
Smart-DJ: Context-aware Personalization for Music Recommendation on
Smartphones

Chengkun Jiang∗, Yuan He∗
∗School of Software and TNLIST, Tsinghua University, China

Abstract—Providing personalized content on smartphones
is significant in ensuring user experience and making mobile
applications profitable. The existing approaches mostly ignore
the rich personalized information from user interaction with
smartphones. In this paper, we address the issue of recom-
mending personalized music to smartphone users and propose
Smart-DJ. Smart-DJ incorporates an evolutionary model called
Incremental Regression Tree, which incrementally collects
contextual data, music data and user feedback to characterize
his/her personal taste of music. An efficient recommending
algorithm is designed to make accurate recommendations
within bounded latency. We implement Smart-DJ and evaluate
its performance through analysis and real-world experiments.
The results demonstrate that Smart-DJ outperforms the state-
of-arts approaches in terms of recommendation accuracy and
overhead.

Keywords-Context-awareness; Personalization; Recommen-
dation; Incremental Regression Tree; User Feedback;

I. INTRODUCTION

With fast development of communication technologies

and proliferation of mobile applications, smartphones are

replacing desktop computers as the major source of clients to

access content over the Internet. Convenient and ubiquitous

network connections on smartphones enable users to enjoy

a variety of content anytime and anywhere. The content

of users’ interest may be entertainment, leisure, sociality,

business, learning, and so on. Among those applications

providing such content, music listening is a typical example

that attracts countless users.

Listening to music in mobile contexts, however, intro-

duces challenges to both smartphone users and application

designers. Selecting a song to play usually requires the user’s

attention and several operations on the screen. Doing this in

a stationary state is easy, but becomes fairly inconvenient

when the user is in a mobile state, e.g. walking, exercising,

and driving. As users get tired of repeating those preset

playlists, enjoying recommended music from the Internet

is undoubtedly an attractive experience. Nevertheless, a

user under different contexts is likely to have different

preferences of music. One may want some relaxing and soft

music when he/she is resting, while may prefer energetic

songs when he/she is having sports. More importantly, dif-

ferent users tend to have different taste, leading to different

preferences while listening to music, even they are under the

same context. Can a music recommender be smart enough to

understand a user’s personal needs anytime and anywhere?

That becomes a crucial and challenging issue.

Various approaches have been proposed to tackle the

issue of music recommendation, including early works

proposed for desktop applications. A category of existing

approaches called Collaborative Filtering (CF) [1] assume

similar people share similar interest and recommend widely

welcomed music, failing to satisfy the personal taste of

users. Another category called Content-Based approaches

(CB) [2, 3] explore the similarity among music and make

recommendations according to a user’s listening history,

neglecting the changes of listening preferences under dif-

ferent contexts. Recent studies show that the rich sensing

capability may produce more indication to a user’s real-

time listening preference [4–9]. Those approaches exploit

a user’s contextual information to describe user’s real-time

state. According to such information, they recommend music

that other users in similar contexts listened to, which follows

the idea of CF. So even with more contextual information,

those approaches still face the difficulties in meeting a user’s

personal needs.

According to the above facts, we find that personalizing

recommended music with context awareness is a promising

solution, which in turn means critical challenges in three

folds: First, a personalized music recommender must be

built on large amount of information from context sens-

ing and music listening history. Processing and managing

those information is clearly a non-trivial task for resource-

constrained smartphones. Second, decision making in the

recommender must be sufficiently fast, not hurting the

listening experience in terms of waiting time. Third, like

many smartphone applications, music listening is an inter-

active process. It is significant for a music recommender to

consider users’ feedbacks. Both the explicit feedback (e.g.,

user’s rating on music) and the implicit feedback (e.g., user’s

listening behavior during listening) offer useful information.

How to utilize them to further improve the recommendation

accuracy remains an open problem.

In order to address the above challenges, we propose

Smart-DJ, context-aware personalization for music recom-

mendation on smartphones. Based on the rich sensing capa-

bility on smartphones, Smart-DJ builds a personalized light-

weight model called Incremental Regression Tree to map

heterogeneous user contexts to music features. The model

2016 IEEE 22nd International Conference on Parallel and Distributed Systems

1521-9097/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPADS.2016.25

133

is able to evolve with the listening history, so as to provide

better and better characterization of personal music taste.

