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Abstract— Mobile crowdsourcing is deemed as a powerful tech-
nique to solve traditional problems. But the crowdsourced data
from smartphones are generally with low quality, which induce
crucial challenges and hurt the applicability of crowdsourcing
applications. This paper presents our study to address such chal-
lenges in a concrete application, namely floorplan generation. In
order to utilize pedestrians’ traces for indoor location inference,
existing proposals mostly rely on infrastructural references or
accurate data sources, which are by nature restricted in terms
of applicability and pervasiveness. Our proposal called SenseWit
is motivated by the observation that people’s behavior offers
meaningful clues for location inference. The noise, ambiguity,
and behavior diversity contained in the crowdsourced data,
however, mean non-trivial challenges in generating high-quality
floorplans. We propose 1) a novel concept called Nail to identify
featured locations in indoor space and 2) a heuristic pathlet
bundling algorithm to progressively discover the internal layouts.
We implement SenseWit and conduct real-world experiments
in different spaces. Our work offers an efficient technique to
obtain high-quality structures (either logical or physical) from
low-quality data. We believe it can be generalized to other
crowdsourcing applications.

I. INTRODUCTION

Crowdsourcing refers to the process of obtaining needed

service by soliciting contributions from a large group of

volunteers. It offers a new way to accomplish many jobs that

are previously considered to be complex or cost-intensive in

traditional fields.

As a popular item in people’s daily life, smartphones

are naturally involved in people’s daily activities and liv-

ing/working spaces. Utilizing smartphones for crowdsourcing,

i.e. mobile crowdsourcing, becomes a promising direction

[1]. There are many proposals for research and application

of mobile crowdsourcing, such as localization [2][3], map

generation [4], floorplan generation [5][6], etc..

Most smartphones have equipped with inertial sensors (e.g.,
accelerometer, gyroscope, compass). These sensors can finish

the same task while consuming less energy and user concern.

But they face the challenges of low data quality. Generally, the

data quality may be interpreted in three levels: 1) accuracy and

precision of measurements; 2) quantity and density of data,

with respect to the application requirement; 3) fidelity and

consistency of results, contrasted to the ground truth.

This paper presents our study to address the above chal-

lenges in a concrete application called floorplan generation.

A floorplan is a diagram of the arrangement of rooms and

layouts in one floor of a building. With the popularity of

location-based services, floorplans are in great demand. But

they are not available in many contexts, due to commercial

or security-related reasons. Floorplan generation via mobile

crowdsourcing thus becomes a desirable technique.

Floorplan generation is partially similar with the problem

of map generation [4]. Given the ability of localization, the

common idea behind map generation is to connect discrete

points into curves, which then forms an outdoor map. Since

indoor localization is a non-trivial issue, existing proposals of

floorplan generation mostly rely on infrastructural references

or accurate data sources. For example, [7] collects measure-

ments of signal strength to a couple of WiFi access points. [8]

requires to mount inertial sensors on user bodies for precise

motion sensing. Note that for people in a venue where the

floorplan is unknown, it is very likely that the above-mentioned

data sources are unavailable. How to generate floorplans under

such scenarios remains an open problem.

Our idea is motivated by the observation that people’s

behavior offers meaningful clues for location inference. From

a statistical point of view, people make turns at corners

and stay stationary for a short in particular positions like

water dispenser. Locations corresponding to those behavioral

features may be labeled, called featured locations. Using

only inertial sensing to identify people’s behavior, one can

crowdsource plenty of people’s movement pathlets with fea-
tured locations labeled on them. Intuitively, if one bundles

those labeled pathlets together, a complete floorplan can be

generated progressively.

Towards this goal, we need to address several critical

challenges: First, the noise in inertial sensing, caused by either

hardware diversity or motion instability, often blurs the fea-

tures of behavior data; Second, diversity of people’s behavior

often causes false identifications of featured locations; Third,

a featured location, even correctly identified, sometimes may

correspond to multiple locations in the space, as is called

ambiguity of labels.

