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Mobile sensing has become a new style of applications and most of the smart devices are equipped with varieties of sensors
or functionalities to enhance sensing capabilities. Current sensing systems concentrate on how to enhance sensing capabilities;
however, the sensors or functionalities may lead to the leakage of users’ privacy. In this paper, we present WiPass, a way to leverage
the wireless hotspot functionality on the smart devices to snoop the unlock passwords/patterns without the support of additional
hardware. The attacker can “see” your unlock passwords/patterns even one meter away. WiPass leverages the impacts of finger
motions on the wireless signals during the unlocking period to analyze the passwords/patterns. To practically implement WiPass,
we are facing the difficult feature extraction and complex unlock passwords matching, making the analysis of the finger motions
challenging. To conquer the challenges, we use DCASW to extract feature and hierarchical DTW to do unlock passwordsmatching.
Besides, the combination of amplitude and phase information is used to accurately recognize the passwords/patterns.We implement
a prototype of WiPass and evaluate its performance under various environments. The experimental results show that WiPass
achieves the detection accuracy of 85.6% and 74.7% for passwords/patterns detection in LOS and in NLOS scenarios, respectively.

1. Introduction

With the boom of mobile smart devices, mobile sensing on
smart devices has become a new style of applications and
more andmore people rely on the smart devices since the rich
functionalities and enhanced computing power conveniently
provide intelligent service for peoples’ daily lives. Most of
the smart devices are equipped with a variety of sensors and
kinds of functionalities to enhance sensing capabilities, such
as detecting the vehicle steering maneuvers using gyroscope
and accelerometer [1]. However, current researches have paid
much attention on how to process the sensing data 4Vs
(Volume,Velocity,Variety,Veracity) to enhance sensing capa-
bilities; the security of mobile smart devices themselves has
not receivedmuch attention.The sensors or functionalities on
the smart devices may leak the users’ privacy, since the smart
devices are carrying much sensitive personal information,
such as personal photos, credit card numbers, and passwords.

Once the smart devices are attacked, the sensitive personal
information is prone to leak, bringing the privacy leakage and
even financial loss.

Previous studies have shown that the accelerometer and
gyroscope can track users [2], and the accelerometers on the
devices can recognize the unlock passwords of touch-enabled
screen devices [3]. However, previous sensor attacks against
unlock passwords [3–5] just aim at digital unlock passwords
and successfully decode the digital unlock passwords; for
graphical unlock passwords, as shown in Figure 1, it has not
been mentioned. Besides, it is known that the sensors on
the smart devices may lead to the leakage of users’ privacy;
however, can the functionalities of the smart devices leak the
users’ privacy?

In this paper, we presentWiPass, a snooping method that
does not require attacker close to the target or have control of
the device. Only the wireless hotspot functionality is used in
WiPass to recognize the graphical unlock passwords. WiPass
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Figure 1: Graphical unlock passwords in the screen of current smart
mobile devices.

can “see” your passwords/patterns through the impacts of
finger motions on wireless signals even in NLOS (Nonline of
Sight) scenarios.

Many existing works have already demonstrated the
feasibility of leveraging the impacts of body motions on
wireless signals to do localization [6], gesture recognition
[7, 8], and even keystroke detection [9, 10]. However, most
of existing methods are not suitable to recognize the unlock
passwords/patterns. Most existing recognition methods are
used in control systems.The user in a control system tends to
comply and performs predefined gestures near the devices.
However, in WiPass, the attacker cannot access the target
devices. The impacts of finger motions on wireless signals
from the devices not close to the target are not easy to extract
since the impacts are easily overwhelmed by the significant
noise.

The differences between attack and control systems bring
new challenges. First, it is nontrivial to extract the influenced
signal traces among the sampled sequence with intrinsic
noise. Second, recognizing the finger motions under the
serious noisy environment is challenging. Existing meth-
ods usually leverage the amplitude information which is
suspected to be corrupted under the noisy environments,
decreasing the detection accuracy significantly. Third, the
similarity of many unlock patterns significantly increases the
difficulty of accurate recognition.

To cope with those challenges, WiPass constructs finger
motion profiles for the influenced signal traces of different
unlock passwords. First, a common method to extract the
influenced signal traces is a sliding window. However, in
general, a threshold is needed for a sliding window and
the threshold is obtained through abundant experiments; it
will be time-consuming. Besides, there are lots of different
unlock passwords, different unlock passwords correspond to

different influenced signal traces, and different influenced
signal traces correspond to different amplitude information
of wireless signals; thus, different thresholds need to be set
for different unlock passwords. Thus, a new efficient method
needs to be considered to extract the influenced signal
traces. In this paper, DCASW (the difference of cumulative
amplitude of the sliding window) is used to extract the
influenced signal traces and the max value of the difference
can be seen as the beginning of the unlock passwords (where
the user starts to unlock the device).

