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Abstract—Accurate maps are increasingly important with the growth of smart phones and the development of location-based
services. Several crowdsourcing based map generation protocols that rely on users to provide their traces have been proposed. Being
creative, however, those methods pose a significant threat to user privacy as the traces can easily imply user behavior patterns. On the
flip side, crowdsourcing-based map generation method does need individual locations. To address the issue, we present a systematic
participatory-sensing-based high-quality map generation scheme, PMG, that meets the privacy demand of individual users. To be
specific, the individual users merely need to upload unorganized sparse location points to reduce the risk of exposing users’ traces and
utilize the Crust, a technique from computational geometry for curve reconstruction, to estimate the unobserved map as well as
evaluate the degree of privacy leakage. Experiments show that our solution is able to generate high-quality maps for a real environment
that is robust to noisy data. The difference between the ground-truth map and the produced map is less than 10 m, even when the
collected locations are about 32 m apart after clustering for the purpose of removing noise.

Index Terms—~Privacy protection, map generation, curve reconstruction, data suppression, participatory sensing

1 INTRODUCTION

DURING the last decade, portable devices have signifi-
cant improvements in terms of computing perfor-
mance, memory size and the number of embedded sensors
(e.g., GPS, accelerometer and gyroscope). These improve-
ments allow the devices to be adopted in more scenarios
such as navigation, location-based services and etc. [1], [2],
[3], [4], [5], [6], [7]. Most of the applications jointly exploit
the integrated maps and users’ current location to provide
various services. Hence, it is fundamental and indispens-
able to provide accurate and most-updated maps. Cur-
rently, digital maps based on the satellite images and street
level information are widely used. But they cannot precisely
reflect the most up-to-date ground information, especially
in the developing countries, when cities are often under
constructions and renovations, the integrated maps are
likely to be far behind the current state.

To reflect the map dynamics accurately and effectively,
several techniques have been proposed recently, among
which participatory sensing attracts the most attention.
Individual users contribute their trace information (with
GPS data) to a central map generation server. While guaran-
teeing high quality of map information, the existing meth-
ods have various limitations, such as energy inefficiency
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and privacy leakage [36]. In this study, we design a privacy-
aware map generation scheme, PMG. Unlike the existing
methods [8], [9], [10], [11], [12], [13], in our scheme, each
user selectively chooses, reshuffles, and uploads a few loca-
tions from their traces, instead of the entire traces. After
receiving those unorganized points from a group of users,
the server generates the final map.

To provide high-quality map generation service, mean-
while preserving the privacy for each user, there are three
major challenges we need to address: 1) quantifying the
privacy leakage of data points provided by individual
users; 2) generating theoretically-proven map using the
reported unorganized points cloud; 3) designing map
generation scheme that is robust to various discrepancies
such as GPS error.

Directly reporting traces is not a good choice for protect-
ing user’s privacy. In PMG, we let each individual user select
a subset of points from real traces, so that a user could protect
his privacy from two aspects. The first is to break the tempo-
ral relationship among reported points. We let the user shuf-
fle the points from his trace and then report the shuffled
partial collection to the server, for obscuring the temporal
relationship among original points. The second aspect is to
limit the number of points reported in a region during a
time-window. The challenge is to decide how many and
which points a user has to select and report and we propose
a mathematical formula to quantify the relationship between
the reported locations and the degree of privacy leakage.

In the server, the fundamental task is to reconstruct the
underlying map from a group of unorganized location
points. Clearly, we cannot rely on the traditionally trace-
based map generation method (e.g., CrowdAtlas [2]) that
sequentially connects the points according to the sampled
time label, since two adjacent points may not be consecutive
in any trace. Thus, under the privacy-preserving, it is not a
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trivial task to seek for an effective map generation algorithm
with theoretical performance guarantee. We address the
challenge of building a high-quality map from a set of unor-
ganized points by using theoretically sound curve reconstric-
tion techniques from computational geometry. When the
sampling (a set of points reported by all users) reaches a cer-
tain threshold, the quality of the generated map is assured.

The third challenge is to design a map generation algo-
rithm that is robust to noisy data. Typically, the GPS data
has an error at least 10 m. The sparsity of the sampled loca-
tions, the small local feature size at some portions of the
map, and the GPS error, will lead to inaccurate or even erro-
neous generated map. To overcome these problems, we
apply a simple GPS data filtering procedure to remove all
potential unreliable data. By requesting sufficiently dense
samples and carefully clustering the reported points, this
scheme can be robust to GPS errors.

There are also many subtle details that need to be care-
fully considered. For example, a critical component for the
map generator here is to decide where to query the crowd
for points that will produce the best possible map under cer-
tain resource constraints. We formulate our problem into
the classical problem of location selection with the goal of
maximizing the Lower Bound of Voronoi Angle (LBVA) cri-
terion, meanwhile satisfying the minimal requirement of
privacy protection. We show that such a problem is NP-
hard and propose a simple heuristic with theoretically
proven bound on the map quality that is within a constant
factor of the optimum.

We extensively evaluate this design based on two real,
high-resolution, city-scale GPS trace data. Our results show
that the distance between the ground truth map and the
map generated by our scheme PMG is less than 10 m. In our
experiments, after the filter-out by each user for privacy-
protection, the sampled points are about 7.5 m apart on
average. As these sampled points are inherently noisy due
to GPS errors, we cluster them to produce “smoothed” sam-
ples for map generation. The smoothed sample points are
actually about 32 m apart on average, sufficient for produc-
ing accurate map.

The rest of this paper is organized as follows. In Section 2
we formally define the map generation problem with pri-
vacy-protection, review the background of curve recon-
struction, and point out the challenges of applying such
theory into our context. Detailed solutions are presented in
Section 3. We present our evaluation results in Section 4,
review the related work in Section 5 and conclude the paper
in Section 6.