Our work in this paper—SenseWit, is an efficient technique

to generate indoor floorplans while coping with the above

challenges. Our contributions can be summarized as follows.

(1) We present both opportunities and challenges in utilizing

inertial sensing data. We propose Nail to identify featured

locations in indoor space based on the raw sensor data.

(2) We design an efficient pathlet bundling algorithm, called

TriNail matching, to generate floorplan with pathlets. The

proposed algorithm is robust to noise, ambiguity, and diversity

of people’s behavior. We tackle a typical problem—analogous
sub-structures, which is common in indoor environment.
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(3) We implement SenseWit and evaluate it through real-

world experiments. The result demonstrates that SenseWit

generates accurate floorplans even with limited data, while the

cost of computation, storage, and energy is relatively low.

The rest of this paper is organized as follows. In Section

II we discuss the related work. Section III elaborates on the

system design and detailed solutions. Section IV shows the

implementation and evaluation results. In Section V, we show

our future work and conclude this paper.

II. RELATED WORK

A. Mobile Crowdsourcing

Mobile crowdsourcing has been used in many traditional

fields, such as traffic management [9], localization [3][10],

etc.. Shu et al. [11] try to solve the last-mile navigation

problem using crowdsourced leader’s data to guide followers,

and they point at the quality control problem. CrowdMap [12]

provides a crowdsourcing system to construct indoor floorplan.

But it relies on the sensor-rich videos uploaded by the crowd,

improving accuracy at the cost of energy consumption and

network traffic.

B. Inertial and Motion Sensing

Inertial sensors consume less energy than traditional sensors

such as camera, WiFi and GPS, likely to be used in localization

and navigation [10][13]. The most significant challenge in

inertial sensing is the accumulation of errors [14] and error

caused by phone’s attitude [15]. Zee [16] addresses this

problem by leveraging the constraints imposed by maps to

filter out erroneous measurements. However, it requires the

indoor floorplan as a known condition.

Some studies focus on how to get rid of error. For example,

WalkCompass [17] proves that peak recognition can be used

to detect strikes/steps more accurately. In FollowMe [11], they

combine accelerometer and gyroscope, using the basic idea

that rotation axis of the body during a turn is always directed

toward the center of earth to detect turn degree.

C. Map Generation and Floorplan Generation

Map generation and floorplan generation are two similar

problems. For map generation, there have been many studies.

SLAM [18] builds a map while tracking the current location,

but the map constructed only consists of significant points.

SmartSLAM [8] applies this technique on smartphones and

utilizes the images collected when users are walking. Floorplan

generation is more challenging, since it is more difficult to

obtain accurate coordinates indoors. Jiang et al. [19] propose

an automatic floorplan generation method based on hallway,

but it mainly depends on WiFi fingerprints to function. Jigsaw

[6] proposes a system which combines traces and location

excavated from images to reconstruct floorplan. But it requires

high labor cost to obtain the images and has a high demand

on image quality. Moreover, the use of camera makes it

energy-intensive. CrowdInside [5] adopts the dead-reckoning

technique and enhances the accuracy by using unique anchor

points. However, it makes high demand on traces and requires
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Indoor floorplan
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Floorplan Generation

Feature Extraction

Feature Labelling

Fig. 1: The architecture of SenseWit.

a uniform starting point like an entrance. Differing from the

state of arts, SenseWit does not rely on either the infrastruc-

tural references or accurate data sources. It is able to generate

high-quality floorplans even in face of the noisy data from

mobile crowdsourcing.

III. DESIGN

Fig. 1 describes the architecture of SenseWit. The work

flow involves volunteering users and a floorplan generation

server in the cloud. Data are collected from inertial sensors

and uploaded when network is available. On the server, motion

pathlets are generated, features are extracted, and then the

featured locations (Nails) are labeled. Based on those Nails,

pathlets are bundled together according to pathlet bundling

algorithm and a complete floorplan is progressively generated.

We introduce details of the above process in this section.

Meanwhile, we have analysis concerning the efficacy and

efficiency.