The recommending algorithm based on the model is highly

accurate and efficient, preserving user experience during

listening.

Our contributions can be summarized as follows:

• We propose the model of Incremental Regression Tree

to capture user’s music preferences in different contexts

and incorporate user’s both explicit and implicit feed-

back into the model. The model can evolve to satisfy

user’s personal music requirements. Moreover, it has

fixed maximum height and low cost of maintenance.

• We devise an efficient recommending algorithm that

utilizes contextual information to reflect a user’s real-

time state and needs. The algorithm provides in-time

music recommendation with personalized tastes.

• We implement Smart-DJ and evaluate its performance

through analysis and real-world experiments. The re-

sults demonstrate that Smart-DJ outperforms the state-

of-arts approaches in terms of recommendation accu-

racy and overhead.

The rest of the paper is organized as follows. Section

II discusses the related works. In Section III, we elaborate

on the model of Incremental Regression Tree. Section IV

introduces the recommending algorithm. In Section V, we

describe in detail the implementation of Smart-DJ. We

theoretically analyze the complexity in terms of time and

present the experiments and the evaluation results in Section

VI. Section VII concludes the paper and discusses the future

work.

II. RELATED WORKS

In this section, we survey existing research on music

recommendation.

Traditional music recommendation system can be clas-

sified into three categories:collaborative filtering (CF),

content-based (CB) techniques, and hybrid methods [10].

CF uses information of similar users to predict the target

user’s interest. The target user is recommended with the

songs other users that have the similar listening history or

music searching history like [1]. However, music preference

is subjective. So the assumption behind the CF method

that users with similar listening behaviour have similar

taste on music is vulnerable. CF also suffers that it can

hardly recommend a new song that no user ever listened

to. Different from CF, CB methods try to discover music

similarity based on their audio or signal information and

recommend users the songs similar to their previously-

listening ones [2, 3]. To some extent, CB solves problems in

CF, but it is still an active area that how to measure music

content and the recommendation solely based on content

similarity ignores the dynamics of listening states. Hybrid

methods aims to combine different models to increase the

overall recommendation performance by weighting, cascade,

mixing [11].

With the development of smart devices and the increasing

availability of rich sensors on those devices, context-aware

music recommender has attract more and more attention

recently and provides a novel way to accurately customize

personalized music recommender system [12, 13]. There are

studies that try to formally define what is mobile context

[14, 15]. In a word, context is everything about you or the

environment where you are. So involving context into the

recommender will improve the accuracy of inferring user’s

preference.

Most existing context-aware music recommenders com-

bine the context with the CF [6–8, 16] or CB [4, 5, 9] meth-

ods to recommend music. Lee et al. propose a context-aware

recommender by case-based reasoning [6]. It collects user

contexts such as time, weather, place and temperature, then

recommends the user with the music that other users with

similar contexts listened to. SuperMusic [16] recommends

music to the user based on other users’ listening history in

same location. Rho et al. similarly adopt the CF methods

considering user’s mood [7]. Su et al. consider contexts such

as location, motion, calendar, environmental conditions and

health conditions [8]. It combines the context similarity with

the listening content similarity as to improve the CF method.

These systems take advantage of mobile contexts to describe

user’s state better than web, but still face the limitation to

model the individual user’s preference on different contexts.

Wang et al. propose a probabilistic model to evaluate

the possibility the song is suitable in the specific activ-

ity [9]. It depends on the autotagging and implicit user

feedback to calculate the possibility that a song matches

the context. Every time a new song listened or added, the

whole playlist ranking needs to be recalculated. Cai et al.
extract music textual meta-data with emotional information

and form user’s context based on the emotional word terms,

so the recommendation is based on the music that other

users like in the similar emotional contexts [5]. A single

label such as activity or searching keywords of user’s current

state may not accurately reflect user’s actual requirements.

The description of music with meta-data can be different

among different users. They still suffer the problem of

personalization.

To associate songs with context, most context-aware

recommenders use manually supplied metadata, labels and

ratings [17–20], which is dependent on common description

of different users. We use the audio features that independent

of other users’ opinions to better represent a song. To the

best of our knowledge, no existing context-aware music

recommenders try to model user’s music preferences on the

objective music audio features in different contexts.

