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Abstract—The application of Wireless Sensor Networks
(WSNs) often falls into unexpected poor performance conditions
due to many factors such as complex network interactions,
software bugs and incorrect configurations. Diagnosing such a
network is challenging since it is difficult to obtain information
from the network due to factors including (1) non-deterministic
network interactions among motes; (2) difficulties in reconstruct-
ing the status of each individual mote; and (3) unavailability of
the real environment information. To address these problems, we
propose a diagnosis tool called ALog which analyzes the local logs
and the source code to infer what happens in network. Based on
the analysis, we further derive the states and possible problems
accordingly. We implement ALog and evaluate its efficiency with
two real case studies. The results demonstrate that ALog is
accurate and applicable for diagnosing real sensor networks.

I. INTRODUCTION

The applications of Wireless Sensor Networks (WSNs)
require high availability and reliability in real world[1–4].
When the WSN system faces unexpected behaviors, e.g.poor
network performance or partial unknown failures, adminis-
trator and service engineers are required to diagnose and
solve the problem efficiently. However, diagnosing a WSN
is challenging with limited evidences including: network logs
collected from motes, application source code and deployment
topology. Furthermore, there are various reasons to obscure
the administrator to get the fact about what really happened
in network such as non-deterministic behaviors in network
interaction among motes, difficulty in reproducing the real
preemptive execution paths in mote and unavailability of the
real information of environments.

Existing works in the area of WSNs can partially resolve
the above issue. Specifically, offline analysis based approaches
[5] collect certain network traces and then offer the function-
ality of trace based simulations and tests. Those approaches
are exhaustive methods and perform plenty of tests to WSN
applications, Unfortunately they are likely to miss the real
informative evidences for the network. Another category of
approaches are based on runtime diagnosis [6] analysis. Due
to the complexity of network interactions and software process-
ing, those approaches usually have to inject numerous trace-
points or agents into the node program, possibly incurring
excessive costs in communication, memory, and computation.
As a summary, it is important to provide mote information and
error scene during the suspicious time, however, such a tool is
still not available.

The comprehensive error scene for a problematic network

should be considered in two aspects: (1) the error scene should
be related to the source code, so as to help find out the detailed
behavior in network interactions. (2) The network evidences
should be considered in order to narrow down the probable
cause. However there are difficulties in both how to model the
interactions and how to leverage the network log inferring the
error scene.

In order to address the above issues, in this paper we pro-
pose ALog, a diagnostic approach for error scene restoration
in WSNs. ALog utilizes the logs recorded on sensor nodes
to retrieve runtime network information and conducts offline
analysis to restore the error scenes. It models the software
execution with distributed preemptive features as a Network
Context Control Flow Graph (NCCFG) for WSNs. Based on
NCCFG, ALog infers all possible pathlets that connect every
two adjacent log entries under certain variable constraints. By
merging all those deterministic and possible pathlets, ALog is
able to restore all scenes that possibly took place during the
interested operational period. We propose a two-step log-driven
inference algorithm to restore the error scenes and implement
ALog based on TinyOS and present two real cases as well as
evaluation results to demonstrate the effectiveness of ALog.

The remainder of this paper is organized as follows. We
elaborate on the design of ALog in Section II, followed by
evaluation and case studies in Section III. We discuss the
related work in Section IV and conclude this work in Section
V.

II. ALOG SYSTEM DESIGN

This section introduces the design of ALog. We start with
an overview of ALog. Then we respectively elaborate on the
two core steps: network log parsing, network behaviors and
internal states inference.

A. ALog Overview

Generally, ALog is designed for inferring and recon-
structing network error scene to help network administrator
understand what have happened in WSNs during the poor
performance condition.

Types of Network Scenes: According to the complex
network interaction behaviors and the preemptive execution
model of nesC language, inferring and reconstructing network
error scene form network logs is a significant challenge. In this
work, we leverage both the network logs information and the
rule of network interaction hidden in mote source code and
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Fig. 1. The workflow of ALog.

nesC execution model to narrow down the possible network
scenes. Basically, we cut output network scenes into three parts
include: determinate Scene, possible scene and impossible
scene.

