For an event at node n2, both states

on node n1 and n2 should accordingly change. Thus network

operations can be used to synchronize states on different

nodes.

More specifically, we connect different FSMs based on the

prerequisite transitions. For an FSM F1 and a transition ti1,j1
(i.e. si1 → sj1) with event ei1,j1 on F1, if transition ti2,j2
is a prerequisite transition of ti1,j1 in F2, we can add a

transition si1 → sj2 with event ei1,j1 from F1 to F2. We

denote the state sj2 as the prerequisite state of si1 . It can

be seen that prerequisite transitions should be finished (i.e.,

prerequisite state is reached) in F2 before moving to the

current state sj1 with event ei1,j1 in F1. It should be noted

a state may have both intra-node transition and inter-node

transition for the same event. Meanwhile, a state may have

inter-node transitions to different nodes with the same event.

For example, a broadcast event can lead to state change on

different nodes.

Figure 2 also illustrates some inter-node transitions to

connect different FSMs. For example, there is an inter-node

transition from s1 on n2 to s3 on n1. This is because a recv

event on n2 indicates a send event on n1. Otherwise, there
should be no recv event on n2. Meanwhile, for event with

intra-node transition, there may also exist corresponding inter-

node transition. In Figure 2, we omit some of those inter-node

transition for brevity.

Processing Events. The connected FSMs take events as

input, transit on the FSMs and then output the event flow. We

process events on the connected FSMs based on normal tran-

sition, intra-node transition and inter-node transition. Assume

the current processing node is curNode, the main steps for

the transition algorithm start from a given node and process

events recursively as follows.

1) If there is a normal state transition for curNode with

the current event curEvent, process the corresponding

normal state transition and add curEvent to the event

flow. Meanwhile, if there is inter-node transition to a

state sx on another node i for the event, recursively

process events on the node i until reaching state sx.
2) Otherwise, if there is an intra-node transition, process

the intra-node state transition to state sx. If there are

prerequisite events for curEvent on curNode, we need
to add those prerequisite events to the event flow and

recursively process those prerequisite events as in step

1). This is because current event curEvent only occurs

after all prerequisite events have occurred. Then, we add

event curEvent to the event flow. Those prerequisite

events corresponds to those lost events and are inferred

by our method.

3) If there is no event for curNode, we switch to other

nodes with unprocessed events. For events that cannot

175174174174174174

be processed (i.e., no available transition) for curNode,
we omit those events on curNode.

4) Otherwise, the transition stops.

Transition Example. With inter-node transition, events

from different nodes are connected. Meanwhile, with prereq-

uisite events, lost events can be inferred from the transitions.

In Figure 3, we illustrate how to recursively process events

with inter-node transitions.

Figure 3 (a) illustrates inference engines with cascading

inter-node transitions. The transition algorithm first processes

the event e1. While processing e2, there is a prerequisite

state s4 that should be processed first. Thus the algorithm

needs to process e3 and e4. While processing e4, the prereq-

uisite state s6 needs to be processed first. Therefore, event

e5 and e6 are processed. The final obtained event flow is

e1, e3, e5, e6, e4, e2. Such a case may happen for a multiple

hop data transmission in distributed networks, e.g., wireless

sensor networks. From this example, we can also see that even

when there is only one event e2 on node 1 and all other events

are lost, the transition algorithm can generate the correct event

flow and infer lost events. More specifically, e1 can be inferred

since it is a prerequisite event for intra-node transition from

s1 to s3 with event e2. Events e3, e4, e5, e6 are inferred with

cascaded prerequisite events according to inter-node transition.

Figure 3 (b) illustrates inference engines with 1-to-many

inter-node transitions. The events and transitions are the same

with those in Figure 3 (a) except in this example there are

multiple inter-node transitions for a particular event. In this

case, events e1, e2 and e5, e6 are prerequisite events for e4,
and should be processed first. Therefore, the resulted event

flow can be e1, e2, e5, e6, e3, e4. The relative ordering for

events between node 1 and node 3 are not determined. This can

be used to model the process of node 2 waiting for response

from node 1 and 3. For example, this can be a case of data

dissemination, in which node 2 are waiting to check whether

node 1 and node 3 have received data from node 2.