III. INCREMENTAL REGRESSION TREE

As mentioned before, music recommendation in mobile

environment puts extra limitations on resources and user

134

Table I
COLLECTED CONTEXT

Category
Context
Type

Comments
Range of
discretized
values

Activity
Level

Acceleration
Acceleration in
three directions

3

Noise Microphone
Environment
noise level

5

Time
Time of the
Day

Time you
listen to the music

6

Social Contact
SMS
Frequency

The frequency of
SMS usage

3

Call
Frequency

The frequency of
making a call
or receive a call

3

Table II
EXTRACTED AUDIO FEATURES

Category Comments

Tempo Reflect the rhythm of the song

Pitch Reflect the melody of the song

MFCC
Reflect the frequency distribution on Mel scale
and we select the first four coefficents

experience. Complex algorithms such as SVM, deep learning

or heavy user involvement for model training are not suit-

able. So we propose a music recommender in smartphones,

which incorporates the light-weight Increment Regression
Tree (IRT) [21] that incrementally adjusts the model to

reflect individual user’s diverse tastes in different situations.

The way of increment guarantees the performance with

smaller training samples, because the accuracy of recom-

mendations will be improved with the recommender evolv-

ing. IRT matches user contexts automatically with music

features and contexts are organized hierarchically so that

each combination may implicitly refer to a situation. We

will present the IRT in detail below.

A. Overview of the Model

We try to directly map the collected contexts to specific

music features through the IRT model. There are five con-

texts we consider that are mostly related to user’s music

preference as described in Table I and we discretize these

contexts into 3-6 value levels respectively. As for music

features, we extract the relatively stable audio features to

represent music appropriately [22]. The audio features we

select are shown in Table II and the features of each song

are pre-processed to store in the server. The details of these

information process are presented later in Section V. It is

true that users music predilection can change over time, so

only considering audio features can hardly respond to the

change. To make up for the flaw, we take user feedbacks

into consideration, which can be a direct indication of music

preference under certain state.

When a user is listening to a song, we will collect three

types of data: the listening contexts C; the audio features of

Table III
SYMBOLS

Symbol Meaning
C All the contexts we collected
F All the audio features

Rate The final rating for a song
R(C,F,Rate) A record of a song

c One context that belongs to C
f One feature that belongs to F

mi(f) The value of feature f in ith record
En(f) Entropy over n songs about the feature f

Eparent(f) Entropy of the parent cluster about the feature f
Ec

vi
(f) Entropy of the records that the value of c context is vi

meann(f) The mean value of feature f over n songs
Ic(f) Information gain with context c
nc No. of values on context c
Nc

vi No. of records that the value of c context is vi
N No. of records in the cluster
ε The threshold for the entropy

current song F and the user feedback on that song Rate.

We denote these as a piece of record R(C,F,Rate) and the

IRT is constructed incrementally with these records one by

one. It is noticeable that sometimes it is a certain specific

feature that affects user’s taste. So we build different IRTs

for different audio features to ensure the dominant feature

is correctly identified. A single IRT reflects user taste on a

single audio feature f in F . An example of IRT on a single

feature is shown in Fig. 1. Table III provides the symbol

reference.

B. Tree Components

As shown in Fig. 1, there are two parts in the IRT. One

is the circle node called the splitting node and each node

splits the records in terms of the context value. Another

part is the rectangle node called the leaf node that contains

the records with similar audio feature. The structure of the

IRT can evolve with the number of listening records. The

evolution of structure proceeds in a light way with small

overhead of computation, which we will mention in next

section.

Splitting Node: We can see in Fig. 1, every splitting node

has an associated context in its circle. The associated context

is selected based on the music features. For example, if the

user listens to fast rhythm music in the afternoon and slow

rhythm music at night, the time context will be selected

as the associated context to form a splitting node. Then

two kinds of music will be classified into two branches of

the node corresponding to the value of the time context. If

the features in one branch still varies much, then the IRT

will select other informative context to form a splitting node

recursively. For example, in the Fig. 1, time context is first

selected to split the music records and then acceleration

is recursively chosen to be a sub-level context in the top

branch. The algorithm of how to choose the context and

update the structure are presented in Section IV.

