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Abstract—Even though indoor smoking ban is being put into
practice in civilized countries, existing vision or sensor-based
smoking detection methods cannot provide ubiquitous smoking
detection. In this paper, we take the first attempt to build a
ubiquitous passive smoking detection system, which leverages
the patterns smoking leaves on WiFi signals to identify the
smoking activity even in the non-line-of-sight and through-wall
environments. We study the behaviors of smokers and leverage
the common features to recognize the series of motions during
smoking, avoiding the target-dependent training set to achieve the
high accuracy. We design a foreground detection based motion
acquisition method to extract the meaningful information from
multiple noisy subcarriers even influenced by posture changes.
Without requirements of target’s compliance, we leverage the
rhythmical patterns of smoking to reduce the detection false
positives. We prototype Smokey with the commodity WiFi in-
frastructure and evaluate its performance in real environments.
Experimental results show Smokey is accurate and robust in
various scenarios.

I. INTRODUCTION

It is well recognized that smoking is not only a significant
reason of death and disease worldwide, but also a leading
cause of fire hazards. According to the report of the U.S. Fire
Administration, there are about 7,600 smoking-related fires in
homes each year, accounting for 17 percent of fire deaths in
residential area [1]. More seriously, the death rate per 1,000
fires in smoking related indoor fires is seven times higher
than that in nonsmoking related fires. Given the harms of
smoking, public policies such as prohibiting smoking in public
spaces, are put into practice in many countries. To ensure
the polices really beneficial, an efficient ubiquitous monitoring
system, which is able to automatically and accurately detect the
smoking activities without attaching any device to the targets,
is imperative.

Unfortunately, to the best of our knowledge, a ubiquitous
smoking monitoring system is still absent. Sensor-based detec-
tion [2], [3] is one of the most widely adopted passive detection
methods. However, smog sensors are not sensitive enough
to detect the tobacco smog when the room is large or the
ceiling is high. For rooms without smog sensor based detection
system, it is also costly to install such a detection system
and it may even need to partially re-decorate the rooms after
installation. Even the cost can be reduced, each smog sensor
has limited sensing range, leading to detection blind point and
detection delay [2], [3]. Vision-based detection is another type
of passive detection method. Applying computer vision (CV)
technique to surveillance video can analyze human gestures

for smoking detection [4]. Nevertheless, vision-based methods
are restricted to LOS environments, hindering its applicability
in a ubiquitous monitoring system. When smoking actions are
blocked by obstacles, CV technique loses efficacy. Besides,
due to the cost and privacy concerns, many blind spots exist
in the areas without camera such as the stairwell and toilets.

In this paper, we ask the question: can we build a smoking
detection system that (1) automatically and accurately detects
the smoking activities without deploying special devices, (2)
is non-intrusive for detection target, and (3) work efficiently
in a wide range of environment conditions including both
LOS and NLOS conditions? In this work, we leverage the
commercial off-the-shelf (COTS) WiFi infrastructures to detect
smoking activity. This naturally has two advantages. The WiFi
infrastructure is widely available in indoor environments and
low-cost to use. Leveraging the wireless signals does not
require any device on the targets. We analyze the impact of
smoking gestures on WiFi signal propagations and conduct
preliminary experiments to validate the feasibility of detecting
the smoking activity by its impacts on WiFi signals.

It has been shown that wireless signal provides an informa-
tion carrier for gesture recognition through the characteristics
of wireless signals such as Received Signal Strength (RSS)
and Channel State Information (CSI) [5]–[9]. However, exist-
ing gesture recognition approaches based on wireless signals
cannot be directly used in our scenario. Existing approaches
assume relative simple or special gestures or a well-defined
gesture training set. Meanwhile, existing approaches adopt
various methods to improve input data quality. For example,
existing approaches may need to specify the start and end
of gesture recognition period in which users are required to
perform gestures, so as to increase the detection accuracy.
However, those requirements may not hold for smoking de-
tection scenario.