A. Feature Recognition and Labeling

1) Data Collection:
In SenseWit, we use three inertial sensors—accelerometer,

gyroscope, and compass. Accelerometer and gyroscope are

used to compute steps and generate movement pathlets. Com-

pass can fix the pathlets into a certain direction. Note that

we employ periodical checking instead of collecting data all

the time. The collection process is triggered when a step is

detected, and is stopped when people are static for a certain

period or the collection time exceeds a threshold.

The raw data are processed first to reduce noise. Knowing

that the frequency of most human activities is below 15Hz

[20], we first leverage a low-pass filter with a 15Hz cut-off to

remove the high-frequency component of data noise. Second,

we calculate the sum vector of both acceleration and angular
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Fig. 2: Feature recognition and labeling of turning.

velocity. Last but not least, since the reading of accelerometer

is influenced by gravity, a non-zero DC component is removed.

2) Feature Recognition:
We first use a sliding window of 128 samples (2.56 seconds

in 50Hz) to segment the preprocessed data. The effectiveness

has been shown in the previous work [21]. For each segment,

a decision tree is used to identify motion state (walking,

keeping stationary or irregular). Continuous segments with

the same state are joined together. When the state is walking,

step is detected and walking direction is estimated. Otherwise,

we recognize a water dispenser and a door according to the

corresponding feature specifications, as are introduced in the

subsequent content. It is worth mentioning that we use the

above three features as an example to illustrate our idea,

but our approach is not limited to using any specific feature.

Different features (elevator, the reception desk, etc.) can also

be used in different indoor spaces.

Turning: The most direct way to recognize a turning is

to calculate the change in walking direction. However, both

the diversity of people’s behavior and the error introduced by

direction estimation cause interference.

The biggest difference reflected on people’s behavior is “soft

turn” and “sharp turn”. As shown in Fig. 2(a), people walk

along the same way while taking 1 step, 3 steps, and 5 steps

respectively to pass the turning point. When people make a

soft turn, each amplitude of variation is smaller than a sharp

turn. So we take two ways to recognize a turning:

First, a sharp turn is recognized if |dsn+1−dsn | ≥ dα, where

sn and sn+1 are two sequential steps and d is the walking

direction. Second, if we detect |dsn+1 − dsn | ≥ dβ , we record

and analyze the following directions. If the direction change

exceeds dα in 6 steps, we consider it as a soft turn. Otherwise,

we ignore it. We choose 6 steps because people usually make

a turning in less than 6 steps [17]. We use dα = 75◦ and

dβ = 20◦, which yield good results in our experiments.

Water Dispenser: When people walk to a water dispenser

or a reception, a relatively long stationary period and a

direction change can be extracted as feature, as shown in

Fig. 3. The recognition process starts when the state transits

from walking to the stationary state. In order to distinguish

this feature from other behavioral interference, such as a

temporary stop or sitting, we propose two measures. First,
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Fig. 3: Features of water dispenser.
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Fig. 4: Features of door in different phone placements.

If the stationary duration is longer than a threshold tα, it may

represent sitting and is not what we need. Otherwise, we get

the walking direction and judge if the change is larger than

dγ . Only when these two conditions are satisfied, we recognize

this location effective. According to our empirical observation,

we set tα = 20s and dγ = 165◦ in the experiment.

Door: When people are walking through a door, they tend

to slow down, open the door, then make a turning and close the

door. These continuous motions can be recognized as feature.

However, interfered by the placement and orientation of the

phone, the features are probably blurred.

According to experiments, when people are holding the

phone in the palm, texting or phoning, the angular velocity

always presents similar characteristics, including a pair of

prominent crest and valley, as shown in Fig. 4(a). But when

people are holding the phone in a swinging hand, the features

are quite different, as shown in Fig. 4(b), where the two slow

valleys are distinguished from the normal periodical motions.

We introduce our scheme to cope with phone placement in the

following part, so that these two situations can be distinguished

and the features of door can be recognized.

Coping with ambiguity: Ambiguity caused by different

poses of phone placements is useful for feature recognition.