2 PROBLEM FORMULATION AND BACKGROUND

2.1 Problem Formulation

We assume that our map generation service is composed of
one central data processing server and a group of users
spread over a geographic region. The server is in charge of
collecting data (submitted voluntarily by these users or que-
ried by the server) and producing a high-quality map from
the set of collected locations. For the map generation, we do
not assume that the server has a prior knowledge of the map,
although such knowledge will significantly improve the per-
formance of our method. A group of users travel in a

geographic region and can collect a stream of GPS location
trace using smartphones. Each user will provide some trans-
formed data of the traces to the server for map construction.

In this work, a map is mathematically defined as a geo-
metric graph G = (V, E) where V is the set of intersections
in the map and E is the set of road segments connecting
intersections. Consider one unobserved map F. A simple
naive solution of asking each user to report her/his traces
directly will result in the disclosure of individual trace
information which could be used to infer her/his identity
and other behavior patterns, e.g., where s/he lives, or even
when s/he is away from home. To eliminate the possible
risk of privacy exposure, one natural way is to let the user
report fewer locations. However, this will inevitably affect
the quality of map generation. To address the debacle
between map quality and user’s privacy, in this work we let
each user upload a subset of GPS points (which are ran-
domly shuffled to remove the temporal ordering of points
in the trace) so as to minimize a certain measure of map gen-
eration errors. This approach can assure that some con-
straints on individual trace privacy exposure are satisfied. If
not specified otherwise, throughout this paper the privacy
we want to protect is the private trace/trajectory associated
with each user.

More formally, consider m users and let U;(1 < i < m) be
the set of collected GPS points by user . To avoid potential
privacy exposure, each user will carefully choose a subset
of U;, denoted as P, to report. Therefore, the optimal map
generation problem (P) with privacy-preserving constraints
is given as follows:

(P) UM, Pf= argmin Err(F, (U, P))
i, P;CU;
subject to PE;(P) <b;, 1 <i<m,

where ¢(.) returns the estimated map given reported GPS
point set from m users, Err() is a certain error function mea-
suring the distance between the real map F and the esti-
mated map ¢(.), PE;(.) is the privacy-exposure function that
reflects the degree of privacy leak of user ¢ and b; is the
corresponding privacy leakage constraint (called privacy
budget sometimes) for publishing P;. of revealing the indi-
vidual private location profile.

A typically used error function is the mean-squared
error, defined as ||F — ¢(U, P;)||,. To compute this metric,
we need to know the original map F beforehand, which is
often unavailable in practical setting. As an alternative, we
will focus on the “quality” of the set of collected points. We
later will show that, if the set of collected points meets cer-
tain sampling condition, the reconstructed map will have a
lower bound on the quality between the ground-truth map
F and the reconstructed map. In fact, if we view the map as
one polygonal curve in 2D plane and the point set U" | P as
samples with respective to that curve, the estimate function
¢(-) will fall into the category of curve reconstruction [16] in
computational geometry, which allows one to uniquely
determine the original curve from a subset of samplings
that satisfies some special conditions. It is therefore particu-
larly attractive for our specific problem.

The degree of privacy disclosure highly depends on the
data that users publish. The foremost task here is to quantify
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Fig. 1. The process of Crust.

the privacy protection of the data submitted by each user. A
simple measure would be the number of points reported by
the user: uploading more points lead to worse privacy pro-
tection. So a user may put a limit on the number of points
reported in a time-window (thus PE;(F;) is simply the car-
dinality of set P;). Obviously, reporting a large volume data
in a small time-window is not preferred. Note that this
naive cardinality constraint cannot quantify the privacy
protection level in other metrics. For example, an adversary
may still be able to infer some privacy information if P; is a
continuous subsegment in a trace. To quantify the ability of
protecting the trace information of each user, we will intro-
duce a novel privacy quantification function in Section 3.2.
Intuitively, our privacy quantification assures that the
adversary cannot recover the users’ trace when certain con-
ditions are met. Note that different privacy quantification
functions could be integrated into our scheme, such as a
function based on the Hidden Markov Model in [14] or the
Bayes conditional risk in [15].

2.2 Curve Reconstruction
In this section we briefly review the background and techni-
ques for curve reconstruction, a theoretical foundation of
our map construction scheme.

Consider an unknown smooth curve F. Given a set of
unorganized points S sampled from F, the curve recon-
struction problem is to construct a graph containing exactly
those edges that connect the adjacent points in F.

Extensive effective approaches [17], [18], [19] have been
proposed to find the solution of such a problem, among
which Crust [16], one geometric graph, coincides with F if S
satisfies some specific sampling conditions (more will be
discussed below). We next will focus on Crust due to its sim-
plicity, theoretical guarantees and good quality.

The Crust induced by S is a graph such that any edge is
one element in Del(S U Z), with only the points in S as its
endpoints, where Z is the vertices of the Voronoi diagram
induced by S and Del(S U Z) returns the Delaunay triangu-
lation of S U Z. Therefore, the Crust of S could be generated
in three phases: (1) compute the Voronoi diagram of S; (2)
calculate the Delaunay triangulation of SU Z, denoted by
D; (3) remove all the edges in D unless both of their end-
points belong to S. Fig. 1 illustrates the process of construct-
ing the Crust.

Due to the existence of advanced and elegant program
for Delaunay triangulation [20] and Voronoi diagram [21],
computing Crust of one given finite set S is easy to imple-
ment and scalable to the cardinality of S, with O(nlog n)
running time, where n = |S|. More importantly, the perfor-
mance of Crust is theoretically guaranteed, i.e., Crust prov-
ably solves the curve reconstruction problem under certain
conditions. Before giving such specific result, we would like
to cite four relative definitions in [16] at first.

~ - —
e e e

Fig. 2. Medial axis (in red), LFS(p), and Voronoi angle.