To address above challenges, we take the first attempt to
build a novel non-intrusive smoking detection system, namely
Smokey, that is able to accurately detect the smoking activities
by exploiting the impact of smoking on the CSI of WiFi. The
design of Smokey is inspired by the following findings. First,
instead of recognize a special gesture with carefully trained
classifier, we exploit the periodical pattern for event detection.
We find that smoking is a rhythmic activity that periodically
affects the CSI of WiFi signals. This significantly reduces
the impact of individual difference and the detection error
comparing with gesture recognition based approach. Second,
smoking is a composite activity that contains a series of
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motions of the arms and chest in the exact order, which is
helpful to be distinguished from the daily activities. To avoid
the dependency of a good training set, Smokey elaborately uses
the temporal features such as the order of motions in smoking
and the transition duration between motions.

The implementation of Smokey also faces several chal-
lenges. Since smoking consists of a sequence of motions,
its impact on CSI is dynamically scattered across different
subcarriers. Even in a single subcarrier, the noisy is also very
high due to the passive detection method for uncooperative
users in dynamic environment. We design a motion acquisition
method, based on the foreground detection problem in image
processing community, to extract useful information from the
noisy CSI traces.

We implement Smokey on the commercial WiFi devices
and evaluate its performance in real environments. The results
show that Smokey can detect the smoking activities with a
high TPR of 0.976 (0.919), along with a low FPR of 0.008
(0.097) using a single pair of transceivers in the relatively
static (dynamic) environments. We also extensively evaluate
the robustness of Smokey under various scenarios. The results
show that the accuracy of Smokey is still about 70% even there
are four non-smoker existing around the target smoker.

The contributions are summarized as follows.

• We investigate the characteristics of wireless signal
impacted by smoking. We examine the challenges
of using gesture recognition for detecting unknown
smoking persons.

• By exploiting the wireless signal characteristic, we
take the first attempt to build a non-intrusive ubiqui-
tous smoking detection method, Smokey. We validate
the feasibility of using wireless signal for smoking
detection.

• we implement Smokey with commercial hardware
and evaluate its performance. The experimental results
demonstrate the effectiveness of Smokey.

In the rest of this paper, we will present the preliminary
findings in Section II. Then we elaborate the design details of
Smokey in Section III and evaluate its performance in Section
IV. We present the related work in Section V and finally
conclude our work in Section VI.

II. PRELIMINARY FINDINGS

It has been shown that the environment changes such
as the presentence and motions of human can affect the
communications between two wireless devices. The impacts
can be captured and utilized for device-free human detection
and localization [5]. For example, the variations of Received
Signal Strength Indicator (RSSI) caused by motions can be
used to track the location of the object even behind the wall
[10]. By learning the characteristics of RSSI variations, body
motions such as gestures can be recognized in [8].

Existing gesture recognition methods rely on repeatable im-
pacts of motions on wireless signals. They are usually able to
work well in the cases of simple or well-defined gestures near
the transceivers. It is unclear how unrestricted activities such

(a) (b) (c) (d) (e) (f)

Fig. 1. Typical smoking steps: (a) holding the cigarette, (b) putting up the
cigarette to mouth, (c) sucking the smoke in mouth, (d) putting down the
cigarette, (e) inhaling the smoke, (f) exhaling the smoke.

as smoking performed away from the transceivers affects the
WiFi signals and whether it is possible to recognize smoking
by its impacts on WiFi signals. In this section, we conduct
the preliminary experiments to investigate the feasibility of
recognizing smoking activities using WiFi signals.

A. Smoking steps

We first introduce the smoking steps of a typical smoker.
Normally, smoking a cigarette can be divided into holding
phase and smoking phase. After lighting up a cigarette, a
smoker usually holds the cigarette in hand and puts up the
cigarette to mouth to suck the smoke intermittently. We can
further decompose the smoking into six detailed steps [11], as
Fig. 1 shown.

• (a) Holding the cigarette. Most of the time, a smoker
holds the cigarette in hand.

• (b) Putting up the cigarette to mouth. A smoker
puts up the cigarette to the mouth for the subsequent
inhalation.

• (c) Sucking the smoke in mouth. Note that a smoker
usually does not inhale the smoke into lung directly.
Instead, the smoker suck the smoke into the mouth.

• (d) Putting down the cigarette. After sucking enough
smoke, the smoker will put down the cigarette.

• (e) Inhaling the smoke. And then, the smoker inhales
the smoke into the lung.

• (f) Exhaling the smoke. At last, the smoker exhales
the smoke and returns to the holding phase.