Figure 3 (c) illustrates inference engines with many-to-1

inter-node transitions. Event e3 is the prerequisite event for

events e1 and e5. Thus e3 should occur before e1, e2 and

e5, e6.
Figure 3 (d) illustrates inference engines with mixed inter-

node transitions. Accordingly, the event flow should satisfy

the constraints with mixed inter-node transitions. For example,

the inter-node transitions with events e1 and e5 indicate that

e3 should occur before e1 and e5. Inter-node transition e4
indicates event e2 and e6 should occur before e4. Such a case

can be used to model the negotiation process in which node

2 broadcasts information and then waits for responses from

node 1 and node 3.

C. Event Flow

According to the aforementioned event processing method,

we can obtain the event flow in the presence of event loss.

We can also infer lost events that are not recorded in the log.

Normally, if a transition follows a normal state transition, there

is no lost event. For intra-node transition from state sx to state

sy , there may be some lost events. Those prerequisite events

can be inferred as lost events. It should be noted that not all lost

events can be inferred by the inference engine. Meanwhile, we

also show that the resulted event flow and inferred lost events

can be used to derive network information and be used for

network diagnosis. For example, the results for different cases

in Table II are as follows.

• Case 1. The input events are 1−2 trans and 2−3 recv.

The output event flow is 1−2 trans, [1−2 recv], [2−3

trans] and 2−3 recv. The events in square brackets [] are

those lost events inferred with the transition algorithm.

The algorithm first processes event 1−2 trans. Then the

algorithm processes event 2−3 recv. For event 2−3 recv,

event 1−2 recv, and 2−3 send are prerequisite events and

thus they are added to the event flow. In this example,

not only the lost events [1−2 recv] and [2−3 trans]

are inferred, the correct ordering for events are also

recovered.

• Case 2. The output event flow is 1−2 trans, [1−2 recv]

1−2 ack recvd. The packet is lost after the packet is

successfully transmitted to node 2 since a lost event [1−2

recv] is inferred with the transition algorithm.

• Case 3. The output event flow is [1−2 trans], [1−2, recv],

1−2 ack, 1−2 trans. The lost events [1−2 trans], [1−2,

recv] are inferred with event 1−2 ack. The packet is

retransmitted from the inferred lost events. Meanwhile,

the packet is lost when the packet is transmitting from

node 1 to node 2. Unlike traditional analysis, even though

there is a pair of trans event and ack recvd event, this

does not mean the packet is received at the receiver. The

ordering for the trans and ack event impacts the actual

event flow as well as the diagnosis result. Based on the

event flow, we can investigate the system performance

and examine the protocol and program states according

to the position where the transition stops in the system.

• Case 4. The output event flow is 1−2 trans, 1−2 recv,

1−2 ack recvd, 2−3 trans, 2−3 recv, 2−3 ack recvd, 3−1

trans, 3−1 recv, 3−1 ack recvd, 1−2 trans, [1−2 recv],

1−2 ack recvd, 2−3 trans. From the lost event 1−2 recv

that is inferred with inference engine, we know that the

packet is received on node 2. Further, from event 2−3

trans, we can infer the packet is lost when node 2 is

transmitting to node 3.

V. APPLY REFILL TO A REAL NETWORK

We implement REFILL on both wireless sensor networks

and PC. In WSNs, we implement the event system with NesC

language. The event system has no special requirement for

event collection. We use the widely adopted data collection

protocol CTP [4] to collect events. It should be noted that we

do not require to collect complete logs from all nodes. We

implement the inference engine and the transition algorithm

with Perl language.

We evaluate the performance of REFILL from the following

aspects:

176175175175175175

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0 6 12 18 24

N
od

e
ID

Time (hour)

overflow
timeout

acked

received
duplicated

unknown

Fig. 4: Sink view of lost packets.

• We evaluate the performance of using REFILL for state

transition on different nodes to derive the event distribu-

tion for lost packets in a real wireless sensor network;

• We further show the performance of using REFILL to

find the causes for packet losses in a real network.

• We show the implications to network design and mea-

surement based on the results of REFILL. We show how

to improve the network performance with results from

REFILL.

A. Network Protocols

We apply REFILL to an outdoor wireless sensor network

project, CitySee, which consists of 1200 nodes deployed in an

urban area. Figure 8 shows the spatial distribution of sensor

nodes. Before introducing the details of the evaluation results,

we first briefly introduce the network protocols in the network.
1) PHY Layer: At the physical layer, we use the CC2420

radio chip which is compliant with 802.15.4 protocol. The

packet contains a PHY header (i.e., the length field of the

packet), the payload and a Cyclic redundancy check (CRC).