Definition 1. The Medial Axis of a curve F is closure of the set
of points which have two or more closest points in F.

Definition 2. The local feature size, LFS(p), of a point p € F is
the euclidean distance from p to the closest point on the medial
axis.

Definition 3. A curve F is y-sampled by points set S if, Vp € F,

the closest sample s € S satisfying LD;g(;)) <y, where D(p,s)

represents the distance between p and s.

Definition 4. A curve Voronoi disk is a maximal disk, empty of
the samples S inside, centered at a point of the curve. A curve
Voronoi vertex v is the center of a curve Voronoi disk. The
angle /s\vs; is called Voronoi angle (e.g., /svsy in Fig. 2 if v
is a curve Voronoi vertex and s;, so are on the boundary of
curve Voronoi disk centered at v.

These definitions are graphically shown in Fig. 2. The
solid black curve represents the original smooth curve. And
its corresponding medial axis is shown as the dashed red
curve.

Armed with these definitions, we will give two useful
theoretical analyses in [16], denoted as Lemma 1 and 2.

Lemma 1. Let S be a y-sample from a smooth curve F. Then (i) if
y > 1, F is un-reconstructible; (ii) if y < 0.252, the Crust of
S doesn’t contain any edge between nonadjacent sample verti-
ces on the original curve F.

Lemma 1 implies that given the sampled points S, there
may not be a unique graph on S that connects every pair of
samples adjacent along that graph when y > 1. In addition,
when y < 0.252, all the piece-wise-linearly-connected edges
in the Crust “belong” to the original curve F.

Lemma 2 (LBVA). For a y-sampled curve by S in the plane with
y < 1, the Voronoi Angle (i.e., /syvsy in Fig. 2) formed at a
curve Voronoi vertex v between two adjacent samples along F
is at least w — 2 arcsin(¥).

The Voronoi Angle physically represents the discrep-
ancy between the real curve and the recovered curve.
And the higher of this angle, the smaller of such discrep-
ancy. Ideally, the case of /sjvs; = 7w means that the recov-
ered curve precisely matches the original one. We sketch
a proof here. When /sjvs; =, in the original curve F
should have a straight-line connecting s;s,. Otherwise, it
will have small local feature size for some points between
s1 and so. Then the sampling condition will imply that
we should have additional sampling points between s;
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and sy, which contradicts the assumption that s; and s
are consecutive samples.

Intuitively, the more of sample points, the better of curve
reconstruction quality. However, the larger size of S gener-
ally leads to the increase of sampling cost. Note that as the
presence of the strong dependence among the entries in S,
the marginal gains of LBVA might be significantly small and
negligible as the increase of S. Therefore, S must be chosen
carefully: it is desirable to have LBV A as high as possible to
guarantee the quality of estimated curve, and minimize the
cost and privacy leakage caused by collecting more points.

2.3 Alternative Objectives and Challenges

Recall that the task of map generation is to construct one
unobserved map from collected GPS locations shared by a
variety of users. In a sense, the map could be reviewed as
one curve in the 2D plane. Therefore, our problem can
immediately fall into the category of curve reconstruction.
Here the discrete sampled points correspond to the shared
GPS locations. And Crust could be used as the map estimate
procedure.

According to Lemma 2, the quality of recovered curve
could be indirectly measured by the Lower Bound of Voro-
noi Angle. Therefore, problem P could be reformulated as

(P)

Ur, P’ = argmax

Vi, PCS;

LU, p)

subject to PE;(P) <b;, 1 <i<m,
where I'(.) returns the Lower Bound of Voronoi Angle(i.e.,
7 — 2arcsin(})). Unless otherwise specified, this problem
will be referred to as MaxLBVA for simplicity purpose in
our subsequent discussion.

There are however three major challenges in applying
Crust to our problem context. First, under the curve recon-
struction framework the set of sampled points is exactly
from the original smooth curve. However, in the physical
environment each road has certain width which determines
the distribution of the reported GPS locations will be arbi-
trary within that road, instead of along one smooth curve
that we expect. In particular, for a two-way road with four
lines, the Crust might infer the existence of one road
between the points from different lines even if they are
indeed physically from the same road. This makes it diffi-
cult to construct one high-quality map via directly using
Crust on the raw collected data.

A second challenge is that GPS data is not error free. The
users can simply suppress the data if the error exceeds a pre-
defined threshold. However, doing this might not
completely remove all potential errors. This is because some
other factors such as local obstructions, weather and users’
movement pattern might also degrade the GPS performance.

At last, MaxLBVA is a combinatorial problem with linear
constraints, which has been shown in [22] to be NP-complete.
A simple greedy algorithm is often used instead. It hasa O(1)
approximation ratio with a submodular objective. However,
compared with traditional combinatorial problem, on one
hand, for map reconstruction we do not have direct access to
the set of all sampled points collected at users’ sides; on the
other hand, solving this problem could only be finished
in the decentralized framework that involves in extra

Quality ]
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Fig. 3. The architecture of our scheme PMG.

coordination between the users and the server. We show in
subsequent section how these challenges can be addressed
in our scheme such that we can implement this simple yet
effective heuristic in our specific context.

3 PROPOSED SOLUTION

3.1 System Architecture
Fig. 3 shows the overall architecture of our solution. At the
network level, the system consists of a number of users with
elegant privacy-preserving schemes, who would like to con-
tribute their locations and a map generation server

Users. The users serve as the GPS location provider. To
provide certain diversity of uploaded data, one finite local
buffer is used to record the user’s trace. One data report
engine, called Location Selection, would be activated by the
location query from the remote server. Once receiving such
request packet, the users will look-up their corresponding
local buffer and reply the server with the locations that
match the request condition. More information about the
request packet will be discussed in Section 3.3. To avoid
potential trace leakage, all the reported locations must go
through one privacy-assessment module. As a result, only
the “safe” data will be allowed to stream into the server.