Smoking is a rhythmic activity. Step (a), i.e., holding phase,
occupies most of the time of smoking. Step (b)-(f) compose
the smoking phase which occurs intermittently. We call one
round from Step (b) to Step (f) as one smoking motion. Several
smoking motions together with the holding phases constitute
a smoking activity. The durations of the holding and smoking
motions are relatively stable because the smoker’s smoking
behavior usually remain unchanged.

B. How Smoking Affects Wireless Signal

Step (b) and (d) are performed with arm motions. In
Step (e) and (f), the inhalation and exhalation are performed
with chest motions. In this section, we investigate how these
motions affect WiFi signals.
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Fig. 2. The RSSI and CSI sequences collected during smoking. Ground truth
is obtained by the video record.
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Fig. 3. The CSI sequences of subcarrier #5, #14, and #23. Light gray areas
are the periods of smoking phase from (b) to (d) with arm motions. Dark gray
areas are the periods of smoking phase (e) and (f) with chest motions.

We deploy a TP-Link WR742N router and a mini PC with
Intel 5300 NIC equipped with one antenna as the generators
of WiFi signals. The PC is 5 meters from the router and it
generates a 802.11 compliant packet every 30 milliseconds in
average. We can therefore obtain the measurements of RSSI
and CSI from packets every 30ms. Then we ask a person to
smoke a cigarette between the transmitter and receiver, 1 meter
away from the receiver.

1) Smoking affects CSI instead of RSSI: In Fig. 2, we
plot the RSSI and CSI sequences obtained during smoking.
Smoking motions are recorded in video in this smoking
activity. The results clearly show RSSI varies over the time.
However, the variation happens in both holding and smoking
phases. There is no clear correlation between RSSI variation
and the smoking motions. Then we investigate whether CSI
is affected by the smoking activity. We find that CSI not only
varies during smoking but also shows a very close correlation
with smoking motions. This is because CSI is more informative
than RSSI [12], [13] and hence more sensitive to smoking
motions. The results shed light on detecting smoking activities
by CSI information.

2) The impacts of smoking are subcarrier-dependent: In
Fig. 3, we plot the CSI sequences of subcarrier #5, #14,

and #23 during smoking. We can find that subcarrier #23 is
affected from phase (b) to (d) but not during phase (e) and (f).
On the contrary, subcarrier #14 is affected only during phase
(e) and (f). For other subcarriers, similar observations also
exist. The reason behind these observations is that subcarriers
have different sensitivities for the motions of different parts of
human body. During smoking motions, a portion of subcarriers
may be sensitive to the motions of arms while another portion
may be sensitive to the motions of chest. Therefore, different
subcarriers are affected in different smoking phases.

3) The impacts of smoking on CSI vary dynamically on a
single subcarrier: We find that the impacts of smoking on CSI
vary dynamically across different subcarriers and the impacts
are not stable even in a single subcarrier. Subcarrier #5 is
affected from phase (b) to (f) in the first smoking motion
([11.7s, 22.8s]). However, in the second smoking motion
([60.2s, 68.0s]), subcarrier #5 is only affected from phase
(b) to (d) but not in phase (e) and (f). This is because the
smoker usually does not exactly repeat the same smoking mo-
tion. When the environment changes such as smoker posture
changes, the sensitivities of subcarriers change, leading to the
dynamic impacts on subcarriers even for the same motion.

4) Smoking is a composite activity that contains a series of
motions in a certain order: Smoking is a composite activity
consisting of a series of arm and chest motions in a certain
order. We investigate three daily activities: eating, drinking,
and deep breathing, which are considered to be confused with
smoking. We collect the CSI traces when a person is smoking,
eating a hamburger, drinking a cup of coffee and breathing
deeply at the same location. Fig. 4 presents how these activities
affects CSI. We can find that the CSI sequences show separate
peaks when performing confusing activities, while the peaks
during smoking appear in pairs. This is because smoking
activity consists of a series of arm and chest motions in a
certain order while other daily activities do not. Daily motions
does not usually happen in the exact order as smoking.

We also find that the order of chest motions during smoking
is unique. We plot the CSI amplitudes of subcarrier #27 during
deep breathing and smoking in Fig. 5. Normally, the inhalation
duration and exhalation duration in one respiration cycle are
nearly the same, as shown in the top figure of Fig. 5. However,
we find that the exhalation duration is obviously longer than
the inhalation duration in smoking, as shown in the bottom
figure of Fig. 5 (b). Such a phenomenon is also observed in
previous work [14]. The authors in [14] use a wearable chest
whist to monitor the chest motions and obtain those duration
features to recognize the smoking activities. Such information
can also be captured by CSI to help detect smoking activities.