At the receiver, each node first demodulates the PHY header

and then receives the packet according to the length. When

a packet is entirely received, the PHY layer first checks the

CRC. If the CRC check is not passed, the PHY layer simply

discards this message. Otherwise, the PHY layer sends an

acknowledgement to the sender (in hardware ACK model) and

then delivers the packet to the upper layer.
2) MAC Layer: The MAC layer header follows the PHY

layer header. It mainly contains the length field, sender and

receiver ID, the frame check sequence (FCS) and the data

sequence (DSN) field. Sensor nodes are battery powered and

thus the energy budget is very limited. We use the Low Power

Listening (LPL) MAC layer protocol to save energy. The basic

mechanism of LPL is as follows. Each node periodically turns

on the radio to sense the channel. If the channel is idle, which

implies no packet transmission, the node will turn off the radio.

If the channel is busy, the node will keep the radio on and then

decode the signal to see if it is the intended receiver. If yes,

it first sends an acknowledgement and then keeps the radio

on for another short period of time for possible consecutive

packets. Otherwise, it will turn off the radio. If a node has

packets to send, it repeatedly sends the packets until an ACK

is received or a timeout of a certain period.

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0 6 12 18 24

N
od

e
ID

Time (hour)

overflow
timeout

acked

received
duplicated

unknown

Fig. 5: Causes for lost packets with REFILL.

3) Data Collection: The data collection protocol is based

on the Collection Tree Protocol (CTP) [4]. In CTP, data are

collected through a routing tree, which is built based on the

ETX metric [1]. More specifically, the link ETX is calculated

as 1/q, where q is the link quality. A path ETX is the sum

of link ETXs along the path. Each node selects the path with

smallest ETX as the routing path and accordingly chooses

the parent node. In the network, each node first measures the

link ETX to all neighbors. The link ETX between n1 and n2,
i.e., linkETX(n1, n2), can be calculated by measuring the link

quality between n1 and n2. Each node n is initialized with an

infinite path ETX value, i.e., pathETX(n) = ∞ except the sink

node with a path ETX of 0. To calculate the path ETX value

to the sink node, each node broadcasts a routing packet with

the path ETX value. Upon receiving a routing packet from

node n1, n2 updates the path ETX value to pathETX(n1) +
linkETX(n1, n2) and change the parent to n2 if and only if

pathETX(n2) > pathETX(n1) + linkETX(n1, n2).

B. Network Diagnosis with Event Flow

During the operation of the network, we find there exist a

portion of packet losses. To further examine the lost packets

to improve the network performance, we apply REFILL to

the collected log data from the network. We can obtain the

event flow for each packet. Further, from the event flows,

we can obtain the information where packets are lost and

why they are lost. We show the information obtained by

applying REFILL, the spatial and temporal distribution of

packet losses. We show the differences for the spatial and

temporal distributions between REFILL and other approaches.

Further, based on REFILL, we examine the causes for packet

losses in the network. We also show the implications of the

results and how to improve the system performance based on

the results.

1) Temporal Distribution: We first examine the temporal

distribution of lost packets. From the event flow, we can also

derive the causes of packet losses from the event flow. For

example, we say the cause is received loss if the last event of

the packet’s event flow is a received event.

Figure 4 shows the temporal distribution of lost packets in

the source node’s view. This is obtained from the collected

data packets by analyzing whose packets are lost. It should be

177176176176176176

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 0 5 10 15 20 25

P
er

ce
nt

ag
e

Timeout
Acked

Received

Duplicated
Overflow
Unknown

 0

 4500

 0 5 10 15 20 25

of

 L
os

es

Day

improve

Fig. 6: Percentage of different causes over a month.

Fig. 7: Connection to the pins.

noted that we do not have the received time for lost packets,

since those packets are not received at the base station. Thus,

we calculate the approximate lost time for those packets as

follows. We calculate the time for the received packet right

before the lost packet. Then we calculate the sequence gap

between the lost packet and the packet before the lost packet.

Since packets are sent periodically in our network, we can

derive the sent time of lost packets and use it to approximate

the packet loss time. The x-axis is the time over two days and

y-axis is the node ID. Different markers represent different

causes. We can see that packets generated at different nodes

have a similar probability to get lost. Meanwhile, packet losses

are strongly temporal correlated. Packet losses often occur at

the same time period. We can see that the number of timeout

losses and duplicated losses is not high. There are few overflow

losses in the network. This is because that the network is not

under a high traffic pressure. On the other hand, those timeout

losses, though impact different nodes, almost occur at the same

time. Meanwhile, there are only few duplicated losses in the

network and they also happen at almost the same time period.