Server. The essential function of the server is to provide
high-quality map generation service based on the collected
unorganized GPS locations from various users. To guaran-
tee the estimated map quality, all chosen GPS locations will
firstly enter into one data pre-processing block to remove all
unjustified data. Then, only the valid data will go into the
map generation module, which has implemented the afore-
mentioned Crust algorithm. The following module, called
Quality Assessment, is then executed to examine the quality
of current generated map (i.e., the output of Crust). When
the predefined map quality metric is not met, the block is
further scheduled to estimate the optimal cell that will pro-
vide maximal gains in estimating the original map; server
will broadcast this cell via request packet to actively pull the
useful information. One practical optimal location selection
will be introduced and analyzed in Section 3.3.

3.2 Privacy-Preserving Scheme
3.2.1 Threat Model and Trace Privacy-Preserving

Threat model. Since our system consists of multiple shared
clients and a server, any adversary is able to overhear the
packets transmitted between them or maliciously access the
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server to obtain the shared data. Thus, the threat model we
consider is the attacks on the server and its corresponding
communications with the shared clients. For simplicity pur-
pose, we assume the data stored on each client are safe and
unobtainable. And we further assume that the adversaries’
attack objective is to infer users” personal sensitive informa-
tion (e.g., home address, workplace, behavior pattern or
health condition) or trace through analyzing or mining the
obtained data. Therefore, we mainly focus on the risks of
privacy leakage based on the shared data.

Trace privacy-preserving. Although many participatory
sensing applications have been implemented to generate/
update the unobserved map accurately based on shared
users’ traces [2], [24], such trace based applications would
inevitably lead to users’ privacy leakage. Therefore, trace pro-
tection should avoid to disclose the shared users’ trajectory as
well as to speculate other personal sensitive information. In
our map generation application, one main goal of trace pri-
vacy-preserving is to protect individual users’ trajectory
within a specific time interval, formally described as follows.

Definition 5 (IUT: Individual User’s Trajectory/Trace).
Consider a time interval T, one trajectory of an individual user
in the 2D space is defined as a sequence of tuples
IUT = {{p{,p{, t1), (D5, 15, L2, ..., (P, pY, tn) } where p? and
p/(i=1,2,...,n) mean the GPS coordinates of location p;
and 1<t <ty <---<t, <T are ordered discrete time
instances within a time interval of T

3.2.2 Privacy-Preserving Policy

Within one time interval, it is well understood that the leak-
age of user’s traces greatly depends on the amount of
shared locations, thus one natural way is to define b; as the
maximal number of uploaded locations set by user i and
PE;(.) as the actual number of uploaded locations from user
i. Using this simple rule, the user will significantly reduce
the locations reported to the server, thus the degree of trace
exposure is also decreased. However, it should be noted
that since location data with time dimension are highly cor-
relative, some attack strategies could easily infer user’s
traces only with a few locations. Therefore more advanced
and elegant privacy-preserving policy is highly expected.

Consider a time interval 7. Our concept is to provide a
group of unorganized locations which might correspond to
various quite different routes. In other words, given the
shared locations, no algorithm could uniquely and easily
determine the real route that he has been passing. Mathe-
matically, this curve reconstruction problem is unsolvable.
Therefore, besides breaking the temporal relationship
among reported locations, we should also focus on how to
choose appropriate locations to avoid leaking the spatial
relationship among these locations. Specifically, the client
will use another finite buffer to store all the points that have
been reported within 7". Once having another new reported
location point, the user will examine the trace leakage
degree, which corresponds to the privacy-exposure function
PE;(.) in problem P, to decide whether reporting this point
to the server. This new point is said to be safe or qualified if
the return value of PE;(.) is less than b;. Next, we will dis-
cuss how to choose the privacy-exposure function PE;(.)
and the upper cost bound b;.

From trace protection prospective, the most effective
metric is to let PE;(.) return the deviation between esti-
mated trace of the reported points and the real trace.
Clearly, the higher value of this metric, the better of the
trace protection would be. Ideally, the user’s trace could be
completely protected when the value of deviation is nearly
infinite. However, it is impractical for a user to record all
the GPS locations within 7', so the real trace is incomplete
which means it is impossible to compute this deviation
evenly. Here, we bypass the deviation metric (DM) and
choose y-sample to indirectly measure the trace exposure
degree. In Lemma 1, the most effective algorithm Crust can’t
uniquely determine the original curve when y-sample is
more than and equal to 1. From the view of privacy protec-
tion, we therefore prefer the locations set to be at least
1-sample, i.e., y > 1. For instance, if a user wants to exactly
protect his/her trace within 7', he/she must set y to be at
least 1. From Lemma 1, a mediate trace protection degree
could be achieved through setting y between 0.252 and 1.
And a user’s trace would be exposed when y < 0.252. Note
that the smaller y corresponds to more shared GPS points
by the users and better estimated map quality on the server,
and vice versa. Obviously, y reflects the tradeoff between
the local trace protection degree and remote estimated map
quality. Therefore, in the practical implementation, users
could adjust y based on their specific requirements.

3.2.3 Other Issues

Note that there still exist trace exposure for the above men-
tioned schemes. This is because that the goal of privacy
assessment is to protect the user’s private trace within 7', no
guarantee about the larger time interval. For instances, if T’
is set to be one hour, the user’s trace within larger than one
hour might be easily determined if the user repeats the trace
which he/she has walked, even though the real trace in one
hour (even less than one hour) is unsolvable. To maximally
avoid the users trace leak, it is desirable to set a large T,
which is more likely to have no overlapping between differ-
ent time windows. Therefore, 1" reflects the degree of pri-
vacy protection and the user should carefully set this value
according to his/her privacy requirement. Unfortunately,
due to the periodical property of the regular home-office or
home-school route, the privacy could not be guaranteed no
matter how large 17" we choose. Therefore, in this paper, we
assume the points shared by individual user are sampled
from the not-often passed roads.