C. Summary

According to the preliminary study, we find smoking is a
rhythmic composite activity that contains a series of motions in
a certain order. This makes smoking distinguishable for daily
motions such as putting arms up or down. The rhythm/order
of motions is important information of the common behaviors
of most smokers. Using rhythm/order information to detect
smoking does not require to “decode” the precise information
on a single motion, making it more resilient to detection errors
in a single motion. However, we also find that (1) the impact to
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Fig. 4. The CSI sequences collected during smoking and three other daily activities that may be confused with smoking.
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Fig. 5. The CSI sequences on subcarrier #27 when the target is (a) deep
breathing and (b) smoking.

CSI is dynamic across different subcarriers, and (2) the impact
on CSI is also time-varying, making it difficult to extract useful
information for detection. Hence, how to extract and leverage
rhythm/order information for smoking detection, from time-
varying and subcarrier-dependent CSI, needs delicate designs.

III. SYSTEM DESIGN

In this section, we elaborate the designs of Smokey.
Based on the preliminary findings, we propose to leverage the
rhythmic pattern and the certain order of smoking motions to
detect the smoking activities. Fig. 6 presents the overview of
Smokey. First of all, the sampled CSI traces are processed
to interpolate the irregular data to align time to get time
information. Then the motion acquisition component extracts
the interested motions that are suspected to be smoking. The
extracted suspicious motions are further analyzed by activity
analysis component from the aspect of periodicity to decide
whether a smoking activity exists.

A. Data Processing

Raw CSI data are intrinsically noisy and need processing
to improve the accuracy and robustness of further analysis.

Interpolation. Even though we configure the transmitter
sends packets with a fixed rate, the collected CSI sequences
on receiver are non-uniformly sampled because we cannot
guarantee that the receiver gets packets with the same rate
due to packet loss, transmission delay and other processing
delays. However, as explained in preliminary findings, we need
time information to recognize the respirations of smoking.

Data Interpolation

CSI Frame

CSI samples

Data Processing

Motion Acquisition

Foreground 
Detection

Motion 
Extraction

Composite 
Motion Detection

Activity Analysis

Periodicity
Analysis

Activity 
Recognition

Smoking 
Event

Non-smoking 
Event

Fig. 6. Overview of Smokey

Therefore, interpolation is necessary to obtain the accurate
time durations for further analysis. In Smokey, We adopt
linear interpolation by adding samples with value equals to
the previous sample in the missing sampling slots,to construct
the CSI sequence with samples evenly spaced in time. Here,
we just process the data to reduce the time deviation. In future
work, uncertain data processing techniques such as [15] may
help to reduce the amplitude error.

B. Motion Acquisition

Human motions are not the only factor affecting wireless
signals. Consequently, some subcarriers may be more sensitive
to human motions. Leveraging all the subcarriers is therefore
not wise because the intrinsic noise on some subcarriers can
be too serious to conceal the meaningful information about
motions if the subcarriers are sensitive to noise but insensitive
to human motions. Selecting the subcarriers can improve the
accuracy. However, according to our observations, different
subcarriers are sensitive to the motions of different body parts
and the sensitivity of even a single subcarrier is dynamic due
to the subtle environment changes. Hence, it is infeasible to
select some certain subcarriers in advance, as previous methods
usually do.

In designing Smokey’s motion extraction method for cap-
turing the dynamic impacts from various subcarriers, we are
facing the challenges that combining the information from
informative subcarriers without the distractions caused by the
uninformed subcarriers with intrinsic noise. To solve this
challenge, we are inspired by the foreground detection problem
in the image processing community. This problem aims to
separate the foreground pixels in continuous image frames
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Fig. 7. Constructing CSI frames from CSI sequences

with the varying background caused by illumination changes
and shadows swing [16]. In the context of Smokey, we want
to separate the variations of CSI caused by motions (the
foreground pixels) with dynamic noises (varying background).
Having understood the similarity of two problem, we propose
a foreground detection based method for motion acquisition.

