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Abstract—The low-cost crystal oscillators embedded in wire-
less sensor nodes are prone to be affected by their working
condition, leading to undesired variation of clock skew. To
preserve synchronized clocks, nodes have to undergo frequent
re-synchronization to cope with the time-varying clock skew,
which in turn means excessive energy consumption. In this
paper, we propose DualSync, a synchronization approach for
low-power wireless networks under dynamic working condition.
By utilizing time-stamp exchanges and local measurement of
temperature and voltage, DualSync maintains an accurate clock
model to closely trace the relationship between clock skew and
the influencing factors. We further incorporate an error-driven
mechanism to facilitate interplay between Inter-Sync and Self-
Sync, so as to preserve high synchronization accuracy while
minimizing communication cost. We evaluate the performance of
DualSync across various scenarios and compare it with state-of-
art approaches. The experimental results illustrate the superior
performance of DualSync in terms of both accuracy and energy
efficiency.

I. INTRODUCTION

Time is indispensable information in most sensor network

applications. Clock Synchronization, i.e. to have a common

clock among all the networked nodes, is a fundamental task in

wireless sensor networks (WSNs). Accurate and efficient clock

synchronization is prerequisite for many important functions

of WSNs, such as localization [1], network scheduling [2],

cooperative transmission [3], data fusion [4], etc.

Compared to synchronization in conventional network sys-

tems, clock synchronization in WSNs is particularly difficult.

This is essentially due to two reasons: (1) the uncertainty of

clock skews (clock skew generally refers to the difference

in stepping speeds of clocks); (2) the resource constraints

on sensor nodes. Due to the intrinsic hardware diversity on

sensor nodes, clock skews become different from one node to

another. As a measure to overcome clock skews, the existing

approaches (e.g. RBS [5], TPSN [6], FTSP [7] and many

optimizations [8–13]) mostly rely on periodical exchange of

time-stamps among the nodes to synchronize nodes’ clocks in

a timely manner. Clearly, clock accuracy comes at the cost of

frequent communication and energy consumption.

The performance of the existing approaches, however, is

far from being satisfactory. The common knowledge from

physics tells that the frequency of oscillators is susceptible

to factors like temperature and voltage. Many sensor network

systems nowadays are deployed in unattended area, where

the working condition in terms of temperature and voltage

are dynamic. This may cause instability of clock skews [14–

16], and makes the clock skews hard to estimate. Sensor

nodes thus have to undergo more frequent re-synchronization

to mitigate error cumulation, which means excessive cost of

energy and network bandwidth, and sometimes even hindering

the normal network operations. To address the above issues,

some works propose to compensate clock offsets according to

a certain factor [14–16]. However, those approaches generally

require prior knowledge of the exact relationship between

the influencing factors and the clock skew. To obtain such

knowledge means prohibitive labor cost, especially for the

large-scale and long-term deployments [17].
Can we simultaneously achieve high synchronization accu-

racy and low cost even under dynamic working condition?

The answer is yes. Through extensive empirical studies, we

have observed traceable relationship between clock skew and

the influencing factors, namely temperature and voltage. That

motivates us to exploit such information to accurately predict

changes in clock skews and design highly efficient approaches

of clock synchronization. We may meet two critical challenges

towards the above goal: first, considering the hardware diver-

sity and environmental dynamics, we need an accurate model

to trace the time-varying properties of clock skews at runtime;

second, given the updated offsets and skews, how to adaptively

adjust the tempo of synchronization while preserving high

accuracy and low cost, is still an open problem.
In this paper, we propose DualSync, a practical time

synchronization approach tailored for WSNs under dynamic

working condition. Unlike the existing works that merely

tolerate errors and passively compensate clock skews, we

propose to utilize the interfering factors (temperature and volt-

age) as important clues to improve synchronization accuracy

and efficiency. The design of DualSync consists of two main

components: Inter-Sync and Self-Sync, two alternate phases

that interplay in a mutual beneficial manner. Specifically, Inter-

Sync enables a node to opportunely trace the relationship

between clock skew and influencing factors via time-stamp

exchange. Based on the result of Inter-Sync, Self-Sync utilizes

only local information for skew estimation, and thus signifi-

cantly reduces the overhead of synchronization. To obtain a

delicate trade-off between accuracy and cost, an error-driven

mechanism is further proposed to adaptively adjust switching

between Inter-Sync and Self-Sync. The contributions of this

paper are summarized as follows

• Based on extensive experiments and observation, we
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present a novel clock model to accurately characterize the

relationship between skew variation and the influencing

factors. This model is utilized to trace the variational

clock skew at runtime.

• We propose the DualSync approach, in which Inter-Sync

and Self-Sync interplay under the control of an error-

driven adaptive mechanism. DualSync achieves guar-

anteed synchronization accuracy while minimizing the

communication cost.