In addition, some locations that are very sensitive or spe-
cific could really identify a person, a trajectory or other pri-
vate information. Considering this, some extra user-defined
rules shown as follows could also be integrated into our
application (in Fig. 3).

Rule based on sensitive regions. Individual users could
restrict uploading the locations in some sensitive regions,
such as home area.

Rule based on sensitive time. Individual users could restrict
uploading locations collected in some certain periods of
time, such as working hours.

After applying such rules, the privacy-preserving
scheme in our framework will not only protect the shared
user’s trace information, but also avoid the leakage of some
potential sensitive information.
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3.3 Near-Optimal Locations Selection

In this subsection we mainly focus on how and where to
query users for locations so as to maximize LBVA. Due to
the hardness solving P directly, we reformulate it as one
equivalent maximization problem over a group of cells. We
then demonstrate that the new objective exhibits the prop-
erty of sub-modularity. One simple greedy algorithm within
constant (=63 percent) of the optimum is proposed.

3.3.1 Proposed Alternative Formulation

Obviously, MaxLBVA remains the combinatorial optimiza-
tion which is intractable. Specifically, without any prior
knowledge about the map that we wish to estimate, the
server is oblivious of the potential location candidates, let
alone choosing optimal location set to maximize I'(-) with-
out breaching certain privacy constraints. Finding the opti-
mal solution of MaxLBVA is non-trivial, especially when
any location in the space could be the candidate.

To bridge the gap between server’s difficulty of having
little knowledge on where to pick points to improve map
quality, and the points that have been collected by individ-
ual users, we will partition the region into a group of contin-
uous cells. Specifically, given historical knowledge and
collected locations, the server firstly sets up the general
region in which the map need to be generated or updated
and then divides this region into n x m continuous squares
(i.e., cells). Next, the server estimates marginal gain (i.e., the
improvement of the map quality if it asks for points from
users) of each cell. It picks the cell with the best marginal
gain and asks users to report locations inside this cell.
Assume a region is divided into w cells and use a complete
set I ={1,2,...,w} to denote them. Instead of seeking for
exact locations set, we alternatively look for a subset of I,
each cell possibly including infinite location points. There-
fore, we reformulate P as follow:

(P) A*=argmax R(A)=E[I'(A)]—-TI(S),

ACT

where E[-] denotes expectation operation, computed over all
locations uniformly distributed within the cells and R(-)
represents the margin gain of the cells, that is the improve-
ment of map quality.

The function I'(-) we defined is over the location set, rather
than cells. Here we approximate I'(A) as the expectation of
LBVA when we query points from a set of cells A. Since we
have no idea about the underlying road distribution and
users’s movement pattern, it is reasonable to assume that the
each location within a cell will be uniformly reported. If
A ={ay,ay,...,a.4}, then E[I'(4)] is computed sequentially

4]

Z / %F(Sz?l Up), (1)
Vpea; r

iil.(l,'

E[C(A)] =

where 7 is the side length of a cell, p is a location in the cell and
S; is the collected location set by the server after choosing the
ith cell. Here S) means the initial sporadic collected locations
by the server and is used as the base of optimal points/cell
query and points update rather than groundtruth. When no
cell is chosen (i.e., A = (), the expectation is only determined
by Sy. Thus we have E[I'(0)] = I'(Sp) and R(0)=0.

Regarding the cost associated with each cell, it could
be interpreted as the time interval spent to grab locations
data. Once a cell was chosen, we wish more users in such
cell could quickly reply the server. However, it is impos-
sible to estimate such time duration due to the separated
procedure of cell selection and cost estimation. Given a
cell, intuitively, the more of qualified users, the quicker of
collecting locations. For each cell, therefore, if there is at
least one qualified user, the corresponding cell cost is set
to be one over the total number of qualified users, and
infinity for otherwise.

3.3.2 Properties of the Objective

There are several important and intuitive properties of
R(A). Firstly, as mentioned, we have R(0) = 0. Secondly,
R(A) is nondecreasing. Thatis R(A4) < R(B) for all cell sub-
sets A C B C [. Clearly, adding more cells means that more
points will be chosen, thus incurring the improvement of
the LBVA and estimated map quality. Therefore, choosing
more cells will further incur the increase of R(A). Last but
most importantly, it exhibits diminishing marginal returns.
To be specific, adding a cell to a small subset A, the reward
that we can obtain would be at least as much as if adding it
to a larger one B O A, which is implied formally by the fol-
lowing theorems.

Theorem 1. Consider a smooth curve F. Let V to be the universal
points set. For all Sy C Sy CV and all points p € V' \ Sy, it
holds that

y(S1Up) —y(S1) = y(S2 Up) — p(S2),

where the function y(Sy) returns the sample condition of S; on
F. A set function with this property is called sub-modular.

Proof. For any p € V'\ Sy, denote its two nearest neighbors
in S as p; and py, respectively. According to Definition 3,
adding a point will definitely affect some points” euclid-
ean distance to their corresponding nearest neighbors in
the sample set. And these points will be referred to as
affected points below. Our proof is similar to the analysis
of [31]. We have the following three cases:

Case 1. p1,p2 € Si:Since py, pa € 51, the affected points
are exactly same for S; and S,. Given a smooth curve,
the local feature size of any point is invariable. From
Definition 3, we have that the new added point p will
lead to exactly same gains, ie., y(S1Up)—y(S)=
Y(S2Up) — y(S2).

Case 2. pi,p2 € 59\ Si: For the set S;, the affected
points are a subset between p; and p,. Since pi,ps ¢ 51,
the affected points at least contain all the points between
p1 and po. Therefore, we have y(S;Up) — y(S1) >
y(S2Up) — y(52).