Here we borrow the classifier in [21] to judge the type of

phone placements. Once placement is known, we estimate the

walking direction and use it to recognize other features.

3) Feature Labeling:
Given a walking pathlet shown in Equation. 1, where n is

the total steps, how to label Nails on it?

P = {(0, 0), (x1, y1), (x2, y2), ..., (xn, yn)} , (1)
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For water dispenser, door, and sharp turn, we label the

starting point of the last step. For a soft turn, we take a

different method. As shown in Fig. 2(b), dsl is the direction

of step sl, which is the last step before turning. And dsn is

the step that reveals the existence of turning. Two lines can

be drawn according to dsl and dsn+1 and the intersection of

lines is calculated, marked with label. label is considered as

the location of this turning. We choose step sn+1 instead of

sn because people might not turn completely in sn.

The Nail set corresponding to each pathlet is described as:

{{l1, (x1, y1)} , {l2, (x2, y2)} , ..., {lk, (xk, yk)}} , (2)

where k is the number of features on this pathlet and lk
represents the label of feature.

B. Floorplan Generation

In this section, we first introduce details about TriNail, in-

cluding the definition, the reason we choose it, and the pathlet

matching strategy. Then we demonstrate how to evaluate the

priority of TriNail classes and the pathlet bundling algorithm.

Finally, the floorplan shaping process is presented.

1) TriNail Overview:
Definition of TriNail: A TriNail is defined as a virtual

triangle formed by three non-collinear Nails on a certain

pathlet, which can be described with a feature vector:

T riNail(i, Pk) = (l1, l2, l3, e12, e13, e23), 1 ≤ k ≤ m
(3)

Pk is the kth pathlet and i denotes the ith TriNail on Pk. l
are the labels of Nails. e represent the features of an edge,

including the edge’s length and orientation.

Reason for Choosing TriNail: The main role of TriNail

is to improve the pathlet bundling accuracy. Influenced by

feature recognition and labeling error, not all the pathlets carry

correct information. If we use incorrect pathlets as references

to bundle others, there will be paradoxes in the result. Note

that three points are the minimum to achieve a stable planar

structure. Using three Nails for matching enables one to learn

stable structures as efficient as possible, while eliminates the

interferences of paradoxes. We use TriNail in pathlet prior-

ity assessment, ensuring the reliability of bundled pathlets.

However, TriNails still meet a problem called analogous sub-
structures, meaning that though pathlets own the same feature

vector, they belong to different indoor regions and should not

be bundled. We propose an improved method to resolve this

problem in Sec. III-B2.

TriNail Matching Principle: In principle, two TriNails are

matched only if they have the same feature vectors. But it

is hard to find two TriNails that have exactly same feature

vectors due to the localization error. Therefore, we device an

approximation strategy to tolerate errors.

For two TriNails A and B, they are considered to be matched

and belong to the same TriNail class if and only if:

S(A ∩ B)

max {S(A), S(B)} ≥ α and f(A) = f(B) (4)

Algorithm 1 Pathlet Bundling Algorithm

Input: m useful pathlets {Pk} , 1 ≤ k ≤ m
and pathlets {p} that do not contain TriNails

Output: An indoor floorplan F
1: Construct TriNail set S {Pk};

2: Classify S {Pk} into classes S {C} = {C1, C2, · · · , Cn};

3: Select a seed Cs ∈ S {C};

4: repeat
5: Bundle pathlets {Pa, Pb, · · · } ∈ Pk based on Cs;

6: Delete Cs from S {C};

7: Refresh the Matrix;

8: if ∃ {Ci} ∈ S {C} appears in both {Pa, Pb, · · · }
and {Pk} − {Pa, Pb, · · · } then

9: select Cs ∈ {Ci} that appears most in {Pk} −
{Pa, Pb, · · · } as the seed;

10: else
11: select Cs ∈ S {C} as the seed;

12: end if
13: Delete {Pa, Pb, · · · } from {Pk};

14: until S {C} = Ø or {Pk} = Ø
15: if more than one set exist

and the sets can be connected through {p} then
16: bundle the sets;

17: end if

where S(A) and S(B) represent the area of A and B. S(A∩B)
is the maximum common area. α is a threshold that constrains

the similarity of TriNail’s shape, which is obtained through

empirical experiments. If the ratio exceeds α, we define them

as similar in shape. f(A) = f(B) means that the matched

TriNails have completely same labels.