CSI Frame. Smokey first projects the CSI sequences
to CSI frames. As shown in Fig. 7, we partition time into
consecutive windows with length T , containing N samples for
each subcarrier. Then each frame contains M×N pixels, where
M is the number of subcarriers. The pixel Pm,n in a frame is the
CSI amplitude of subcarrier m collected within the n-th time
window (tn). In Smokey, we have M = 30 subcarriers and we
set N = 1 and T = 30ms which is same to the sampling period.

Foreground Detection. After constructing the CSI frames,
Smokey analyzes the pixel values in each frame. The pixels
which do not fit the background distribution will be considered
as foreground pixels caused by human motions.

(1) Constructing the background model: it is well
known that the background noise on a single subcarrier usually
follows a Gaussian distribution. In the context of analyzing
background by the whole frequency band, each pixel in the
scene should be modelled by a mixture of K Gaussian distri-
butions. We collect the CSI under static environments without
human motions and plot the distributions of CSI samples on
different subcarriers in Fig. 8. It is clear a mixture of Gaussian
distributions is suitable to model the background noise.

The probability that a pixel has value xt at time t can be
written as:

p(xt) =
K

∑
i=1

wi,tη(xt ,μi,t ,Σi,t) (1)

where K is the number of Gaussian distributions, wi,t and
μi,t are the estimated weight and the mean value of the i-
th Gaussian in the mixture at time t respectively. Σi,t are and
covariance matrix of the i-th Gaussian in the mixture at time
t, which is assumed as:

Σi,t = σ2
i I (2)

η is a Gaussian probability density function:

η(xt ,μ,Σ) =
1

(2π)
n
2 |Σ| 1

2

e−
1
2 (xt−μ)T Σ−1(xt−μ) (3)
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Fig. 8. The distributions of noises on different subcarriers.

At time t, the Gaussian distributions are ordered by the
fitness value wi,t/σi,t . Then the first B distributions are chosen
as the background model, where

B = argmin
b

( b

∑
i=1

wi,t > P
)

(4)

P is the minimum prior probability that background noise is
in the trace.

(2) Foreground extraction: after obtaining the background
model, foreground pixels are extracted by marking any pixel
that is more than 2.5 standard deviations away from the
B distributions. Fig. 9 (b) presents the results of extracted
foreground of the CSI frames in Fig. 9 (a).

(3) Online updating model: one of the advantages of
our foreground detection method is self-adaptive to the en-
vironment changes such as posture changes in Fig. 9 (a). This
superiority is accomplished by online updating the background
model to adapt to the background environment changes.

If current pixel value does not match any of the K distri-
butions, the distribution with smallest weight is replaced with
a distribution with current value as the mean, a high initial
variance and low prior weight. In Smokey, the initial variance
is 10 and prior weight is 1/K.

The weight of the K distributions are adjusted as follows

ŵi,t = (1−α)ŵi,t−1 +α p̂(ωi|xt) (5)

where p̂(ωi|xt) is 1 if ωi is the first Gaussian distribution that
xt matches, or 0 otherwise.

The μ and σ remain the same for unmatched distributions.
For the distributions match the pixel value, the μ and σ are
updated as follows

μ̂i,t = (1−α)μ̂i,t−1 +ρxt (6)

Σ̂i,t = (1−α)Σ̂i,t−1 +ρ(xt − μ̂i,t)(xt − μ̂i,t)
T (7)

ρ = αη(xt , μ̂i,t−1, Σ̂i,t−1) (8)

In foreground detection algorithm, only the learning rate
α and prior probability of background noise T are parameters
needed to be set for the system. Based on our application
scenario, α is set to 0.002 and T is set to 0.25.
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Fig. 9. (a): The original CSI trace during smoking; (b): after foreground detection; (c): after motion extraction; (d): after composite motion detection.

Motion Extraction. To avoid missing meaningful infor-
mation, foreground detection component aggressively extracts
all the foreground CSI variations possibly caused by human
motions. Some counterfeit foregrounds that are not caused by
human motions may exist, as shown in Fig. 9 (b).