However, from Figure 4, we still do not know where packets

are lost. We further investigate packet losses in the network

with REFILL. Figure 5 shows the causes of packet loss

according to loss occurrence positions. The loss position is

the sensor node where the packet gets lost. The loss causes

and loss positions are derived from the event flow of REFILL.
We find that though the sources of lost packets are evenly

distributed, the loss positions are on a small portion of nodes

rather than evenly distributed in the entire network. We can

also see that timeout and duplicated losses are bursty as shown

in those ellipses in Figure 5. We investigate the network and

find that this may be due to temporary low quality links or

routing loops. Meanwhile, we find that there are a lot of

received losses on the sink node (upmost band in the Figure 5).

Fig. 8: Spatial distribution of received losses. The radius of

circle indicates the number of packet losses. The triangle

denotes the sink node.

This indicates that many packets are lost even after they have

arrived at the sink node.

We also examine the packet loss causes over 30 days

based on the results from REFILL. Figure 6 shows the cause

composition. For different days, the causes are different and

the composition of different causes are also different. First,

REFILL finds the causes for most lost packets over 30 days.

The two most common causes are the acked and received

losses. This means that the number of packet losses due to

low link quality is not high. We investigate the data and find

that those received and acked loss are mostly due to packets

loss on the sink. Thus there are many received losses on the

sink node as shown in Figure 6. On the 9th and 10th day, the

packet losses become high due to snow.

Based on the result, we investigate packet losses on the sink

and the received losses and acked losses. We find that this is

simply due to the unstable connection from the sink node to the

base station. As shown in Figure 7, the sink node is connected

to a high speed backbone node (mesh node) using RS232

connection. We directly connect RS232 pins to the chip pins on

board. By using the signal from the chip, data are transmitted

through the RS232 wire to the mesh node. Though we have

conducted extensive experiments in testbed environment, when

deployed outside we use a long cable and the signal becomes

unstable over the long cable. Hence, many packets from sensor

node to base station get lost. This problem, which seems to be

subtle, is not revealed until we thoroughly analyze the packet

loss position by using REFILL on the log data. Meanwhile, it

is difficult to reveal the problem since the sink node is installed

at a high position that we cannot easily to reach. After the 23th

day, we changed the sink and its connection to the mesh node.

We can see packet losses are significantly reduced.

2) Spatial Distribution: With REFILL, we can also derive

the spatial distributions for different types of packet losses.

Figure 8 shows the received packet losses, i.e., packet losses

even when they are received on a certain node. For example,

a packet gets lost while being processed inside a node. It can

also be seen that the sink node has a large number of received

losses, in which packets get lost even after they have arrived at

the sink node. One of the main causes is the sink node design

as we have explained. We have fixed this problem after we

investigate the sink node.

178177177177177177

C. Cause Inference

We further look into the breakdown of packet losses. Over

the 30 days, server outage (base station server down) results in

22.6% of packet losses. Then with REFILL, we find the causes

for other packet losses. In those packet losses, duplicated

losses, timeout losses and overflow losses are of 0.3%, 0.8%

and 1.1%, respectively.

According to the output of REFILL, 32.2% of the losses are

due to received loss. We further examine those received loss

and find among those received losses, 20.0% are lost on the

sink node and 12.2% are lost on other nodes.

An acked loss on node n means that an acked packet still

gets lost. 38.6% of losses are due to acked loss. Among those

acked losses, 38.0% are acked loss on the sink node, i.e., nodes

received packets from the sink node but the packets are lost.

0.6% are lost on other nodes.

D. Implications

1) Whose packets are lost and where packets are lost?: We

can calculate whose packets are lost from the collected data

packets. As shown in Figure 4, it seems that different nodes

have similar probabilities for lost packets and nodes play the

same role in the network. For system designers, it seems that

packet losses are evenly distributed in the network. However,

by examining where packets are lost with REFILL on the

collected log, we find that different nodes are significantly

different. There exist a small portion of nodes where a large

portion of packets are lost. Those nodes are much more

important than other nodes in terms of packet losses. We also

find that node location plays an important role. Though most

routing protocols have considered node and link dynamics,

node positions and connections should be carefully considered

especially during the deployment phase. This can significantly

improve the system performance.