• We implement DualSync and evaluate its performance

across various scenarios. The experiment results show

that DualSync outperforms the state-of-art approaches in

terms of accuracy and energy efficiency.

The rest of the paper is organized as follows. Section II

summarizes the related work. In Section III we introduce

the preliminary concepts in this work. The major design of

DualSync is given in Section IV. Performance analysis of

DualSync is given in Section V. Section VI shows the per-

formance evaluation results obtained from both experimental

and simulation results. Section VII concludes the paper.

II. RELATED WORK

Early works on time synchronization in WSNs mostly focus

on enhancing clock accuracy and typically rely on frequent

time-stamp exchange among the nodes. Particularly, RBS

[5] eliminates the delay in send and access operations by

applying a receiver-receiver scheme. TPSN [6] proposes a

“pair-wise” model to calculate the unknown propagation delay.

FTSP [7] largely increases the synchronization accuracy by

utilizing multiple MAC layer time-stamping. Although the

above approaches are able to achieve high accuracy, they

typically lead to overly high communication overhead and

significant power drain in the system and thus are unsuitable

for the energy constrained WSNs.

To address the above problems, recent works begin to

address the clock uncertainty and reduce the time synchro-

nization cost. Some of them focus on mitigating the impact

of external factors. For example, in [12] and [15], nodes can

wisely select the best synchronization parents, which mitigate

the impact of the temperature and energy heterogeneity, and

thus minimizes error propagation along the synchronization

path. To eliminate the impact of temperature, EACS [14] uses a

hybrid two-model system to describe the clock skew in dynam-

ic working temperature, and uses temperature measurements

to assist model selection and clock skew estimation. ODS

[8] studies how synchronization interval affects the synchro-

nization performance, and suggests adaptively adjusting the

synchronization period for a trade-off between synchronization

accuracy and energy consumption.

On the other hand, researchers try to study the funda-

mentals of clock uncertainty (i.e. clock skew) for better

synchronization accuracy. Specifically, ACES [9] suggests

skew tracking with complex Kalman filtering and period-level

sampling adaption. In [10] the authors propose to estimate

clock skew using the maximum likelihood estimators, which

successfully address the unknown delay in synchronization.

However, these approaches typically enmesh in an instinct that

high clock accuracy is inevitably at the cost of extra energy for

communication. To break such an instinct, an emerging type

of solutions are proposed, which make use of certain external

signal sources as common time references. Typical references

include WiFi [18], FM radio [19], fluorescent lighting [20],

etc. On the other hand, researchers also try to improve

the synchronization performance with the assistance of the

temperature or voltage measurement, such as EACS [14],

EATS [15] and TACSC [21]. However, the above solutions

either need specific hardware components or depend on prior

knowledge, and thus are unsuitable for WSNs. Different from

those above works, DualSync is not constrained by those

limitations and can utilize the interfering factors as important

clues to simultaneously achieve high synchronization accuracy

and low cost even under dynamic working condition.

III. PRELIMINARIES

In this section, we introduce preliminary concepts of this

paper, including terminologies and initial empirical results that

motivate this work.

A. Clock offset and Skew

We first define the important terms used in this paper.

Local Clock: the device used to measure time called clock.

We denote the reading of clock A at time t as CA(t).
Clock offset is the difference between clock reading of a

certain clock and the reference clock. We denote the clock

offset of clock A at time t as θA(t) = CA(t)− t.
The slope of offset is defined as clock skew. To give an

example, the clock skew of clock A at time t can be calculated

as:

αA =
dθA(t)

dt
=

θA(t+ ζ(t))− θA(t)

ζ(t)
(1)

where ζ is the interval measured in real time. Skew is evaluated

in ppm (parts per million) and normally ranges from ±5ppm

to ±100ppm [8].

An important fact of clock skew is that it exhibits both

long-term and short-term instabilities [8]. That’s to say, αA in

Equation (1) is essentially a function of time αA(t). In addition

to fabrication and component aging, clock skew is also affected

by the varying working condition such as supply voltage and

temperature, which make clock skew seem to be random and

hard to estimate. However, we show in the following empirical

study that clock skew is actually predictable.

B. Clock Skew Characterization

To better investigate the characteristics of clock skew, we

further conduct empirical study in different working condition.

Here, the working condition mainly refers to the supply

voltage and the environment temperature. The experimental

setup is shown in Figure 1.

Voltage. In the experiment, we measure the frequency of

a 32.768KHz oscillator on a MICAz under different supply

voltages with a LeCroy oscilloscope, as shown in Figure 1.

The nodes are powered by a Direct Current Electrical Source

(DCES). The supply voltage of the node can be changed by

varying the DCES. Figure 2 depicts the clock skew under

different supply voltages. It can be observed that the clock

skew increases as expected when the supply voltage decreases.