We leverage the temporal correlation and the frequency
correlation to filter out the counterfeit foregrounds. Human
motions usually alter certain propagation paths for a period of
time, leading to the temporal correlation. The altered propaga-
tion paths usually affects multiple subcarriers simultaneously,
leading to the frequency correlation. Therefore, we filter out
the foregrounds with short time durations or the foregrounds
that affects limited number of subcarriers. If a foreground
segment has a duration shorter than TF seconds or affects less
than SF subcarriers, it is removed from the foreground. The
filtered foreground is shown in Fig. 9 (c).

Composite Motion Detection. The single motions need to
be removed from the set of extracted motions because we only
care smoking which is a composite motion. If a foreground
segment does not have any segment Tc seconds before or after
it, as the example in Fig. 9 (c), it is considered as a single
motion and therefore removed. Then we get the foreground
consisted of only composite motions as shown in Fig. 9 (d).

After getting the set of composite motions, we leverage the
unique respiration pattern of smoking to judge each composite
motion is smoking or not. We analyze the second motion of
each composite motion, the inhalation duration is from the
beginning of the motion to the peak and the exhalation duration
is from the peak to the end of the motion. Then we calculate the
difference between exhalation and inhalation durations. If the
difference is larger than Tr, the composite motion is regarded
as smoking.

C. Activity Analysis

As a monitoring system, false alarm is desired to be as less
as possible. Hence, we design activity analysis which leverages
the rhythmic pattern of smoking to reduce false positives.

Periodicity Analysis. In Smokey, we partition the time
into detection windows with a fixed length equaled to time
of smoking a cigarette which is 300s typically. Then we use
autocorrelation to analyze the periodicity of the composite
motions in each detection window. Autocorrelation is a simple
yet effective approach to assess the periodic signals. First, we
integrate the information from all subcarriers by simply adding
up the values in the foreground since we have obtained only
meaningful information after motion acquisition component.
Then we analyze the periodicity by detecting the peaks in the
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Fig. 10. The autocorrelation of the foreground in Fig. 9 (d).

autocorrelation function of the integrated foreground sequence.
After obtaining the periods, Smokey calculates the standard
deviation of the periods to represent for the period’s stability.

Activity Recognition. Smoking recognition is based on
following intuitions. (1) The smoking period is at least longer
than the normal breathing, which is about three seconds. (2)
The smoking period can be longer than the normal duration
of smoking a cigarette, which is about five minutes typically.
(3) The smoking period is decided by the smoker’s habit and
usually remains stable during a single cigarette. Based on
these institutions, we set a valid range of smoking period,
[Tmin,Tmax], where Tmax is 300s, Tmin is 3.3s since an adult
breaths 12∼18 times per minute. We also set a threshold for
the standard deviation of periods, σT = 5, consistent to the
maximum period of normal breathing. As an example, in Fig.
10, we plot the autocorrelation of foreground in Fig. 9 (d).
The extracted activity in Fig. 9 (d) has periodicity and the
average period is 30 seconds which is in the valid range. The
standard deviation is 3.095, which does not exceed σT . Smokey
therefore comes to a conclusion that there is smoking activities
in the CSI trace of Fig. 9 (a).

IV. EVALUATION

In this section, we present the evaluation of Smokey under
various environments to show its accuracy and robustness.

A. Methodology

We implement a prototype of Smokey with commodity
WiFi devices. We use a TP-LINK TL-WR742N wireless router
as the transmitter and a mini PC with Intel WiFi Link 5300
NIC that equipped with one antenna as the receiver. Both
devices operate in IEEE 802.11n mode on Channel 11 at
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Fig. 11. The layouts of the office room and the apartments. The deploying
locations of the prototype are also shown in the figures.

TABLE I. OVERALL ACCURACY OF SMOKEY IN REAL DEPLOYMENTS

DURING FIVE WORKDAYS

Apartment with
a smoker living

Apartment with a
non-smoker living

Smoking-allowed
office room

Ground truth 42 0 235

TP of Smokey 41 0 216

FP of Smokey 7 4 27

Total activities
Smokey detects

693 712 513

2.4GHz. We configure the receiver pings the transmitter every
30ms to get the CSI measurements by the Linux CSI tool [17].