135

R1(C1, f1, Rate1)R1(C1, f1, Rate1)

R2(C2, f2, Rate2)R2(C2, f2, Rate2)

Rn(Cn, fn, Raten)Rn(Cn, fn, Raten)

Figure 1. An example of IRT for music recommendation.

Leaf Node: The leaf node each contains a set of music

records R(C, f,Rate) and f is one feature of audio features

F . In each record set, all the values of feature f gather

together in a range that is controlled by a threshold. The

threshold is defined in terms of value variation around their

average value. The higher the threshold is, the broader the

feature values in one cluster will distribute and the more

flexible music taste prediction will be. On the contrary, if we

set a small threshold, the values in one cluster will converge

tightly to make the prediction accurate. We can find there

exists a tradeoff between flexibility and accuracy in threshold

selection. In each cluster, we can also find that all the music

records share some same context value. Take the cluster

in the bottom branch of “social contact” for example. All

the music records have same context values night, noisy,

rare. However, other contexts such as acceleration may have

different values.

IV. MODEL TRAINING AND RECOMMENDATION

As we mentioned before, the IRT model is trained in an

incremental way to capture a user’s music preferences. It

automatically organizes the hierarchy structure of contexts

so that each record cluster may refer to user’s certain music

predilection. The mobile environment further limits the

complexity of computation and storage, so the incremental

update of IRT should be efficient and simple. We will first

present how the IRT incrementally is trained to capture

user music predilection and then how we exploit the IRT

to make music recommendation with consideration of user

feedbacks.

A. Incremental Training

Every time a new record is observed, it will be put in the

corresponding record cluster based on its context values. If

the feature difference exceeds the threshold, the algorithm

should find an appropriate context to form a splitting node

to split the records. This process is then recursively done in

the split record clusters until the differences in every cluster

are below the threshold.

1) Feature Difference: To determine when to split the

records, we use the Entropy to indicate the value difference.

When the entropy exceeds a defined threshold ε for an audio

feature, the IRT needs to form a splitting node. In Section

VI-B, we set appropriate defined thresholds for different

features. We use variation to represent entropy. The smaller

the entropy of a record set is, the more similar the audio

feature values of the record set are. If the entropy is large, it

is likely to form several value clusters of the audio feature in

the record set. So we check the context values to find which

context affects the difference. The formula to calculate the

entropy is below:

En(f) =

√√√√
n∑
i

(m2
i (f)−meann(f))/n

mean(f) =
n∑
i

mi(f)/n

If we now have the entropy over n−1 songs En−1(f) and

the mean value of f is meann−1(f). When a new record

comes, we can obtain En(f) and meann(f) based on the

formula below:

En(f) =
n− 1

n
(En−1(f)−meann−1(f))

+
m2

n(f)−mn(f)

n

(1)

Then we update the mean value as:

meann(f) =
meann−1(f) ∗ (n− 1) +mn(f)

n
(2)

It can be observed that the entropy update can be computed

in an incremental way within the constant time.

2) Context Selection: After determining when to split

records, the IRT needs to find a most appropriate context to

split the record set. We use the Information Gain to select

the context. It is the reduction of entropy when select one

context to split the records. The higher it is, the better the

split is. We can calculate the information gain on the specific

context c considering feature f as:

Ic(f) = Eparent(f)−
nc∑
i

N c
vi

N
Ec

vi(f) (3)

The first part in the equation represents the entropy of cluster

before split and the second part is the weighted entropy of all

the clusters split based on the context c. So the information

gain measures the reduction of the entropy. We can find all

the computation can be finished in constant time, which is

of great importance in mobile environment. The algorithm

to select the context is presented in Algorithm 1. The arrays

Eij ,numij and meanij in the algorithm is the entropy, the

number and the mean value of the music with the context i
to be the value j.

136

Algorithm 1 Context Selection

Input: Context vector C; Feature f ; Node entropy Enode;

Maintained array Eij , numij and meanij ; Defined

threshold ε;
Output: The decisive context c
Enode = updateEntropy(Enode, f)
for all ci in C do
Eici = updateEntropy(Eici , f)
meanici = updateMean(meanici , f)

end for
if Enode < ε then

c = nil
else
maxI = 0
c = nil
for all Context Type k do
Ik = calcuInfoGain(Enode, Ekj , numkj)
if Ik > maxI then

maxI = Ik
c = k

end if
end for

end if
return c

updateEntropy and updateMean correspond to the

formula (1) and (2), calcuInfoGain corresponds to formula

(3).