A more important observation is the relationship between clock

skew and voltage is an approximate linear function.
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Fig. 3: Skew v.s. Temperature.

Temperature. In order to understand the impact of tem-

perature, we put a node in a thermostat and change the

environmental temperature by adjusting the thermostat. Figure

3 plots the clock skew under different temperature. We can

observe that the relationship between temperature and clock

skew is roughly a parabolic function, which has been verified

in prior works [21]. A more interesting observation is that the

short-term relationship between clock skew and temperature

is roughly linear, as shown in the subfigure of Figure 3.

Combination of temperature and voltage. In this work,

we further investigate how the skew changes under both the

impact of voltage and temperature, which is never investigated

in prior works. According to the results in Figure 2 and 3, we

can conclude that: 1) The impact from voltage and temperature

on clock skew can be linearly added up. 2) Skew at the

temperature of 5◦C is more sensitive to the voltage than that

at 25◦C. Similarly, skew at the voltage of 3v is more sensitive

to the temperature than that at 5v.

To avoid the measurement bias on individual nodes, we

further repeat the above experiments for 50 times and replace

the node with a new one each time. The results of the

additional 50 nodes are omitted because they follow the same

trend.

Based on the above experiments, the characteristics of clock

skew can be summarized as follows:

• The relationship between skew and the influencing factors

is traceable, which gives us an opportunity to estimate the

skew using the voltage and temperature information.

• Relying on prior knowledge of the above-mentioned

relationship to estimate clock skew is not a generalizable

approach.

IV. DESIGN

In this section, we first introduce the overview of this work,

and then describe the environmental impact model. After that

we present the design details of DualSync.

A. Overview

DualSync is an energy efficient clock synchronization ap-

proach that delivers high clock accuracy even in dynamic

working condition. Following a common practice in clock

synchronization, DualSync still involves periodical time-stamp

exchanges for skew and offset compensation, which we call
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Fig. 4: Illustration of Inter-Sync and Self-Sync.

Inter-Sync. Different from the existing works, DualSync en-

ables a node to opportunely trace the relationship between

skew and influencing factors during Inter-Sync by analysing

the obtained time-stamp messages and the voltage and tem-

perature measurements. Based on the obtained relationship,

DualSync is able to use the local voltage and temperature

information to compensate the clock skew during the Inter-

Sync intervals. We name this phase as Self-Sync.

We give a simplified example in Figure 4 to illustrate our

idea. As depicted in Figure 4, Self-Sync is kept to compensate

the impact of dynamic working condition for its low-energy

profile. Inter-Sync is launched less frequently to calibrate the

time error and update the relationship since it requires high

communication overhead. We can see that, the error accumula-

tion between two Inter-Sync is largely mitigated by Self-Sync,

thus DualSync can achieve both high time accuracy and low

energy consumption even in dynamic working condition.

However, it is easy to understand that nodes obtain the

highest synchronization confidence right after each Inter-Sync.

This confidence of accuracy, as shown in Figure 4 (the red

dotted line), degrades gradually in the following Self-Sync

phase because of the accumulated uncertainty from dynamic

clock skew and the skew estimation error. To further provide

a trade-off between accuracy and energy consumption, Dual-

Sync applies an error-driven mechanism to adaptively adjust

switching between Inter-Sync and Self-Sync.

B. Clock Model

As discussed in Section III, the clock skew is not stable and

prone to be affected by the working condition. Thus we model

the clock skew as:

α(t0 + t) = α(t0) + αV AR(t0 + t) (2)



where αV AR(t0 + t) is the change of skew during t, which is

mainly related to two condition parameters, i.e., supply voltage

V and temperature T [14, 15].

According to our empirical studies in Section III, the

relationship between skew and voltage can be modeled as:

αV (t0+ t) = α(t0)+V SF (t0+ t) · (V (t0+ t)−V (t0)) (3)

where V SF is the Voltage-Skew Sensitivity Factor, i.e., the

change rate of the clock skew corresponding to voltage.

V SF (t0+t) is denoted by a function of time because it is not

stable and prone to be affected by the temperature as shown

in Figure 2. We can periodically estimate and update V SF
through online linear fitting in Inter-Sync.

The relationship between clock skew and temperature is

usually modeled as a parabolic function as follows:

αT (t) = k · (T (t)− T0)
2 (4)

where k is the temperature coefficient (typically around

0.035±0.01ppm/◦C) and T0 is the turn-over temperature (typ-

ically around 25◦C) [21]. According to our empirical result

in Section III, k is not a constant value which is prone to

be affected by the supply voltage. Thus, to keep the model

updated, a straightforward method is to periodically estimate

k through online quadratic fitting. Due to the limited storage

resources, nodes can only store small amount of data with a

relatively narrow temperature range for online quadratic fitting,

which may lead to high estimation error. Moreover, according

to [21], synchronization accuracy is keenly sensitive to the

temperature coefficient k. Thus even a tiny error in k may

result in a significant skew estimation error.