Case 3. p1 € 51,p2 €Sy (or JORS Sl,pl € S3) When
p1 € S, this means that py € S;. Thus, the affected points
of Sy are a subset between p; and p,. Since p; ¢ S;, the
number of S)’s affected points must be more than that of
B. Thus, we have y(S; Up) — y(S1) > y(S2 Up) — y(S2).

We thus conclude that y(S; Up) — y(S1) > y(S2 Up)—
y(S2) and the function y(-) is submodular. O

Theorem 2. R(-) is submodular set function.
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Proof. Since I'(S) =7 — 2 arcsin@ and y(-) is submodular,
we have I'() is submodular too. From Section 3.3.1, we
know that R(A) is the integration of I'(-) over all possible
points in a cell. Therefore, R(-) is submodular as well. O

3.3.3 Proposed Greedy Algorithm

In general, maximizing submodular functions is NP-hard
[22]. We instead use a heuristic greedy algorithm to obtain a
sub-optimal solution.

The simple one is the unit cost case, where each cell has
equal unit cost (i.e., for any cell i, ¢(i) = 1). The greedy algo-
rithm will reduce to select b cells from I with the highest
score. It operates as follows: starting from A = (), iteratively
add a single cell with the highest score, conditioned on the
cells chosen in previous steps until the map quality reaches
a certain threshold. More formally, at each step, the greedy
algorithm adds the element cell ¢ such that

i" = argmax R(AU1i) — R(A). @)
ic€l\A
At each step, the optimal cell could be immediately
determined by the Egs. (1) and (2). Next the server broad-
casts one request packet containing the physical information
(e.g., GPS coordinate for the cell’s four corner points) of the
chosen cell. Any user hearing such request packet will exam-
ine the locations falling in the chosen cell. If the matched
location set is nonempty, the privacy assessment scheme is
further applied on them to remove all non-safe data that
might lead to trace leakage. In response to the request packet,
eventually, the user will send the final chosen safe locations
back to the server.
We end this part by discussing the theoretical bound of
our proposed simple greedy algorithm. Firstly, we give one
proved conclusion in [22], denoted as the following lemma.

Lemma 3 (Nemhauser et al., 1978). Let F' be a monotone sub-
modular set function over a finite ground set V with
F(¢) = 0. Let A¢ be the set of the first k elements chosen by
the greedy algorithm, and let OPT = maxucvy,a-F(A),
Then

F(Ag) > <1 - (’“;kl)k> OPT > (1-1/e)OPT.

This lemma shows that if a set function meets certain
conditions, the simple heuristic greedy algorithm could
achieve a constant-factor ratio to the optimum.

Theorem 3. Let A be the chosen cells by the greedy algorithm and
A* = maxac;R(A). Then
R(A) > (1 — e )R(A").

Proof. Since R(-) is a nondecreasing submodular set func-
tion with R(#) =0, based on Lemma 3, we have

R(A) > (1 — e )R(AY). O

3.4 Impact of GPS Sample Error and Road Width

In our scheme, the location data is mainly from GPS sam-
pling based on smartphones. Therefore, two critical issues

) " \u‘\\ P \*—4\0—0——0—'—\.\.\.—

A
— b

(a) Recovery without clustering (b) Recovery with clustering

Fig. 4. Impact of road width.

must be addressed to make our protocol practical: 1) GPS
sample error (thus, samples are not necessarily from the
real curve F), and 2) road width (thus, over-sampled points
will result in extra small segments). The curve reconstruc-
tion problem assumes a smooth curve with zero thickness
and the unorganized points precisely from the underlying
curve. While in our situation, even if the map could be
viewed as a smooth curve, the thickness of each edge could
not be zero. The map generation algorithm (i.e., Crust)
might add extensive unnecessary roads/edges within the
same road, especially when the road width is very large
(e.g., high way). Fig. 4 illustrates an example.

For dealing with GPS error, we first remove the data
when such accuracy (e.g., getAccuracy() in Android returns
the standard deviation of the GPS measurement in the cur-
rent location) is more than a threshold 5. It is reasonable to
set n to be double road width, about 40 m. Even so, the
uploaded data is still noisy. We then apply a simple cluster-
ing algorithm to the filtered data. Specifically, the collected
points will be divided into several clusters based on the
locations’ geographical proximity. And we use the cluster
center to represent a sample from the underlying map. We
run the Crust algorithm using the cluster centers rather than
all collected raw points.

Consider one location in the 2D plane with z; as the GPS
ground truth. Let x1, 3, ..., z, be the measured value by n
different users with z; in a small cluster, which could be
seen as the realization of a random variable X with mean
x. Considering the Gaussian noise, X could be modeled as
X = )+ N(0,0%). We next theoretically show that with the
increase of the number of reported users, the empirical
mean will be close to the real value with higher probability
(close to 1).

Theorem 4. Given one location with n real measured noisy value
zi If z; € [— 4+ z0, 9+ my], then we have

1
P)'I‘( —ZIEI — X
i3

which is valid for positive value of § =

> 8) < Zexp(—Qn%), 3)

d

3

Proof. This theorem could be achieved directly based on
Hoeffding’s inequality: Suppose X1, X»,..., X, are inde-
pendent real-valued random variables, such that for each
i, X; takes values from the interval [a;,b;], Let X =
L(Xi1+Xo+---+X,). Then, for all §>0, Pr(|X—

E(X)| >6) < Qexp(f%). Here, with z; € [-4+

20,3+ xo] and § = i%, we could naturally achieve Eq. (3).0

Using the collected noisy GPS data, we examine the per-
formance of the Voronoi Angle (i.e., @ in Fig. 5a) and the
maximal euclidean distance between the real curve and the
estimated (i.e., h in Fig. 5b). Consider two consecutive
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Fig. 5. The effect of GPS data error.

sample points p; and p; on a smooth curve F, as shown by
Fig. 5. Due to the noise in the physical setting, their corre-
sponding real measured GPS values are actually uniformly
distributed within the two bigger dashed circles with radius

£ under the

¢ From lemma 2, we have a =7 — 2arcsin
noise-free assumption.