2) Correlation based approaches in time domain.: Many

existing works derive the packet loss causes using correlation

based method in time domain [15]. To find the causes of packet

losses, packet losses are correlated with events during the same

time period. However, correlation based approach may have

some limitations according to the result of REFILL. First, at
the same time period, there may exist different causes. It is

difficult to distinguish those causes at the same period, making

correlation based method difficult to reveal the real cause.

Even when there are only a single cause during a time period,

correlation based approaches may still have some limitation.

Some important causes (e.g., timeout loss) may only result in

a few packet losses. Those packet losses are much less than

that resulted from other causes and are easy to be overlooked.

3) Node loss vs. link loss.: Traditionally, we focus on link

losses. From the result, we can see packet losses due to

retransmission timeout are not high. For example, with up

to 30 retransmissions for each packet, packet losses due to

low link quality become very low. On the other hand, we find

that many packets are lost even though they are successfully

received at some node. This tells us that we should carefully

examine problems inside each node. First, packet are delivered

all

Outage
22.6%

Network
77.4%

Received
32.2%

sink
20.0%

others
12.2%

Acked
38.6%

sink
38.0%

others
0.6%

Timeout
0.8%

Duplicated
0.3%

Overflow
1.1%

Unknown
4.4%

Fig. 9: Percentage of different causes.

from the low layer to the high layer in the operating system

on sensor nodes. Due to limited resource, the OS often has

some tradeoffs. For example, a task cannot be put into the

queue when there is a same task in the queue. This may

result in task failure and hence packet loss. Second, different

components have different design objectives and those design

objectives may even have conflicts. For example, in the radio

communication component, a node will check the CCA value

after disabling the interrupt. Packets received during such a

time period may get lost.

4) The last mile in the network.: During the operational

time, we have experienced many server outage events. Those

events, which are not problems of WSNs, indeed result in

packet losses. Before the deployment phase, we conduct

extensive lab-tests and small outdoor scale tests. We focus

on the performance of WSNs while overlook the backbone

network to the base station and the connection from WSNs to

the backbone network. This tells us that we should thoroughly

test every part of the entire network.

5) ACK mechanism.: We find that a portion of packets may

get lost even when ACKs for those packets are received at the

sender. In our network, hardware ACK is used. The receiver

delivers a packet to upper layers after ACK is sent at the PHY

layer. However, this packet may not be successfully delivered

to upper layers due to limited memory, computation resource,

etc. For example, the memory may be full and not be able

to accommodate a new packet or the MCU is too busy to

process a new packet. Thus the packet will be discarded while

being delivered to upper layers even it is received by the

hardware. This also means a packet may still get “lost” even

when the sender has successfully received the hardware ACK.

An alternative approach is to send ACK at the software layer,

i.e., send ACK after upper layers have successfully received

the packet. However, this will introduce delay for the ACK,

which decreases the transmission efficiency.

VI. RELATED WORK

There are a large collection of log analysis works. For

example, Sherlog [17] is proposed to analyze local program

log for diagnosis. In Sherlog, program logs are analyzed in

order to investigate possible bugs in the program. Further,

proactive logging method [19] [18] is proposed to improve

the quality of logging. With proactive logging, logs can be

appropriately inserted into the source code to facilitate the

diagnosis in the program. Those works mainly consider using

179178178178178178

the log on a single node. They do not use logs from multiple

nodes in distributed networks to derive useful information. Our

work is inspired by the work Wit [10] and NetCheck [21].

To study the detailed MAC layer behavior, Wit proposes

a data analysis method based on wireless sniff data from

different nodes. However, the method is based on sniffer data

in which a portion of packets can be recorded on multiple

sniffers. Logs are combined with common recorded events.

When common events are lost or not recorded, logs cannot be

combined. Implicit network correlations, which provide useful

information to combine different logs, are not considered

and leveraged. While in REFILL, we do not have commonly

recorded synchronization events. NetCheck proposes a method

to analyze the log data in the network. Event correlation is not

considered while processing log. NetCheck does not show how

to connect inference engines on different nodes and does not

consider the impact of lost events.