Fortunately, we find in Section III that the clock skew is

roughly proportional to the temperature in a small tempera-

ture range. Suppose that temperature does not change very

quickly, we can model the relationship between clock skew

and temperature as a linear function and periodically update

the linear coefficient through linear fitting.

αT (t0 + t) = α(t0) + TSF (t0 + t) · (T (t0 + t)− T (t0)) (5)

TSF is the Temperature-Skew Sensitivity Factor, which is

similar to V SF in Equation (3).

In this paper, we assume the impact from the two parameters

is independent in a short time period. Thus, the change in clock

skew αV AR during t can be modeled as:

αV AR(t0 + t) =V SF (t0 + t) · (V (t0 + t)− V (t0))

+ TSF (t0 + t) · (T (t0 + t)− T (t0))
(6)

C. Inter-Sync

The objective of Inter-Sync is to eliminate the error accumu-

lation during the Self-Sync phase based on the time-stamps.

In addition, it estimates V SF and TSF for the subsequent

self-calibration phase.

1) Offset and skew estimation: During the n-th Inter-Sync

phase, nodes firstly exchange time-stamp messages with their

neighbours. Specifically, nodes that in the broadcast radius of

the reference can collect time-stamp messages directly from it.

Nodes outside the broadcast radius of the reference can gather

time-stamp messages indirectly through other synchronized

nodes that are located closer to the reference. When a node

Algorithm 1 TSF Calculation.

Require: Tth: the temperature variation threshold for calcu-

lating a new TSF ;

1: Obtain a DataPoint(V [n],T [n],α[n]);
2: if | T [n]− ∀Tts−T [w] |> Tth then

3: if length(Tts=W ) then

4: In Tts, find the w (1 6 w 6 W ) that have the

largest |Tts−V [w]− V [n]|;
5: Tts[w] = (V [n], T [n], α[n])
6: else

7: Tts[length(Tts) + 1] = (V [n], T [n], α[n])
8: end if

9: end if

10: if length(Tts) > 3 then

11: TSF [n]=LinearRegression(Tts(T, α));
12: end if

13: n=n+1;

collects enough time-stamp messages, it estimates the offset

θ[n] and skew α[n] of its own local clock through linear

regression, and becomes synchronized. According to [8], θ[n]
and α[n] are unbiased estimators with error variance σ2

θ [n] and

σ2
α[n].

Such time-stamp based synchronization method is widely

adopted in existing approaches [7, 10], and its design detail is

therefore omitted here since it is not our focus.
2) Calculating VSF and TSF: In each Inter-Sync phase,

nodes note their current voltage and temperature measurement

V [n] and T [n], and the estimated clock skew α[n] (we term

such information as a DataPoint(V [n],T [n],α[n])). V SF [n]
and TSF [n] are further examined: linear regression is used to

find the line best approximates the past W (W is the window

size) DataPoints and V SF [n] and TSF [n] are analyzed.
Algorithm 1 gives a high level overview on how a node

estimates the current TSF (the estimation of V SF is similar

to that of TSF ). The algorithm consists of three steps:

1) Collect a new DataPoint.

2) Store the new DataPoint in a fitting table Tts.

3) Once enough DataPonits are collected in Tts, calculate

the TSF [n] using a regression algorithm.

We assume that the V SF [n] and TSF [n] do not change

before the next Inter-Sync phase, and thus the node can

subsequently switch into the Self-Sync phase.

D. Self-Sync

During the Self-Sync phase, the nodes periodically measure

their current supply voltage V (ti) and temperature T (ti). After

every measurement, the current clock skew αn(ti) (clock skew

in the i-th Self-Sync during the n-th Inter-Sync interval) can

be updated by using Equation (6):

αn(ti) =α[n] + V SF [n] · (V (ti)− V [n])

+ TSF [n] · (T (ti)− T [n])
(7)

Obviously, the skew estimation quality is subject to the

voltage and temperature measurement error. Similar to the ma-

jority of existing research efforts [21], we consider them fol-

lowing approximately normal distribution as δT ∼ N(0, σ2
T )
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and δT ∼ N(0, σ2
V ). Then we can derive that Equation (7) is

an unbiased estimator for clock skew with error variance as:

σ2
αn(ti)

= 2 · (V SF [n] · σ2
V + TSF [n] · σ2

T ), (8)

As shown in Equation (8), the variance of the skew estimation

error is highly related to V SF and TSF , which are impacted

by the working condition. In other words, the skew estimation

quality is prone to be affected by the working condition.