2) Pathlet Bundling Algorithm:
Priority of TriNail Class: TriNails are converted into

discrete classes through the matching principles, and a TriNail

class includes all the matched TriNails having the same

labels and similar shape. The relationship between classes and

pathlets are acquired, so that the occurrence frequency of each

class can be described by a matrix:

M =

⎛
⎜⎜⎝

P1 P2 . . . Pm T otal

C1 1 0 . . . 2 N1
C2 0 1 . . . 0 N2
...

...
...

. . .
...

...

Ck 1 1 . . . 0 Nk

⎞
⎟⎟⎠

The elements in the matrix represent how many times the Tri-

Nail class Ci(1 ≤ i ≤ k) appears on pathlet Pj(1 ≤ j ≤ m),
and the last column represents the total number of times this

class appears.

There are still two challenges in pathlet bundling. First,

errors occur in feature recognition, leading to wrong labels.

A TriNail with label {1, 2, 1} might be judged as {1, 2, 2}, or

an extra label is added although it does not exist at all. Second,

TriNail matching does not eliminate all the ambiguity, due to

the issue induced by analogous sub-structures.
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Fig. 5: Analogous sub-structures problem.

Analogous sub-structures problem is quite common in

indoor space. Figure. 5 presents a general floorplan of a

shopping mall. There exist two pathlets: one has three Nails

{A, B, C}, another with three same Nails {a, b, c}, and the

path segments are all identical. But these two pathlets cannot

be bundled because they are actually in different regions. If

they are bundled, the result will be wrong.

In order to solve the above problems, SenseWit runs in an

iterative manner. In each round, we select the TriNail class

with the highest priority and bundle pathlets based on it. There

are three principles to determine the priority of TriNail class:

(1) The class that appears more frequently on the remaining

pathlets is given higher priority. This principle is designed to

deal with the label error, for the occurrence of a wrong label

is actually a special case. If two classes have same times of

occurrences, the one with a larger area is prioritized.

(2) If the occurrence frequency of one class is less than a

threshold, we discard the corresponding pathlets, for we think

these pathlets are not reliable.

(3) If matrix element (except the total number) in the row

Ci is larger than 1, there are two possibilities. First is people

walk the same way more than once. Second, it is an indication

of analogous sub-structures. Therefore, we consider this class

as untrustworthy and also discard the corresponding pathlets.

Intuitively, the lower priority a TriNail class has, the later

it is used for pathlet bundling. Therefore, the negative effect

of error is limited as much as possible.

Algorithm Flow: The algorithm works in a greedy manner,

as described in Algorithm. 1. In each round, a TriNail class

with the highest priority is selected as the footstone, called a

“seed”, and all the pathlets containing the seed are bundled.

Fig. 6 illustrates two rounds of our algorithm. The TriNails

are denoted using dashed line while the labels are represented

with different icons and numbers. In the first round, the

pathlets are bundled based on the TriNail with label sets

{1, 1, 2}. Next, another TriNail with label sets {1, 3, 2} can

be found on the bundled pathlets. Based on this TriNail, the

(a) First round (b) Second round

Fig. 6: Two rounds of pathlet bundling.

third pathlet is bundled together in the second round.

It is possible that we cannot find a seed connecting the

bundled pathlets and the unbundled ones. In this situation, we

select a new seed from all the seeds and the bundling process

continues. The process goes on until no more edges or points

can be added. If there exists more than one set in the final

stage, we look for the unused pathlets to check if a “bridge”

can connect any two disjoint sets. As long as the indoor space

is connected and the crowdsourced data cover the entire area,

SenseWit is able to generate a complete floorplan.