From Theorem 4, we know that the sampled GPS data of
p1 and py will concentrate in the two smaller disks with
radius §. Clearly, we can see that their corresponding « and
h will fall in the range of [@ — 8., + &,] and [h — 8, h + &3],
respectively. Based on the basic geometric knowledge,

Sy ) and §;, = 6.

60( = arcsmm

Clearly, these two metrics quantifying the quality of
recovered map will fluctuate within a very small range,
determined by §. Similarly, as the number of samples
increases, they will approximate their corresponding
ground truth with higher probability (close to 1). This
means that our proposed map generation scheme is robust
against the inherent noises of GPS data by clustering (sort of

resampling by server).

4 PERFORMANCE EVALUATION

In this section, we present a series of experiments per-
formed on two group city-scale GPS trace data. We focus on
the impact of different parameters on the estimated map
quality and the overall effectiveness of PMG. We will use
greedy algorithm mentioned in Section 3.3 to choose opti-
mal cells. The map generator we use is Crust.

We will use two datasets. The first one, also referred to as
the Shanghai Data, is a group of GPS data published on the
CrowdAtlas website with 24 traces containing 954,000 loca-
tions in total [23]. The area of this dataset is about
149.09 km* and the total length of traces is 111,390 m. The
second, referred to as the Wuxi Data, was collected in Wuxi
New district, with 323,120 locations. And its area and traces
are 36.45km? and 29,284 m, respectively.

Due to the lack of large scale participant sensing filed, we
reshuffle the two datasets and randomly assign these loca-
tions into m different files to emulate the number of users.
This value (i.e., m) is set be 10 and 50 for the Wuxi data and
Shanghai data, respectively. In addition, each user defines
his/her privacy protection level to be no trace leakage
within a day (i.e.,, 7 =24hand y' = 1).

Denote the recovered segments set as E = {e;1<
i <|E|}, each segment with n’ points. We next will use two
metrics to verify the effectiveness of PMG: one is Deviation
Metric denoting how far is the estimated map from the
ground truth, and the other is Gamma Metric (GM), an indi-
rect criterion measuring the estimated map quality. They
are given by

—o=r =200m

r=300m
~4=r = 400m
——r=500m

—o=1 =200m

DM (m)

80 100 0'20 20

0 20
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Cluster Range(m)

(b) GM against cluster range

40 60
Cluster Range(m)
(a) DM against cluster range

Fi

g. 6. The impact of cluster range.

|E| |E]
DM = | DM |/|E|, GM= (Y GM; |/E]
=1 =1

which DM;/GM,; is also referred to as segment DM /GM,
defined as DM; = (3", hi)/n' and GM; = (Z;il vi)/n'.

J=1"
Here, 7} is the jth point’s physical deviation from the true
value on ¢; and y/, denotes this point’s sample condition on
segment e;.

4.1 Impact of Different Parameters

In this subsection, we observe the impact of different
parameters (i.e., cluster range, cell size and the degree of
privacy protection) on the final estimated map quality. We
conducted our experiments on the two datasets, the effect of
which share similar trend. Thus, we only report the results
on Wuxi data.

4.1.1 Cluster Range

Fig. 6 shows the performance of DM and GM by adjusting
the cluster range from 0 to 100m, with increments of 2m.
We run this experiment for 4 times using four different side
lengths of cell (i.e., » = 200, 300, 400, 500, all in units of m).
Regardless of the cell size r, we can clearly see that both
DM and GM behave a sharply downward trend at the
beginning, then decrease slowly between 15 and 25m and
increase gradually when the cluster range is more than
30m. Moreover, the quality of the generated map could
achieve the empirical optimum/minimum when the cluster
range is around 20 m, which is consistent with the real road
width (about 20 m). Note that the bigger of the cluster range,
the sparser of the collected points. Thus, as the cluster range
grows, the real input of our map estimator (i.e., Crust) will
fail to reflect the road features, such as corner. This is the
reason why the performance of DM and GM degrades
gradually when the cluster range is more than 30 m.

4.1.2 Cell Size

We next examine the effect of cell size on the generated map
quality. Due to the performance similarity between DM
and GM, we only offer the performance of GM under dif-
ferent cell size. Since our location selection algorithm is cell-
based, we also investigate the impact of different cell size
on the number of locations (NoL) (i.e., the number of all real
collected locations when the greedy algorithm finishes). We
did this experiment under different number of request pack-
ets from the server. The results are shown in Fig. 7.
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Fig. 7. The impact of cell size.

From Fig. 7a, we can see that as the increase of r, NoL
increases at first, achieves a peak when r = 400, then begins
to decrease. GM behaves the opposite trend. The result is rea-
sonable. When cell size is small, each cell might contain a few
matched locations, so after hearing the request packet, less
users will response. When r is increasing, more qualified loca-
tions might be contained in each cell, leading to the increases
of NoL. However, when r = 500, the cell size will be so large
that the chosen cell might contain many roadless areas, which
results in the worse performance relative to = 400.

Once the cell size is fixed, the NoL(GM) behaves mono-
tonically increasing(decreasing) with the increase of the
number of request packets. This is because more request
packets mean more collected locations, which improves the
final generated map quality (i.e., the decrease of GM). How-
ever, there is a small exception for GM when r = 500 (see,
Fig. 7b). Again this is due to that r is too large, containing
many areas without roads which might lead to the less
number of qualified locations.