After the update in clock skew, the local time afterward can

be predicted by using such a new clock skew till the next Self-

Sync. Assuming that the clock skew does not change during

the Self-Sync interval, the clock offset in the (i+ 1)-th Self-

Sync can be updated as:

θn(ti+1) = θn(ti) + ∆t · αn(ti) (9)

where ∆t is the Self-Sync interval, and a smaller ∆t will

obviously lead to higher synchronization accuracy. We will

investigate the impact of ∆t in Section V. The second term

in Equation (9) represents the change in clock offset (the

accumulated clock skew), which is termed as offset drift. If

the clock offset exceeds a given threshold (such as half of the

granularity of the local clock) , we conduct the compensation

to the local clock as:

Cn(ti+1) = Cn(ti+1) + θn(ti+1) (10)

Now the time error during the Inter-Sync interval can be e-

liminated using the local voltage and temperature information.

E. Error-Driven Mechanism

The proposed synchronization method faces a trade-off

between Inter-Sync and Self-Sync. Particularly, Self-Sync can

use local information for skew compensation, which can

reduce energy consumption but suffers error accumulation. On

the other hand, Inter-Sync produces a very good performance,

but at the cost of a higher energy consumption for time-stamp

exchange. Figure 8 gives an example of the performance of

Self-Sync (dotted line) and Inter-Sync (solid line). Clearly,

different lengths of the Inter-Sync interval will lead to different

levels of energy consumption and error accumulation. Thus,

the key to preserving high synchronization accuracy while

minimizing communication cost is to repeat the Inter-Sync

right on time, not too early or too late. However, as discussed

in Section IV-D, the synchronization quality of Self-Sync is

highly affected by the working condition, which means a time-

varying feature of error accumulation rate during the Inter-

Sync interval. This makes the problem more challenging.

To address the above problem, we suppose to apply an error-

driven mechanism for adaptive Inter-Sync, which enables a

node to estimate its current error accumulation and adaptively

trigger the Inter-Sync based on the current error accumulation

and the cost of Inter-Sync and Self-Sync as:

eself (ti) · Ecal · β > einter · (Ecal + Etrans) (11)

eself (ti) = eself (ti−1) + ∆t2 · σ2
αn(ti)

+
∆t3

3
· σ2

η. (12)

Where eself and einter are the error uncertainty of the Self-

Sync and Inter-Sync, respectively. einter can be obtained

through measurements reported in previous literatures [8].

eself can be calculated through integration on the error

uncertainty introduced by each Self-Sync interval by using

Equation (12). We will give the proof of Equation (12) in

Section V. β is the error controlling factor. A larger value

of β indicates a stricter accuracy requirement, and we will

investigate the impact of the factor β in Section V. Ecal and

Ecal + Etrans are the energy consumption of Self-Sync and

Inter-Sync, where Ecal and Etrans are the energy cost for

calculation and message transmission. Equation (11) states that

if eself rapidly accumulates, Inter-Sync should be triggered to

eliminate error. Otherwise, DualSync will resume the Self-

Sync for energy efficiency.

V. PROOF AND ANALYSIS

In this section, we study the synchronization performance

of DualSync in terms of synchronization accuracy and energy

consumption.

A. Synchronization Accuracy Analysis

1) Error Accumulation: Synchronization error is consid-

ered mainly due to the imperfect skew estimation [8, 21]

which may accumulate with time. We have discussed the

skew estimation quality of DualSync in Section IV-D. In this

subsection, we are interested in its accumulation with time.

Theorem 1. Equation (9) is an unbiased estimation of clock

offset, and its error variance is:

σ2
θdrift(ti+∆t) = ∆t2 · σ2

αn(ti)
+

∆t3

3
· σ2

η (13)

where σ2
η is the step variance [8] of clock skew during the

dormant interval ∆t.

Proof. Given that the short-term stability of the working

condition is good [8], we model the real clock skew during

the i-th Self-Sync interval as

αn(ti + t) = αn(ti) +

∫ ti+t

ti

η(u) du (14)

Where η ∼ N(0, σ2
η). A larger value of σ2

η indicates worse

stability of the clock skew [8]. The value of σ2
η can be obtained

from frequency tolerance provided by oscillator specifications.
The accumulated drift offset θdrift during the i-th period

can be expressed as

θdrift(ti +∆t) =

∫ ti+∆t

ti

αn(t) dt (15)

From Equation (14) and (15), we can obtain that:

θdrift(ti+∆t) = ∆t·αn(ti)+

∫ ti+∆t

ti

∫ ti+t

ti

η(u)dudt (16)
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From Equation (9) and (16), the error of offset obtained by

Equation (9) is

δθdrift(ti+∆t) = ∆t · δαn(ti) +

∫ ti+∆t

ti

∫ ti+t

ti

η(u)dudt (17)

where δαn(ti) = α̂n(ti)−αn(ti), and E[δα(ti)n ] = 0 according

to [8]. Thus we have

E[δθdrift(ti+∆t)] = E

[

∫ ti+∆t

ti

∫ ti+t

ti

η(u)dudt

]

= 0

Namely, θ̂drift(ti +∆t) is an unbiased estimator.