3) Floorplan Shaping:
After the above steps, chaotic pathlets have been processed

and bundled together. In this way, a rough floorplan is gen-

erated. To provide a better visualized result, we go one step

further and utilize the technique of occupancy grid map [6][22]

to construct the hallway and room structure.

C. Analysis on the Overhead

Computational Complexity: We analyze the worst case

when only two pathlets are bundled in each round. Suppose

the total number of Nails on all the pathlets is N , there are at

most
(
N
3

)
TriNails, which is N3−3N2+2N

6 . Therefore the time

complexity is bounded by O(N3). It is worth noticing that

the practical convergence speed is much faster than that the

worst case, because every popular TriNail can bundle a large

number of pathlets in one round.

Storage Cost: Limited by our method of periodically

checking and triggering, the size of each record is usually

hundreds of kB. And the processed pathlets are usually less

than 10kB. Common servers are sufficient to store at least

millions of sensor readings and pathlets, which is much more

than enough to generate a complete floorplan.

Energy and Privacy: We use inertial sensors instead of

power-wasting ones (camera, radio, GPS), and employ peri-

odical checking and conditional triggering instead of always

on. Therefore, the energy cost can be reduced to an acceptable

degree. Moreover, we do not need users’ personal information

to analyze the data, avoiding leakage of user privacy.
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Fig. 7: The ground truth of two scenarios.

IV. EVALUATION

We first introduce our experimental environments, followed

by evaluation on the feature recognition accuracy, pathlet

labeling accuracy, and floorplan generation performance.

A. Experimental Environments

We implement SenseWit on different Android phones (Sam-

sung Galaxy S5, HTC ONE M8, Millet 3) and conduct

experiments in two scenarios: an office of 24m × 19.2m with

2 doors, 2 water dispensers (marked with red dots) and more

than 10 turnings; and one floor in a campus library with 464m2

area, having 6 rooms. Fig. 7 is the ground truth. 10 volunteers

are invited in two scenarios respectively. The sampling rate is

SENSOR DELAY GAME (50Hz).

B. Feature Recognition Accuracy

We select 30 typical pathlets with 148 featured locations

to evaluate the accuracy of feature recognition. The result is

shown in Table I. The row denotes the real features, while the

column is the recognition results. The diagonal indicates the

number of correctly classified features, while “Null” column

indicates failing to recognize. We can see that the recalls are

all higher than 85% and the precisions are more than 90%.

Some doors are wrongly recognized as turning because the

door opening/closing motions are often along with turning.

And the missing water dispenser might be caused by particular

behavior (such as waiting for long time when fetching water).

C. Pathlet Labeling Accuracy

Euclid distance is used to compute the location deviations

and Fig. 8 shows the cumulative distributed function for

turning, water dispenser, and door. We can see that though

a small proportion of large deviations (1.8m) occur for water

dispenser and door, around 90% of the results have deviations

less than 1m. For turning, 70% of the deviation is under 1m

and 90% less than 1.5m, demonstrating a good accuracy. There

are a spot of deviations larger than 2m in turning, caused by

TABLE I: Confusion matrix of feature recognition.

Turning Door Water Null Recall
Turning 73 0 0 3 96.1%

Door 5 40 0 0 88.9%

Water 0 0 23 4 85.2%

Precision 93.6% 100% 100% - -
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Fig. 9: Influence of hallways’ width and length.

people who sometimes walk along the border of corridor, but

this only accounts for less than 3% of all measurements.

We present more details to measure the influence of different

users and placements. Due to the page limit, we only take

turning as an example to illustrate the results.

First we measure the influence of hallways’ width and

pathlet length. Fig. 9 shows the median and the 75th percentile

for 9 situations. The three bars in each width represent the

walking length before turning. We can see that although the

location deviation grows a bit larger when hallway becomes

wider, it keeps in a low error level of around 0.8m in median

and 1.2m for 75th percentile. Considering that the hallways

are commonly less than 3m in daily life, our method is robust

to different environments.