There are also many works for path tracing by using data

from different nodes. PathZip [9] presents a method to recover

the path of the packet from the collected data. For example,

PathZip uses a hashtable to store the nodes on the path. It is

based on a precondition that neighboring nodes of each node

are known in prior. Then it searches in each node’s neighboring

nodes to find nodes on the path hop by hop. Recently,

DTrack [2] proposes a method for accurate path tracking

with probings. DTrack improves existing methods since most

existing works consider all paths equally. DTrack optimizes

the probing in packet tracing according to the likehood of path

changes. There are other packet tracing methods in Internet to

improve the performance in trace route [12] [13]. There are

also other works to trace the evolution of IP topologies [3] [7].

Different from those works, REFILL can recover the event

flow and thus the packet path based on individual logs from

different nodes in the presence of event losses.

VII. CONCLUSIONS AND FUTURE WORK

We present REFILL, a method to reconstruct network be-

havior with individual and lossy logs in distributed networks.

The main idea of REFILL is to build inference engines for each

node and connect multiple inference engines of different nodes

with implicit correlations. REFILL can derive the event flow

and thus reconstruct the network behavior from unsynchro-

nized and incomplete logs. We apply REFILL to a real wireless

sensor network project consisting of 1200 nodes. The results

show that REFILL provides event flows that are otherwise

difficult to achieve with other approaches. Based on the event

flow, we can reveal the spatial and temporal properties of

packets losses. We can also find the causes of packet losses.

Further, we improve the network performance based on the

results from REFILL. In the future, we will enhance REFILL

to include more events in the network, and work on more

efficient and effective logging methods for REFILL.

REFERENCES

[1] D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. In Proceedings of ACM MobiCom,
2003.

[2] I. Cunha, R. Teixeira, D. Veitch, and C. Diot. Predicting and tracking
internet path changes. In Proceedings of ACM SIGCOMM, 2011.

[3] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms
for large-scale topology discovery. In Proceedings ACM SIGMETRICS,
2005.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of ACM SenSys, 2009.

[5] M. Keller, J. Beutel, and L. Thiele. How was your journey? uncovering
routing dynamics in deployed sensor networks with multi-hop network
tomography. In Proceedings of ACM SenSys, 2012.

[6] N. Kothari, T. Millstein, and R. Govindan. Deriving state machines from
tinyos programs using symbolic execution. In Proceedings of IEEE/ACM
IPSN, 2008.

[7] M. Latapy, C. Magnien, and F. Oudraogo. A radar for the internet. In
Proceedings of Intl. Workshop on Analysis of Dynamic Networks, 2008.

[8] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese. Fine-grained
latency and loss measurements in the presence of reordering. In
Proceedings of ACM SIGMETRICS, 2011.

[9] S. Li, X. Liao, D. Dong, and X. Lu. Pathzip: Packet path tracing in
wireless sensor networks. In Proceedings of IEEE MASS, 2012.

[10] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the
mac-level behavior of wireless networks in the wild. In Proceedings of
SIGCOMM, 2006.

[11] X. Mao, X. Miao, Y. He, X.-Y. Li, and Y. Liu. Citysee: Urban co2
monitoring with sensors. In Proceedings of IEEE INFOCOM, pages
1611–1619, 2012.

[12] R. Sherwood, A. Bender, and N. Spring. Discarte: a disjunctive internet
cartographer. In Proceedings of ACM Sigcomm, 2008.

[13] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. In Proceedings of ACM Sigcomm, 2002.

[14] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Understanding the
Causes of Packet Delivery Success and Failure in Dense Wireless Sensor
Networks (Technical report SING-06-00). Technical report, Stanford
University, 2006.

[15] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California
Fault Lines: Understanding the Causes and Impact of Network Failures.
In Proceedings of ACM SIGCOMM, 2010.

[16] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and Yield in a Volcano Monitoring Sensor Networks. In Proceedings of
USENIX OSDI, 2006.

[17] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy.
Sherlog: error diagnosis by connecting clues from run-time logs. In
Proceedings of the International Conference on Architecture Support
for Programming Languages and Operating Systems (ASPLOS), 2010.

[18] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, Y. Zhou, and S. Savage.
Be conservative: Enhancing failure diagnosis with proactive logging.
In Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation (OSDI), 2012.

[19] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving software
diagnosability via log enhancement. In Proceedings of the International
Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[20] J. Zhao and R. Govindan. Understanding Packet Delivery Performance
In Dense Wireless Sensor Networks. In Proceedings of ACM SenSys,
2003.

[21] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I. Beschast-
nikh, and J. Cappos. Netcheck: Network diagnoses from blackbox traces.
In Proceedings of USENIX NSDI, 2014.

180179179179179179