We denote X =
∫ ti+∆t

ti

∫ ti+t

ti
η(u)dudt. Then the MSE

(Mean Square Error) of δθdrift(ti+∆t) is

E
[

(δθdrift(ti+∆t))
2
]

= ∆t2 · σ2
αn(ti)

+ E[X2]

because E
[

(δαn(ti))
2
]

= σ2
αn(ti)

, E[X] = 0, and δαn(ti), X

are independent. It is proved in ODS [8] that E[X2] =
∆t3

3
·

σ2
η . As a result, the error variance of the estimated drift offset

in Equation (9) can be expressed as

σ2
θdrift(ti+∆t) = ∆t2 · σ2

αn(ti)
+

∆t3

3
· σ2

η (18)

This finishes the proof.

Theorem 1 reveals that the error accumulation during one

Self-Sync interval is determined by three factors: 1) stability

of the clock, evaluated by σ2
η; 2) quality of skew detection

σ2
αn(ti)

, which is affected by the working condition; and 3) the

calibration period ∆t. Figure 5 gives an example pattern of

σθdrift
against ∆t in different working condition (i.e. different

V SF and TSF ). As shown in Figure 5, the working condition

acts as the deterministic factor as ∆t grows. Thus, in order to

control the accumulated error uncertainty σdrift below 40µs
in any working condition, we set ∆t = 100s in our work.

After deriving the error accumulation during Self-Sync

interval, we can derive the error accumulation during the

Inter-Sync interval through integration on the error uncertainty

introduced by each Self-Sync interval as:

σ2
Inter−Sync = σ2

θ[n] +
N
∑

i=1

(∆t2 · σ2
αn(ti)

+
∆t3

3
· σ2

η) (19)

where σ2
θ[n] is the error of the clock offset estimation in the

n-th Inter-Sync, and N is the number of Self-Sync between

two consecutive Inter-Syncs.

2) Error Probability: After the analysis of the error accu-

mulation, we give the following analysis of the error proba-

bility of DualSync.

According to Equation (11), with the error-driven mecha-

nism, the error uncertainty during the Inter-Sync interval can

be controlled as:

einter · (Ecal + Etrans)

Ecal · β
6 σ2

6
einter · (Ecal + Etrans)

Ecal · β
+σ2

drift

(20)

According to Theorem 1 the error uncertainty σ2 can be further

estimated by:

σ2 =
einter · (Ecal + Etrans)

Ecal · β
+

∫ ∆t

0

(t · σ2
α +

t2

3
· σ2

η) ·
1

t
dt

=
einter · (Ecal + Etrans)

Ecal · β
+

∆t2

2
· σ2

α +
∆t3

9
· σ2

η

(21)

Based on the probability theory, we can obtain the error

probability p as:

p = erf(
ǫ√
2σ

) (22)

where erf is the Gaussian error function, and ǫ is the required

accuracy. Figure 6 plots the error probability of different

time error under different error controlling factor β. We can

observe from Figure 6 that with a strict error requirement (e.g.

β=1.0), the time error can be bounded by 200µs. With a looser

requirement (e.g. β=0.3), the time error increases and bounded

by 300µs.

B. Energy Consumption Analysis

Energy consumption of DualSync is reflected in its Inter-

Sync interval. According to Equation (11), the average Inter-

Sync interval can be simply derived as:

d =
einter · (Ecal + Etrans)

β · Ecal · σ2
drift

·∆t (23)

We can easily conclude that the Inter-Sync interval is subject

to two factors: 1) the error controlling factor β; 2) σdrift, the

error accumulation in each Self-Sync interval which is mainly

subject to the working condition according to the analysis in
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TABLE I: Default Implementation Configurations

ση σT σV β ∆t Ecal Etrans

10−9 0.1 0.05 0.5 100s 0.86mJ 6.9mJ

Section V-A. Figure 7 gives an example pattern of Inter-Sync

interval under different β and working condition.

We can observe from Figure 7 that: 1) with DualSync, the

Inter-Sync can be prolonged to 3800s, delivering a 300µs
error bound; 2) DualSync can achieve a Inter-Sync interval

of 1200s (the time error is bounded by 300µs) even under a

harsh working condition (T=5◦C and V =2v).