We evaluate the performance of Smokey in three real
environments: (a) an apartment of 7.5×4.5m2 with a smoker
living, (b) an apartment of 7.5 × 4.5m2 with a non-smoker
living, and (c) a smoking-allowed office room of 4.8×3.6m2

in an office building. The two apartments share the same
structure. The layouts of the apartments and office room are
shown in Fig. 11. The transmitter and receiver are placed
0.8m above the floor. For environment (b) and (c), we place
the transmitter and receiver at “Location A” shown in Fig.
11. In each environment, we run Smokey for 5 workdays to
count the number of smoking events. The two volunteers living
in the apartments are office workers who usually stay at the
apartments from 18:00 to 8:00 on the next day, on workdays.
For environment (a) and (b), we get the ground truth by asking
the volunteers report the times of smoking and the time they
are smoking. For environment (c), we deploy a civil camera
to record the events in the office room and count the number
of smoking events manually as the ground truth.

To quantify the performance of Smokey, we focus on (1)
True Positive Rate (TPR): the fraction of cases where Smokey
correctly detects the smoking events among all the detected
activities, (2) False Positive Rate (FPR): the fraction of cases
where Smokey mistakenly generates false alarm when there
is actually no smoking event. Since we detect the smoking
event instead of detailed smoking behaviors, we only label
each activity as “smoking” or “non-smoking” rather than each
motion in the activity. An activity is defined as a series of
motions within the time window equaled to the time of having
a cigarette.

B. Accuracy of Smokey

Overall accuracy. Table I presents the overall accuracy of
Smokey in the three real deployments. During the 5 workdays,
Smokey detects 693, 712 and 513 activities in environment (a),
(b) and (c) respectively. We artificially define an activity lasts
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Fig. 12. ROC curves of Smokey with/without PA (Periodicity Analysis),
compared with two baseline methods.

five minutes equaled to the time length of smoking, which is
a little bit different from the definition activity in semantics.
Therefore, the number of activities are less than conventional
wisdom. On the whole, Smokey successfully detects 92.8%
of the smoking activities and misjudges 2.3% of the normal
activities. In the relatively static environment in the apartments
where are usually occupied by the single occupant, the TPR of
Smokey can be as high as 0.976 and the average FPR is low
to 0.008. In the relatively dynamic environment in the office
room where many people come in and got out frequently, the
TPR of Smokey drops to 0.919 and the FPR increases to 0.097.

Compare with the baseline methods. We compare
Smokey with two baseline methods: using the best single
subcarrier and using all subcarriers, in the apartment environ-
ments. In the scheme of using the best single subcarrier, we
test all the subcarriers and select the single subcarrier with
best performance as the result. In the scheme of using all
the subcarriers, we directly combine the information on all
subcarriers by adding up the CSI values.

To compare the overall identification accuracy of these
methods quantitatively, we plot the Receiver Operating Char-
acteristic (ROC) curves of four methods in Fig. 12. The ROC
curve can depict the tradeoff between TPRs and FNRs over
various settings. We find that using the best single subcarrier
has the worst performance, only provides a TPR less than 0.2
when the FPR is 0.2. It is even worse than directly combining
all the subcarriers which provides a 0.7 TPR when the FPR is
0.2. The reason behind this result is that the information about
smoking are dynamically scattered in different subcarriers, a
single subcarrier fails to gather enough information to detect
the composite motions. Our foreground detection based motion
acquisition (Smokey without PA) can identify 93.38% and
98.38% of the smoking activities when the FPR is 0.1 and 0.2
respectively. Keep the FPR to 0.1, PA (Periodicity Analysis)
can improve the TPR by 7.2%, compared to Smokey without
PA. When keeping the TPR as 1, PA helps Smokey to reduce
the FPR from 0.265 to 0.043.

Periodicity analysis. In Fig. 13, we plot the autocorrelation
results together with the CSI trace collected from environment
(a) to show the effectiveness of our periodicity analysis com-
ponent. After obtaining the motions extracted by foreground
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Fig. 14. Accuracy of Smokey vs. threshold σT .

detection based motion acquisition, Smokey performs autocor-
relation for each activity. Then Smokey extracts the peaks and
calculates the intervals between adjacent peaks as the period.
Then σ , the standard deviation of periods, is calculated and
compared with the threshold σT . In Fig. 13, the 1st, 2nd
and 4th activities have σ > σT and the σ of the 3rd activity
is smaller than σT . Smokey therefore concludes a smoking
happens during the period from 10 to 15 minutes.