Determinate Scene: the partial interaction processes that
definitely have occurred and mote internal states (a set of
variables values) were held during the unexpected condition.

Possible Scene: the partial interaction process that may
have occurred and mote internal states (a set of variables
values) may have been held during the unexpected condition.

Impossible Scene: the partial interaction processes that
have definitely not occurred under the corresponding con-
straints during the unexpected condition.

To accomplish above objectives, ALog first needs to parse
network logs and using these logs to identify starting points in
source code for information inference. Then using the initial
information provided by logs, it tries to statically “walk”
through the code to infer the above information based on the
Network Context Control Flow Graph (NCCFG) that maps
the nesC code execution model and the rules of network
interaction. The workflow of ALog is shown as in figure 1.

B. Network Log Parsing

The basic version of this parsing process is a string
matching work if all log messages are simply produced by
statements like “printf ”. We could use the regular expression
to match the variable values in log message.

However, for a modularized logging facility which has
complicated wrappers to support customized logging format,
the basic parsing process could not work well because the real
string of a log statement is hidden in log wrappers. We simply
discuss the solution as extension. Our intensive parsing process
could handle this problem by tracing log message in Control
Flow Graph (CFG). The real string of one log statement would
be achieved by this way.

C. Network Behaviors Inference

To guarantee the ALog practical and accurate for a real
sensor network system, we design this part into two steps:

1) ALog first constructs a Network Context Control
Flow Graph (NCCFG) for network.

2) ALog starts on searching possible pathlets under cor-
responding constraints between two adjacent logging
messages of the subsequence network logging file in
NCCFG. Then ALog uses two algorithms to print
all network scenes as results which are classified as
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Fig. 2. An example of Task Posting Tree and the corresponding Task Graph.
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three parts: determinate scene, possible scene and
impossible scene.

Definition 1: A Task Posting Tree (TPT) for a module m
is a directed tree of 2-tuple GTPT (m) = (Vm, Em), where Vm

is a set of vertexes and Em is a set of directed edges. Each
vertex is a post statement in control flow graph.

Definition 2: A Task Graph (TG) of a module m is denoted
as a directed graph of 2-tuple GTG(m) = (Vm, Em), where
Vm is a set of task components in m, and Em is set of directed
edges indicating possible execution sequences among these
candidate tasks. If there is an edge e ∈ Em < Vi, Vj >, we
say task Vj has opportunity to execute after task Vi.

Figure 2 is a demo shows the Task Posting Tree and
the corresponding Task Graph for the motivating example
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in section II. In motivating example, there are two event
handlers Receive.receive and TempSensor.dataReady post
task2 and task1 respectively. This type of structure could be
modeled as entry → task# shown as in figure 2(a). Other
type of structure describes the relationship among tasks.

Furthermore, we introduce a new network context control
flow graph, called NCCFG, to express the interaction among
motes based on TG. An NCCFG of a network n aims to ex-
press the preemptive execution behavior of network caused by
interrupts, deferred execution of tasks and network interaction
information. The definition is as follows.

Definition 3: A Network Context Control Flow
Graph (NCCFG) of a sensor network N is defined
as a directed graph of 6-tuple GNCCFG(N) =
(GCFG, Enetwork, Ephantom, Epreemption, Eresumption, Etask),
where GCFG are control flow graph of all modules in network.
Enetwork,Ephantom,Epreemption,Eresumption,Etask denote
network edges, phantom edges, preemption edges, resumption
edges and task edges respectively.

In order to illuminate the detail design of NCCFG, we use
a concrete example to express the necessary information with
each type of edge shown in figure 3.

The next challenge focuses on how to use the network
logs to narrow down the possibility of network scenes. Based
on NCCFG, our approach proposes a log-driven matching
algorithm that leverages 5 special rules to output the possible
network scenes efficiently.