VI. EXPERIMENT AND SIMULATION

We implement DualSync on the MICAz mote and evaluate it

with multiple experiments. To reveal its performance at scale,

we also report a simulation study in this section.

A. Real-World Experiment

In the experiment, we use one node (denoted as R) as the

reference node, and three other nodes (denoted as A, B and

C) as the slave nodes to synchronize with node R (as shown in

Figure 9). Node A runs the basic DualSync (basic DualSync is

the DualSync approach with fixed Inter-Sync interval), Node

B runs EATS [15] and Node C runs EACS [14]. We set

the time-stamp exchange (Inter-Sync) interval to 1200s and

the skew estimation (Self-Sync) interval to 100s, which is

the same value as the authors of EACS [14] and EATS [15]

used in their evaluation. Table I lists default configurations of

DualSync. Where Ecal, Etrans and ση can be obtained through

measurement report in previous literatures [2, 8]. σT and σV

are profiled by pre-deployment measurements. Specifically,

we collect more than 30000 effective samples of voltage and

temperature measurements from 10 nodes, and σT and σV is

equal to standard deviation of the average measured value of

V and T . We perform two different experiments: controlled

experiment and outdoor experiment.

Controlled experiment. We first perform a controlled ex-

periment in different working condition which allows a detail

look at what happens if the clock skew significantly changes

within a short period. To investigate how temperature change

impact the synchronization performance, we periodically put

the nodes in a fridge (as shown in Figure 9). The initial

voltages of the three slave nodes are all 3.0v, and the pre-

deployment measurement for EACS and EATS to obtain

the prior knowledge of the relationship between influencing

factors and the clock skew is also conducted under 3.0v.

Figure 10 shows the synchronization performance of the

three approaches in the third hour of the experiment (after

the initialization of the V SF and TSF of DualSync). The

figure tells that: 1) When the working condition is stable, all

the three approaches produce small estimation errors which,

however, accumulate with time, and the sudden drops of the

time error are due to the local time updating in the Inter-Sync

phase. 2) EATS suffers significant accuracy degradation when

the temperature changes since it cannot compensate the change

of temperature. 3) DualSync and EACS achieve comparable

synchronization accuracy when the temperature changes.

However, EACS starts to lose accuracy after 10 hours (as

show in Figure 11). We can see from the figure that EACS

suffers a serious accuracy degradation when the temperature

changes. This is because the relationship between temperature

and clock skew may change with time, which is caused by

the change in supply voltage (as discussed in Section III) and

other environmental factors. However, EACS liberally use a

preserved relationship for skew and offset estimation, and thus

inevitably leads to high time error.

To further quantify the performance of the three approaches,

we draw the CDF of time errors in Figure 12. The figure

tells that: 1) EATS has a median error of 250µs, and a

90th percentile of 3ms. Such high time error is due to the

rapid change of temperature. 2) EACS has a median error

of 200µs, and a 90th percentile of 500µs, 5× more accurate

compared to the EATS, owning to EACS’s ability to (even

partially) compensate the change of clock skew caused by

the temperature change. 3) DualSync has a median error of

100µs, outperforming EACS and EATS by 2× and 2.5×. Its

90th percentile is 260µs.

Outdoor Experiment. A controlled environment allows us

to rule out other effects of inaccuracy in the synchroniza-

tion process, which are not easy to obtain in an outdoor

environment. Therefore, the applicability and feasibility of

the proposed DualSync scheme should also be validated by

outdoor experiment. In this experiment, we investigate how

DualSync, EACS, and EATS handle a more variable working

condition by placing Nodes A, B and C on a windowsill where

both sunshine and wind are able to reach them. We observe

the synchronization accuracy over a period of 18 hours.

Figure 13 shows the network synchronization error over a

period of 18 hours of all the three approaches. The result

tells that: 1) the error of DualSync kept less than 500µs even

in a highly dynamic environment; 2) EATS suffers a clear

rise in the synchronization error during day time when the

temperature changes markedly; 3) EACS generally incurs a

500µs time error, and the time error rises after 12 hours when

the supply voltage seriously decays.

B. Multi-hop Simulation

In the previous subsection, we have tested the effectiveness

of 1-hop DualSync with MICAz mote. However, as WSN

applications usually involve a large number of sensor nodes

which may not be all reached by one-hop communications and

thus multi-hop communication is adopted to retain a common

clock throughout the whole network. To further evaluate the



10800 11300 11800 12300
−1

0

1

2

3

4

5

6
x 10

−3

Time (s)

T
im

e
 E

rr
o

r 
(s

)

EACS

EATS

DualSync

Temperature
Changes

Error Elimination
by Inter−Sync

Fig. 10: Time error in the 3-rd hour.