Periodicity analysis in Smokey uses the standard deviation
of periods to analyze the stability of period. Hence, the
threshold of the standard deviation of periods, σT , is important
to the accuracy. Fig. 14 plots the TPR and TNR of Smokey in
environment (a) and (b) under a range of thresholds. Setting
σT = 4.5 provides best accuracy in this case. However, in
Smokey, we have no training set and we can only use the
common features of smoking and some intuition universal to
most people. σT = 5 in our setting is also able to provide a
satisfied performance.

C. Impact of NLOS propagation

One advantage of Smokey over the video surveillance
is that it can work in NLOS propagation. We evaluate the
performance of Smokey under the LOS, NLOS and through-
wall scenarios, as illustrated in Fig. 16. The experiments are
conducted in the apartment. For through-wall scenario, the
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Fig. 15. ROC curves of Smokey in LOS, NLOS, and through-wall scenarios.
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Fig. 16. Illustration of the experiment environments in LOS, NLOS, and
through-wall scenarios.

transmitter and receiver are placed at “Location C” shown
in Fig. 11. We plot the ROC curves of Smokey under those
scenarios in Fig. 15. As expected, the accuracy degrades
moderately in the NLOS scenario and drop sharply in the
through-wall scenario. Given the FPR of 0.01, the TPRs are
0.946, 0.567 and 0.304 for LOS, NLOS and through-wall
scenarios respectively. These results reveal that Smokey is
robust to the NLOS and through-wall scenarios. But it is more
appropriate for the non-through-wall scenarios including both
LOS and NLOS propagations.

V. RELATED WORK

Wearable devices. With the development of embedded
devices and sensors, wearable devices as well as smartphones
are popular in our daily life. Researchers and engineers adopt



specific sensors to sense the gas produced by tobacco such
as carbon monoxide [2] and nicotine [3]. These sensors can
only work in a very limited area to obtain enough concentra-
tion of nicotine or carbon monoxide for detection. Recently,
researchers focus on leveraging the inertial sensors embedded
in users’ devices to detect and monitor the smoking behavior
of a smoker [14], [18], [19]. However, all these methods are
usually designed for aids in smoking cessation programs. All
of them require the targets wearing dedicated devices such as
the chest band in mPuff [14], customized electronic lighter in
UbiLighter [18], and wristband in RisQ [19]. No such intrusive
device is available in our passive detection system.

Computer Vision. Based on the civil cameras, researchers
in the area of computer vision (CV) deal with the problem
of gesture recognition by the motions of the person’s arms [4]
[20] [21]. All these CV-based methods are effective when there
are clear images. However, since cameras can only capture the
line-of-sight (LOS) images, a bunch of blind spots will exist
due to the deployment cost or privacy. Different from these
CV-based methods with LOS requirements, Smokey detects
the smoking activity by commercial WiFi devices under both
LOS and NLOS environments.

Wireless signals. In the literature, researchers leverage
wireless signals to recognize body motions such as walking
forward and backward [10]. WiSee [9] and AllSee [22] rec-
ognize the pre-trained gestures by learning the training set
of RSSI traces and use start gestures to help recognition
achieve a high accuracy. Aforementioned systems rely on
special hardwares such as USRPs, self-designed circuit boards,
or ultra-wideband radar transceivers. Some researchers propose
to recognize gestures by commercial devices. Some work [23]–
[25] analyze the human behaviors and relative location by
analyzing the signals changes of tags attached on objects,
which are not device-free. WiGest [8] uses existing WiFi
signal to recognize certain hand gestures on top of a laptop
with a short distance. It also requires the target to perform
start gestures to reduce false positives. WiSleep [7] leverages
the WiFi signal to monitor a person’s sleeping in a static
environment with few other motions’ interference. In Smokey,
the potential violators may be neither compliant nor in the
static environment.

VI. CONCLUSION

We present Smokey, a device-free passive smoking de-
tection system that leverages the CSI variation information
of WiFi signals to detect the rhythmic smoking activity. We
design a foreground detection based motion acquisition method
to extract the meaningful information from multiple noisy
subcarriers that are even influenced by the posture changes.
We also elaborately leverage the common features to recognize
the series of motions during smoking, avoiding the target-
dependent training set to achieve a high accuracy. We pro-
totype Smokey on commodity WiFi devices and evaluate it
in various environments. Experimental results demonstrate the
effectiveness and robustness of Smokey.
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