First ALog gets the all reasonable possible pathlets be-
tween two adjacent logs which should satisfy the corre-
sponding constraints, for example if there is a path out-
puts log m1@line#07 and n1@line#30, sub-procedures
task1@line#05 and dataReady@line#28 must under the
constraints c1(highTemp = true and someone have post
task1 before)and c2 (verbose = true and temperature sensor
data have ready) respectively in motivating example. Figure
4 illustrates the step about each two adjacent logs matching
process. Note those network logs are connected by network
interaction for example send and receive event pairs. The detail
algorithm of this sub-step is shown in Algorithm 1.

Algorithm 1 getAdjacentLogPath(GNCCFG, v).

Input:
GNCCFG(N): N indicates the abstraction of network and
GNCCFG denotes the NCCFG

Output:
Psub(p, c): A set of possible pathlets p and corresponding
constraints c between two adjacent logs.

1: mark v as explored, combine the sub-path constraints c
2: for all edges e in GNCCFG(N).AdjacentEdges(v) do
3: if edge e is unexplored and reasonable(e) then
4: v∗ ← GNCCFG(v, e).AdjacentV ertex(v, e).
5: if vertex v∗ is unexplored then
6: mark e as discovery edge.
7: add v∗ and merge c∗ = getConstraints(v, v∗) to

Psub.
8: update context to reasonable(e).
9: recursively getAdjacentLogPath(GNCCFG, v

∗).
10: else
11: label e as a back edge.
12: end if
13: end if
14: end for
15: return Psub;

Algorithm 2 getNetworkScenes(GNCCFG, v).

Input:
Psub(p, c): A set of possible pathlets p and corresponding
constraints c between two adjacent logs.

Output:
NS(p, c): A set of possible network scenes and corre-
sponding constraints c.

1: merge all pathlets in Psub as an entire network scenes
(NS) based on the satisfiability c1∧c2∧c3∧... in network
scene.

2: if SAT not satisfied (c1 ∧ c2 ∧ c3 ∧ ...==false) then
3: mark as impossible scene in NS.
4: end if
5: if SAT satisfied (c1 ∧ c2 ∧ c3 ∧ ...==true)and all network

scenes use this pathlet then
6: mark as determinate scene in NS.
7: else
8: mark as possible scene in NS.
9: end if

10: return NS;

III. EVALUATION AND CASE STUDIES

This section demonstrates the effectiveness of ALog as a
diagnosis tool and two real case studies.

A. Methodology

We evaluate the performance of NCCFG model on real
world applications adapted from the TinyOS distribution and
CitySee. Furthermore we show two cases study how Alog help
a programmer to verify the hypothesis he/she holds based on
network logs.

B. Case 1: A Race Failure about Share Variable

For a long running system, the administrator always face
maintain and diagnosis problem. Figure 5 shows a simplified
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TABLE I. NCCFG DETAIL INFORMATION FOR DIAGNOSING BY

ALOG.

Applications # of vertex TG LOC log points Pathlet length

Blink 17 3 132 4 3

TestNetwork 127 0 351 7 5.5

TestNetworkLpl 129 0 353 7 5

CitySee 129 0 4679 20 7
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Fig. 5. Diagnosis report for case 1 by ALog.

ALog report for this problem includes: symptoms, possible
network scenes and so on. For clear demonstration, we simply
list 8 different network scenes from more than 64 possible
scenes produced by ALog and mark them as determinate scene,
possible scene and impossible scene to help diagnosis.

We explain the scenes as follows. For scenes 1, 2, 6 and 8,
the packet loss problem is caused by poor link. Furthermore
in spite of link quality or collision problem, there still is
possibility lead to failure of sending operation in mote A,
such as scenes 3, 4, 5, and 7. These scenes reveal a potential
bug in source code, which is caused by two preemptive event
handlers share a variable smsg without considering data race.
So the share variable smsg could be re-written between first
send event and senddone event. The execution order also
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msg3
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Fig. 6. Diagnosis report for CitySee by ALog.