3) Tree Update: In the training process, every time a new

record comes, the ContextSelection is called to find the

context to split current music records. If the return is nil,
we just add the record. Otherwise the node is a splitting

node. If the returned context is same as the context of the

splitting node, we pass the record to the branch based on its

value of this context. Then in this branch we do the process

recursively based on the music records belonging to this

branch. If the returned context is different, which means the

previous context is not the most informative one, we update

the tree structure to associate the new context to the node.

Then we generate branches to split the music records and

do the above process recursively in each branch.

B. Music Recommendation

The music recommendation is based on the audio features

inferred through the IRT when the current contexts are

available. We will show how to make the inference with

involvement of user feedback.

1) User Feedback: The system will collect the user

feedbacks when user is listening to the recommended songs

and there are two kinds of feedback can be used when each

song is played.

Explicit feedback: We set a user rate bar of typical five-

level in our Smart-DJ. Users can give scores from 1 to 5

representing from strongly disagree to strongly agree when

a song is listened to. It needs to be considered that users tend

not to give a low rate unless they really dislike the song, so

we set 3 points as the default rate.

Implicit feedback: Sometimes users may not trouble

themselves to rate the song, but still we can infer the users’

preference on the song using some implicit feedbacks. We

find users tend to change the song quickly when they don’t

like the song. Thus we calculate an implicit rate on the

listening time: Rateimplicit = maxRate
tlistening

Tsong
, where

maxRate is the highest rate of explicit rating, tlistening
captures the user’s listening time and Tsong defines the

duration of the music that can be decoded when the music

is played.

The final rate in the record is the combination of the two

kinds of feedback, which is Rate = αRateexplicit + (1 −
α)Rateimplicit. α controls the ratio of each feedback.

2) Feature Inference: When we observed the current

contexts of a user, we want to make the inference on the

audio features. Three situations will be meet in the inference.

Initial Step: No records have been observed to form an

IRT. Due to the intrinsic evolution of the IRT, we randomly

select typical songs of different music genres and keep the

songs with high user rate to build the IRT. We also support

users to manually select songs when no recommendations

are suitable.

Normal Process: When the current contexts are available,

the algorithm searches the IRT for the corresponding record

set that reflects user’s preference. Then the weighted mean

method is exploited to consider the user feedbacks, The final

inferred feature is the weighted mean of the features in the

cluster:f =
∑n

i rateifi/
∑n

i ratei.
Exception: There are situations that the specific new

context value can’t match any branch of the current splitting

node. Based on the assumption that a user shares similar

music preference when most contexts are the same and the

fact that the context at higher level in the tree is more

informative, we use the record clusters that have some same

contexts to infer the audio feature. For example, the cur-

rent contexts are night(time), medium(noise), frequent(social

contact), then we can’t find any corresponding record cluster

in Fig. 1. We use all clusters in the left subtree to get three

features by normal process. Then we weighted the features

based on the number of same contexts to get the predicted

feature: the left bottom cluster has 2 same contexts and

others both have 1. f =
∑n

i numifi/
∑n

i numi

After getting the features from different IRTs, we upload

the features to the cloud to fetch the suitable music from the

server music database.

3) Cloud Music Match: The purpose of the music match

module is to accurately and quickly find pieces of music

that have the similar features to the required features. In our

system, we adopt the data structure Vantage-point Tree (VP

Tree) [23] to cluster the music based on the cosine distance

137

T1 T2 T3 T4 T5 T6 T7
Thresholds

0

1

2

3

4

5

Sc
or
es

Working

Exercising

Resting

Figure 2. Performances for Different Thresh-
olds

Lying Running Walking Working
Scenario

0

1

2

3

4

5

Sc
or
es

Without Feedback

With Feedback

Figure 3. Performance in DifferentScenarios

Random AcMusic Smart-DJ

Recommender

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sc
or
es

Figure 4. Overall Rates

of their audio features. It will take O(logN) time to fetch

the similar songs given the received features.

V. SYSTEM IMPLEMENTATION

Our system contains two parts: the recommender in the

client and the music match server. The recommender collects

users’ contexts to predict music features with the IRT. Then

the features will be uploaded to the server to match the

songs. Finally, the recommender receives the songs for the

user and obtains the user rates when the songs are played

to form records for IRT updating.