36000 36500 37000 37500
−1

0

1

2

3

4

5

6
x 10

−3

Time (s)

T
im

e
 E

rr
o

r 
(s

)

EACS

EATS

DualSync
Temperature
Changes

Fig. 11: Time error in the 10-th hour

0 1 2 3 4 5 6

x 10
−3

0

0.2

0.4

0.6

0.8

1

Time Error (s)

C
D

F

DualSync

EATS

EACS

Fig. 12: CDF of time error.

08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00

 

 

0 0.5 1 1.5 2 2.5

x 10
-3

Temp. 33~15
°
C

Inter-Sync Period

Temp. 33
°
CTemp. 22~33

°
C

DualSync

EATS

EACS

Fig. 13: Time error in an outdoor environment.

performance of DualSync in a multi-hop network, we conduct

multi-hop simulations in this section.
In the simulation, 150 nodes are randomly deployed in a

200 × 200 area and the reference is located at the center of

the area. The energy draining rate of the battery is set to be:
{

0.00001v/1kbps, V > 2.8v

0.0001v/1kbps, V < 2.8v
(24)

Figure 14 gives examples of the discharge curves for two

typical nodes. To mimic a dynamic working condition, we

also manually trigger the temperature variance during the

simulation. Unless noted otherwise, default parameters in

Table I are also used in the simulation. All statistics reported

are mean values averaged over 100 runs for high confidence.
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Fig. 14: Discharging curves of batteries.

Performance in Multi-hop Networks. Figure 15 shows a

detail per-hop error analysis of DualSync, EATS and EACS

over a period of 15 hours. As shown in the figure, the synchro-

nization error of DualSync and EATS approaches significantly

increases as the number of hops increases because more

uncertainties such as delay, clock jitter, etc. are introduced.

However, for EACS, the situation is exactly reversed. This

interesting phenomenon is caused by the fact that the nodes

close to the sink suffer a more variable voltage supply. That’s

because those nodes not only generate their own traffic, but

also relay the traffic for other nodes to the sink, which leads

to a dynamic energy consumption rate and thus fluctuates
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Fig. 15: Time error in Multi-hop Network.

the clock skew. Unfortunately, EACS can solely compensate

the impact of temperature, and thus suffers significant per-

formance degradation when the voltage supply varies. On

the other hand, we can see from this figure that the error

of DualSync keeps less than 350µs even in the 5-th hop.

However, the error of EATS in the 5-th hop is around 500 µs,

and the maximum error achieves 1ms. According to statistic,

DualSync improves the synchronization performance by 3×
in the 5-th hop and at least 5× in the 1-st hop.

Performance with Different Inter-Sync Interval. To un-

derstand the energy efficiency of DualSync, we investigate the

impact of period length on synchronization error of DualSync,

and then compare it with EACS, EATS and the basic Dual-

Sync. We adjust factor β to be 1, 0.5 and 0.3. For each β, the

simulation lasts 15 hours. When the experiment terminates,

we calculate the average length of Inter-Sync interval to be

10min, 25min and 45min. Then, we repeat the experiment for

the same duration by using EACS, EATS and basic DualSync

with the calculated interval length.

Figure 16 plots the average time error observed in the exper-

iment. We can see that: 1) error of DualSync keeps less than

300µs even when the average period length achieves 45min. 2)

Compared with DualSync, EACS and EATS incurs 3× and 5×
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higher time error respectively, and the gap between DualSync,

EACS and EATS enlarge as the average period increases. 3)

Fixed Inter-Sync interval manner (basic DualSync) generally

incurs a larger error than the adaptive manner.

Impact of Voltage and Temperature Measurement Qual-

ity. In this experiment, we investigate the impact of biased

σV and σT estimation. Figure 17 plots mean values of the

time error and the Inter-Sync interval under different factors

of biased estimation, in steps of 0.1. This figure tells that: 1)

with increasing overestimation, the synchronization accuracy

gets improved, but the overhead enlarges linearly; 2) when

underestimated, the accuracy performance degrades quickly.

Curves in Figure 18 show the impact of biased σT estimation,

which have similar trends as that in Figure 17 except that the

impact of σT is less significant than that of σV . By comparing

results in Figure 17 and Figure 18, we can conclude that

effective estimation of σV plays a more important role in

practical systems using DualSync.

VII. CONCLUSION

This paper presents DualSync, a practical design for effi-

cient and accurate clock synchronization in low-power wire-

less networks under dynamic working condition. By smartly

utilizing of the temperature and voltage information, DualSync

makes it possible to simultaneously achieve high synchroniza-

tion accuracy and low cost. The experiment and simulation

results demonstrate that DualSync outperforms state-of-art

approaches in terms of accuracy and energy efficiency. In

our future work, we plan to take other in-network interfering

factors, e.g. the instability of the parent nodes, into account and

explore the synchronization issue in heterogeneous wireless

networks.
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