4.1.3 The Degree of Privacy Protection

In Lemma 1 and Section 3.2, we have pointed out that y’ in
client reflects the degree of privacy protection and the user
could set this value according to his/her privacy require-
ment. If ¥’ is set to be 1.0, it means that y computed by the
reported locations of individual users within 7" must be big-
ger than y’, i.e., y > 1.0. Theoretically, for individual users,
a higher value of y’ in client is better to preserve his/her
privacy. This is also clearly shown by Fig. 8a. In Fig. 8a, we
can find that with the increase of y’, the deviation between
the estimated traces of individual users and the ground
truth is increasing. When y’ = 0.4, DM of most users is
more than 100 m and when y’ = 1.0, even all users have the
DM of more than 100 m.
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Fig. 8. Influences of different degree of privacy protection.
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Fig. 9. Wuxi data: generated maps at different NoL.

For the server, however, a higher value of y’ in client is
not better for the efficiency of map generation. From
Fig. 8b, we could see that when the number of request
packets received by each user is the same, the bigger '
is, the less the number of locations uploaded to the server
is. This means more time is needed to generate or update
a map if a bigger y' is set. Another meaningful discovery
is that when y’ = 0.2 and 0.4, the number of locations
received in server is nearly the same, while when y’ = 0.6
, 0.8 and 1.0, the number is significantly fewer. This is
because individual users only send a few locations to the
server in a period of time, e.g., one day, which makes the
traces generated by these locations in client quite differ-
ent from ground truth, i.e,, y computed in client is usu-
ally bigger than the set threshold y’. Therefore, when the
set threshold is low, e.g., 0.2 or 0.4, the user usually could
response most request packets if he/she has the satisfied
locations. With the increase of the set threshold, however,
more points are not satisfied this stricter demand of pri-
vacy protection. Hence, these points would not be sent to
the server so that the number of locations received in
server decreases.

By analyzing and comparing these two figures in Fig. 8, it
is obvious that in a real environment, an appropriate thresh-
old y' is essential for both individual users and the server.
Based on the result shown in Fig. 8, it is relatively appropri-
ate to set y' to be from 0.6 to 1.0.

4.2 The Quality of Generated Map

In this section, we will investigate the generated map qual-
ity in various dimensions. Unless otherwise stated, we will
set the cluster range and size length of a cell r to be 20 and
400 m in the next experiments.

4.2.1 Visual Comparison

We first visually observe the generated map quality under
different sampling points both in Wuxi and Shanghai(
Figs. 9 and 10). Here the red lines mean the recovered seg-
ments, the blue points represent the clustered sampling
locations. And we also provide the ground truth in black
(Figs. 9f and 10d). As expected, the more of sampling loca-
tions, the better of recovered map quality. In Wuxi experi-
ment, Fig. 9 shows that when NoL = 2,500, the recovered
map could almost capture the general trend of the original
map. For the Shanghai data, the performance improvement
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Fig. 10. Shanghai data: generated maps at different NoL.

is very small if changing the number of locations from 500 to
1,000. Moreover, such improvement almost disappears
when NoL > 1,000.

4.2.2 Quantitative Evaluation

To be more precise in comparison, we further observe the
CDF of segment DM and G'M under different number of
sampling locations shown in Figs. 11 and 12. The results
suggest that the estimated map based on Wuxi data per-
forms better than Shanghai'’s, e.g., when NoL= 1, 500, about
90 percent of the recovered segments are at most 10 m apart
from the ground truth, while for Shanghai, there are only 80
percent such segments even if NoL = 3,000.

More statistical information describing the recovered map
quality is presented in Table 1. Here, NoLC means the num-
ber of locations after clustering and Density (with the unit of
cluster/m) represents the average distance of consecutive
clustered points. The recovered map quality improves as the
increase of sampling locations. Such improvement could
also be verified by the increase of Density and the decrease
of DM. Compared with Wuxi data, the performance gains
are not obvious for the Shanghai data. Only 12 new clustered
points are added even if NoL adjusts from 3,000 to 5,000.
This is because the number of users (i.e., 50) might be a little
big for the cell with side length 400 m. When one request is
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Fig. 11. CDF observation with Wuxi data.
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Fig. 12. CDF observation with Shanghai data.
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TABLE 1
Map Generation Results with Two Data Sets
DataSet NoL NoLC DM || Length Density
500 221  12840m 96 3,7769m  17.09
1,000 230 3844m 157 4941.1m 2148
Wuxi 1,500 273 2531m 256 §,1539m  29.87
2,000 432 6.04m 416 13,430m  31.09
2,500 594 553m 578 20,186 m  33.98
500 273 893m 246 7,0413m  25.79
1,000 304 80lm 277 64242m  21.13
Shanghai 2000 310  779m 284 6,3356m 2044
3,000 320 743m 292 7,100.6m  22.19
4,000 326 734m 299 7,893.0m  24.21
5,000 332 738m 307 7945.6m  23.93

sent, if too many users response, the sampling locations are
too dense, which results in the less NoLC and the slow
growth of the quality. Therefore, it is highly necessary to
select appropriate parameters based on real situation, e.g.,
the number of users, the cell side length and so on.

4.3 Evaluation of Privacy Protection
We examine the performance of privacy protection by
observing the individual recovered trace. We set the privacy
protection level (i.e., y’) to be one which has been discussed
in Section 4.1.3. For simplicity purpose, each user exploits
exactly same y’. We randomly choose a user’s reported loca-
tions from Wuxi data and Shanghai data, then use Crust to
estimate their corresponding trace within a day. Fig. 13
illustrates the recovered individual trace. Clearly, compared
with the ground truth in Figs. 9f and 10d, these two graphs
contain so many separated segments and points that we
cannot know the users’ complete or real trace.

We also observe the CDF of individual users” DM to have
a more precise evaluation of privacy protection. Fig. 14
shows that when individual users send 5, 10, 30 and 50
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Fig. 13. Recovered trace by one user in one day (y' = 1).
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