The contexts we collected are presented in Table I. We

use the linear magnitude of acceleration to represent user’s

activity level. Since the acceleration data is sensitive, we

collect 20 seconds data processed by a low pass filter and

calculate the average value for each 4 seconds to get 5

discretized values. We then select the value with majority

voting. We collect the data for the next song when the

previous one is played and for the first song, we collect

2 seconds data. We classify the noise into 5 levels based on

the decibel of noise that can be detected with the microphone

equipped on the smartphone. To reduce the impact of noise,

we collect 10 seconds of noise amplitude and average them

to ensure an accurate noise level. The time of a day is divided

as early morning, morning, noon, afternoon, evening, late

night. To collect user’s phone usage, we set a time trigger

to collect every half-hour user’s message number and call

number to calculate the frequency.

In our system, we use acoustic features that is independent

of the human work. The features we select are tempo,

pitch and the first four Mel-frequency cepstral coefficients

(MFCCs). To extract these features from the audio file, we

first divide the whole audio into fixed-time segments. Half

time of the segment overlaps with the one before it. Then we

run different feature extraction algorithms on each segments.

Because the start and the end part of the audio contain little

information about the music, we ignore several segments at

the beginning and the end of the audio and extract the tempo,

pitch, MFCCs for each segment. In order to form the final

features vector, we calculate the means of the tempo, pitch

and first four coefficients of MFCCs.

We construct a dataset of 876 songs crawled from different

music class in music websites. We crawled them and run

our feature extraction program to process them. We find

16 volunteers that are Android smartphone users for our

evaluation and they are graduate or undergraduate students.

The number of males and females is equal and their ages

are between 21 and 28 years old. All of them listen to music

in different situations during the day.

VI. EVALUATION

A. Energy Evaluation

We measure the recommendation latency and the total

power consumption to run the application on a HTC M8

android smartphone. For the recommendation latency, we

focus on the latency between user clicking listening button

and the recommendation generated without the network

latency. We calculated the three latency: the network latency,

the cloud responding latency and the total latency. The

network latency includes feature sending and audio file

fetching. The responding latency refers the time the cloud

uses to find proper songs. We computed an average value

of them with 20 songs listened to. The average total latency

we obtained is 623 ms with 234 ms of the network latency

and 11 ms of server responding latency. So the prediction

latency is 623-234-11=378 ms, which has almost ignorable

influence on the user experience.

To estimate the power consumption of our system, we

collect the system power consumption and the phone to-

tal power consumption once an hour. The average power

consumption is 113 mW and we noticed that peak power

consumption can reach 600 mW when the sensors start

working. However, the sensors working time only occupies

a small portion of the listening time.

B. Parameter Tuning For IRT

We present the max value gaps of different feature values

in Table IV. It is hard to find the optimal combination of

different thresholds, since there are countless combinations

of different thresholds for six features. We try to find a

proper combination of thresholds for six features. 7 potential

thresholds are selected for each feature with equal interval

from 0 to half the max value gap. We form 7 combinations

of thresholds for experiment and the thresholds of the six

features have the same sequence in their own 7 values for

138

1 2 3 4 5
Rate Level

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Random

AcMusic

Smart-DJ

Figure 5. CDFs of Rates Figure 6. Normalized Feature Difference

>=5 >=4 >=3 >=2 >=1

Rate Level

0.0

0.2

0.4

0.6

0.8

1.0

R
a
t
io

With Feedback

Without Feedback

(a) Lying

>=5 >=4 >=3 >=2 >=1

Rate Level

0.0

0.2

0.4

0.6

0.8

1.0

R
a
t
io

With Feedback

Without Feedback

(b) Running

>=5 >=4 >=3 >=2 >=1

Rate Level

0.0

0.2

0.4

0.6

0.8

1.0

R
a
t
io

With Feedback

Without Feedback

(c) Walking

>=5 >=4 >=3 >=2 >=1

Rate Level

0.0

0.2

0.4

0.6

0.8

1.0

R
a
t
io

With Feedback

Without Feedback

(d) Working

Figure 7. CDFs of user rates for Smart-DJ with and without feedback in different scenarios.