Fig. 10 presents the deviations of 5 users, illustrating the

robustness to different phone poses. We select a 2m hallway

and the users walk for 10m before turning. When people hold

the phone in hand or make a phone call, the median and 75th

percentile are around 0.5m and 0.8m. In the case of swinging

hand, the deviations are a bit higher, i.e. 0.6m and 0.9m. This

is because the direction error of swinging is larger than the

other two poses. In addition, the location deviation of user 4 is

particularly higher than others, caused by his way of walking

(he tends to walk along the margin of the hallway). Here we

only consider three typical phone poses, and more poses (e.g.,
in the pocket) are our future work.

D. Floorplan Generation Performance

Fig. 11 presents the process of pathlet bundling and the

output of floorplan in the first scenario. In Fig. 11(a), the first

“seed” is a TriNail formed by a water dispenser, a door and

a turning. Among the bundled pathlets, there exists another

TriNail, which is selected as the second “seed”, marked in Fig.

11(b). The procedure goes on and the final result is shown in
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Fig. 10: The median and 75th percentile of location deviations in turning.
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Fig. 11: Floorplan generation of the first scenario.

(a) Pathlet bundling result (b) Shaped floorplan

Fig. 12: Floorplan generation of the second scenario.

Fig. 11(c), where the dotted lines together draw the hallways.

The blank area represent stationary objects like tables, seats, or

other obstacles. The final floorplan is presented in Fig. 11(d).

Fig. 12 shows the generated floorplan of the second scenario.

There are 6 detached regions in this space, and 5 of them

are recognized. Two detached rooms in the left are combined

as one because the door is always open, resulting that people

behave the same as elsewhere in the hallway.

We evaluate the performance from two aspects: hallway

shape and room size, and compare SenseWit with CrowdInside

[5], Jigsaw and CrowdInside++ [6].

Hallway Shape: We adopt the same metric as Jigsaw [6]

to evaluate the hallway shape similarity, and the result is
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TABLE II: Evaluation of hallway shape.

Scenario.1 Scenario.2 CrowdInside++ Jigsaw
Precision 78.5% 72.1% 64.0% 77.8%

Recall 84.5% 80.3% 48.2% 90.4%

F 81.4% 76.0% 54.9% 83.6%

TABLE III: Evaluation of room size.

SenseWit Jigsaw CrowdInside
Error 31.4% 27.6% 42.7%

shown in Table II. Precision is the ratio of the overlapping

area to the generated hallway. Recall stands for the ratio of

the overlapping area to the ground truth. F represents the

harmonic mean of the precision and recall. We can see that

SenseWit is much better than CrowdInside++, while a little

poorer than Jigsaw. But Jigsaw consumes more energy and

achieves its accuracy at high labor cost.

Room Size: We use room area error, which is defined as

the area difference between the generated room layout and

the ground truth divided by the ground truth, to evaluate our

method. The result is shown in Table III. SenseWit is better

than CrowdInside and comparable to Jigsaw by consuming less

energy and labor cost. The error is mainly caused by obstacles,

where people’s movements can not cover.

V. CONCLUSION AND FUTURE WORK

Smartphones get proliferated nowadays. How to utilize the

sensing capability of smartphones becomes an increasingly

important issue. This paper presents our research effort to

employ crowdsourcing technique in the application scenario

of floorplan generation. Based on the insightful finding that

people’s behavior can be used as meaningful clues for lo-

cation inference, we propose a mobile crowdsourcing based

approach to efficiently generate floorplans. The design and

implementation of SenseWit involve successful practice to ad-

dress practical challenges in utilizing crowdsensed data, such

as noise, ambiguity, and diversity of people’s behavior. We

believe this work acts as an example of using crowdsourcing to

solve traditional hard problems. The methodology of obtaining

stable structures (either logical or physical) from unstable data

may be generalized to many other application scenarios.

We leave some further study in the future. First, we only use

specific types of behavior in this work. More representative

features of people’s behavior can be exploited to tailor our

approach for more scenarios. Second, we plan to carry out

more experiments in various spaces, e.g. shopping malls

and restaurants, and build a publicly available smartphone

application for ordinary users.
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