#01:  event message_t* SubReceive.receive(message_t* msg,

#02: void* payload, uint8_t len) {

#03:    log("LI", "Received upper packet. Will signal up\n");//msg1

#04:    processReceivedMessage(msg, payload, len);

#05:    return signal Receive.receive(msg, call Packet.getPayload(msg, 

#06: call Packet.payloadLength(msg)),  

#07: call Packet.payloadLength(msg));

#08:  }

#09:  void processReceivedMessage(message_t* ONE msg, void* (len) 

#10: payload, uint8_t len) {

#11      uint16_t id2replace;

#12: id2replace = AM_BROADCAST_ADDR;

#13:    //Fixing: add a timer to evict dumb motes

#14:    log("LI", "receiving packet, buf addr: %x\n", payload);//msg2

#15:  }

#16: // code omitted

#17: log("sending packet, buf addr: %x\n", payload);//msg3

#18:  call Send.send(&msg, sizeof(msg)); 

Fig. 7. Code Link Estimator Bug in CitySee.

could cause sending failure error by two continuous send calls
without senddone event for example scenes 4, 5 and 7. Note
that scene 3 is an impossible scene which breaks constrain
of periodical timer because the logic of design guarantee
temperature sensing operation would not continuously invoked
quickly.

C. Case 2: A Routing Error about CTP

This case introduces a real diagnosis problem form CitySee
system, a large-scale WSN system in urban. In earliest period
of CitySee, we adopt collection tree protocol (CTP) as the
basic routing protocol. However sometimes the administrator
finds a performance problem shows some motes seems failure
and could not report sensing data to base station. Then the
administrator achieves the corresponding network logs collect-
ed from motes and uses ALog to infer the possible network
scenes based on logs and source code. Figure 6 shows a
simplified report produced by ALog and Figure 7 shows the
corresponding source code.
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IV. RELATED WORK

Existing diagnosis system approaches for WSNs, based
on log or trace, fall into two categories: before or after
deployment.

The first category always leverages testing or simulating
technique to troubleshoot the local error in mote at before
deployment. Safe TinyOS is a diagnosing tool for checking
type-safe feature of application in memory. It is embedded in
TinyOS compilation toolchain and warns the developer about
unsafe code fragments during compilation and additionally
instruments the assertion code with safety annotations prevent-
ing memory corruption at runtime. Other typical approach is
KleeNet [7], which is a debug environment running configured
sensor network programs on symbolic input and automatically
tests non-deterministic possible failures. In this way, program
developers are able to discover potential bugs and verify the
reliability of application before deployments. Other related
works include T-check [5], FSMGen [8] and so on. However,
these approaches often provides simulating and testing func-
tion based on application source code, but fail to solve a real
problem based on network logs information.

The second category mainly focuses on the real log collect-
ed from real system on analyzing the possible error in mote.
DustMiner [9] and LiveNet [6] collect informative messages
from the sensor network for fine-grained visibility into net-
work interactions and operations without requiring much re-
source in mote. EnviroLog [10] records some events described
nondeterministic behaviors for producing efficient in-network
execution replay. Sympathy [11] only collects a small amount
of diagnosis data to identify the root cause of network failures.
Marionette and Clairvoyant [12] provide remote debugging
access interface to source-level symbols and statements in the
source code of programs on the sensor motes. Declarative
Tracepoints provide a programmable SQL-like interface to
describe customizable debugging operations. The associated
debugging information could be disseminated and executed
on the remote motes at runtime, enabling convenient remote
debugging. But these approaches usually needs excessive agent
injected in motes and consumes communication bandwidth, but
could not combine network logs information and source code
to diagnose problematic network.

V. CONCLUSION

Wireless sensor networks are deemed as an affordable
solution to provide sustainable and efficient sensing
services in the real world. When a system of WSNs
faces unexpected condition for example poor network
performance, administrator and service engineers are required
to quickly diagnose and solve the problem. For administrator
and service engineers, unfortunately, it is difficult to achieve
informative data in lab about what the network had real
happened. To address this problem, we propose ALog, a
diagnostic approach for error scene restoration in WSNs.
ALog combines the logs collected from motes and source
code to retrieve runtime network information and conducts
offline analysis to restore the error scenes based on NCCFG.
The report of ALog includes network scenes marked as
determinate scene, possible scene and impossible scene by

checking corresponding constraints. We implement ALog and
evaluate its efficiency with two real cases studies. The results
demonstrate that ALog is accurate and applicable to a real

sensor networks.
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