Table IV
MAX VALUE GAP FOR DIFFERENT FEATURES

Feature Tempo Pitch MFCC
Variation 94 573 10.6 4.8 1.6 1.5

every combination. We just need to experiment on the 7

combinations to determine a proper one.

We select three scenarios in which 12 volunteers have

different music preferences and ask each volunteer to listen

to 15 songs in each scenario. We record the total 45 songs

for each volunteer to train the system 7 times with 7 different

thresholds, then test the system performance with 20 songs

recommended by the trained system in each scenario. We

compute the average scores for each set of thresholds in

each scenario with 5-points Likert scale from “strongly

disagree”(1) to “strongly agree”(5). The 7 experiments are

represented from T1 to T7 based in the ascending order. We

demonstrate the results in Fig. 2 (d). Considering the overall

ratings, we find the T3 and T4 have better performance than

others. Since we hope the system to be more flexible, we

use T3 to be the set of thresholds for the experiments next.

When the thresholds are low, some unnecessary splitting

nodes need to be formed and become the noise to affect

the inference. When the thresholds are high, it will tolerate

new type of feature values that should be detected as new

branches.

C. Comparison

We compare the performance among three recom-

menders:1) random recommender that randomly selects

songs to recommend, which provides a baseline; 2) The

auto mode for the recommender presented in [9] that we

call it AcMusic; 3) Smart-DJ. We select a random subset

of 600 songs from the dataset and initialize it for AcMusic.

All the participants are asked to listen to music in different

scenarios including excising, working, resting, walking etc.

It is required that in every scenario participants listen to

10 songs for each recommender and rate them using 5-

points Likert scale. We collect the rating data of three

recommenders in two days and demonstrate the average and

standard deviation of the ratings in Fig. 4.

It is observed that AcMusic and Smart-DJ have better

performance than random system with higher average rate

and lower deviation. To further assess our system, we

asked users to choose their preferred songs in each scenario

and computed the normalized feature difference between

the preferred songs and 10 songs recommended with two

systems. We plot the CDF of the feature difference in Fig. 6.

Besides, we collected user rates to draw the rate distribution

in Fig. 5. Nearly 70% of the songs have feature difference

below 0.1 through Smart-DJ and the ratio of user rates

above 4 points in Smart-DJ is higher than others, which

both consolidate the better performance of the Smart-DJ.

D. Multi-Scenario Performance Analysis

We can use the performances in different scenarios to as-

sess the system. We select four scenarios that all participants

will listen to music in: lying in bed before sleeping, running

for exercise, walking in the street, working in the office in

the daytime.

We experiment on Smart-DJ with and without feedbacks.

We demonstrate the results of the rating distributions in

different scenarios in Fig. 7 and the overall average ratings

and deviations are presented in Fig. 3.

139

In Fig. 7, we can find that Smart-DJ with feedback has

more ratings above 3 points and less below 3 points. From

the Fig. 3, we find that the average rating points with the

feedback in five scenarios are all around 4 with the standard

deviation less than 1. Although the no-feedback version has

average ratings around 3.8, the user feedbacks can provide

significant information on user music preferences. The high

average points and low deviation indicate

VII. CONCLUSIONS

In this paper, we present a novel personalized context-

aware music recommender, Smart-DJ, which effectively

utilizes various contextual information that can be collected

with off-the-shelf smartphones. It builds the model mapping

from user contexts to music audio features for personalized

recommendation. It also takes into account users’ explicit

and implicit feedback to adjust the model for recommen-

dation accuracy. In order to better meet users’ experience,

we make recommendation according to the most possible

music features in the current contexts rather than the ranking

of every single possible music. Smart-DJ is an accurate,

efficient personalized recommender with low overhead that

is suitable for smartphones.

VIII. ACKNOWLEDGMENT

This work is supported in part by National Natural Science

Fund of China for Excellent Young Scientist under grant

No.61422207 and the research fund of Tsinghua - Tencent

Joint Laboratory for Internet Innovation Technology.

REFERENCES

[1] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative
filtering recommender systems,” in The adaptive web, pp. 291–324,
Springer, 2007.

[2] Q. Li, B. M. Kim, D. H. Guan, et al., “A music recommender based
on audio features,” in Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information
retrieval, pp. 532–533, ACM, 2004.

[3] M. J. Pazzani and D. Billsus, “Content-based recommendation sys-
tems,” in The adaptive web, pp. 325–341, Springer, 2007.

[4] M. Braunhofer, M. Kaminskas, and F. Ricci, “Location-aware music
recommendation,” International Journal of Multimedia Information
Retrieval, vol. 2, no. 1, pp. 31–44, 2013.

[5] R. Cai, C. Zhang, C. Wang, L. Zhang, and W.-Y. Ma, “Music-
sense: contextual music recommendation using emotional allocation
modeling,” in Proceedings of the 15th international conference on
Multimedia, pp. 553–556, ACM, 2007.

[6] J. S. Lee and J. C. Lee, “Context awareness by case-based reasoning in
a music recommendation system,” in Ubiquitous Computing Systems,
pp. 45–58, Springer, 2007.

[7] S. Rho, B.-j. Han, and E. Hwang, “Svr-based music mood classifi-
cation and context-based music recommendation,” in Proceedings of
the 17th ACM international conference on Multimedia, pp. 713–716,
ACM, 2009.

[8] J.-H. Su, H.-H. Yeh, P. S. Yu, and V. S. Tseng, “Music recom-
mendation using content and context information mining,” Intelligent
Systems, IEEE, vol. 25, no. 1, pp. 16–26, 2010.

[9] X. Wang, D. Rosenblum, and Y. Wang, “Context-aware mobile music
recommendation for daily activities,” in Proceedings of the 20th ACM
international conference on Multimedia, pp. 99–108, ACM, 2012.

[10] Y. Song, S. Dixon, and M. Pearce, “A survey of music recommenda-
tion systems and future perspectives,” in 9th International Symposium
on Computer Music Modeling and Retrieval, 2012.

[11] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User modeling and user-adapted interaction, vol. 12, no. 4, pp. 331–
370, 2002.

[12] M. Kaminskas and F. Ricci, “Contextual music information retrieval
and recommendation: State of the art and challenges,” Computer
Science Review, vol. 6, no. 2, pp. 89–119, 2012.

[13] F. Ricci, “Context-aware music recommender systems: workshop
keynote abstract,” in Proceedings of the 21st international conference
companion on World Wide Web, pp. 865–866, ACM, 2012.

[14] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing, pp. 304–307,
Springer, 1999.

[15] G. Chen, D. Kotz, et al., “A survey of context-aware mobile com-
puting research,” tech. rep., Technical Report TR2000-381, Dept. of
Computer Science, Dartmouth College, 2000.

[16] A. Lehtiniemi, “Evaluating supermusic: streaming context-aware mo-
bile music service,” in Proceedings of the 2008 International Confer-
ence on Advances in Computer Entertainment Technology, pp. 314–
321, ACM, 2008.

[17] H.-S. Park, J.-O. Yoo, and S.-B. Cho, “A context-aware music
recommendation system using fuzzy bayesian networks with utility
theory,” in Fuzzy systems and knowledge discovery, pp. 970–979,
Springer, 2006.

[18] S. Dornbush, A. Joshi, Z. Segall, and T. Oates, “A human activity
aware learning mobile music player,” in Proceedings of the 2007
conference on Advances in Ambient Intelligence, pp. 107–122, IOS
Press, 2007.

[19] S. Cunningham, S. Caulder, and V. Grout, “Saturday night or fever?
context-aware music playlists,” Proc. Audio Mostly, 2008.

[20] M. Kaminskas and F. Ricci, “Location-adapted music recommenda-
tion using tags,” in User Modeling, Adaption and Personalization,
pp. 183–194, Springer, 2011.

[21] P. E. Utgoff, “Incremental induction of decision trees,” Machine
learning, vol. 4, no. 2, pp. 161–186, 1989.

[22] M. F. McKinney and J. Breebaart, “Features for audio and music
classification.,” in ISMIR, vol. 3, pp. 151–158, 2003.

[23] A. W.-c. Fu, P. M.-s. Chan, Y.-L. Cheung, and Y. S. Moon, “Dynamic
vp-tree indexing for n-nearest neighbor search given pair-wise dis-
tances,” The VLDB JournalThe International Journal on Very Large
Data Bases, vol. 9, no. 2, pp. 154–173, 2000.

140