Inspired by time-series data matching method, a well-
established technique—Dynamic Time Warping (DTW)—
is used to recognize the unlock passwords. However, there
are lots of unlock passwords; the matching will be time-
consuming and cost large computational overhead; thus, a
hierarchical approach is used to reduce time and computa-
tional overhead. Given that there are many similar graphical
unlock passwords and amplitude information is suspected to
be corrupted, phase information can be used with amplitude
information together to recognize the unlock passwords and
improve the recognition accuracy.

We implement a prototype of WiPass on commercial
wireless devices and evaluate its performance under various
environments. The experimental results show that, for those
unlock passwords with great difference, the recognition
accuracy can achieve 70% when using amplitude only. But
for those similar unlock passwords, the recognition accuracy
can only achieve 37%. The results also show that combining
the amplitude information and phase information together
can effectively improve the recognition accuracy of similar
unlock passwords to 58%. Besides, in LOS scenario, the
recognition accuracy of 25 tested graphical unlock passwords
can achieve 85.6% within three attempts and 74.7% in NLOS
scenario.

Contributions. This paper makes the following contributions:

(i) WiPass is an unlock passwords recognition system,
in which a mobile smart phone with wireless hotspot
functionality is used as a transmitter to transmit
wireless signals, and it exposes a serious threat for
mobile device users.

(ii) WiPass exploits the impacts of finger motions on
wireless signals to achieve unlock passwords recog-
nition. As a result, the design delivers 74.7% accuracy
even in NLOS scenario.

(iii) WiPass uses DCASW to extract the influenced traces
and the basic idea can be extended to other systems
when different thresholds are needed according to
different conditions.

(iv) WiPass also demonstrates the capability of dynamic
time warping to recognize the unlock passwords, and
a hierarchical approach is used to reduce the time and
computational overhead.

The rest of this paper is organized as follows. Sec-
tion 2 presents the related work about attack against unlock
passwords/patterns. Section 3 introduces the overview of
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the system, followed by designs in Section 4. Hierarchical
approach for unlock passwords recognition is presented in
Section 5. Implementation and microbenchmark are intro-
duced in Section 6 and evaluation of the recognition accuracy
is presented in Section 7. Section 8 discusses the defense
strategies; Section 9 introduces discussions and limitations.
Then conclusion is introduced in Section 10.

2. Related Work

Currently, attackers try to attack the unlock passwords to
obtain the users’ privacy, and there are four main ways that
the attackers usually use.

(1) Shoulder Surfing Attack. Mobile devices are often used
in public places where shoulder surfing attacks [11, 12] often
happen and the unlock passwords are easy to be obtained.
It is the most simple way to snoop the unlock passwords
and does not need any support of additional hardware.
However, shoulder surfing attack only can be done when the
attacker and the user are very close and the attacker looks
unsuspected. If the users are careful enough during unlocking
period, the shoulder surfing attack will not succeed.

(2) Finger Print Attack [13]/Smudge Attack [14]. In fingerprint
attack, fingerprint powder is needed to dust the touch
screen to reveal fingerprints left from tapping fingers and
then the fingerprints are sharpened to obtain the unlock
passwords [13]. In smudge attack, the attack is done under
a variety of lighting and camera conditions [14]. So, finger-
print attack/smudge attack needs the support of additional
hardware (e.g., fingerprint powder/camera). Zhang et al.
[13] also suggest that a randomized software keyboard is a
feasible solution to prevent the unlock passwords from being
obtained.

(3) Video Attack. Shukia et al. [15] introduce one kind of
side-channel attacks, and the attack can successfully decode
the passwords after several attempts. However, cameras are
needed to obtain a video and the success rate is related to the
camera configurations. Yue et al. [16] present another side-
channel attack, inwhichwebcamor a phone camera is needed
instead of a camera. They also design randomized virtual
keyboards to defeat the attacks.

(4) Sensors Attack. Sensors are exploited to infer touched
keys of touch-enabled screen devices, including orientation
sensor, accelerometer, and motion sensors [3–5]. They also
point out that the defense strategy is to force every application
to declare their intentionwhen accessing the sensors and then
inform users about dangerous combinations of permissions.

However, some of the defense strategies mentioned above
do not protect the devices completely. For example, the
randomized virtual keyboards mentioned above are only put
forward to defeat the attacks against digital unlock passwords,
and it cannot defeat the attacks against graphical unlock
passwords. Besides, most touch-enabled devices such as
smart phones have not implemented that functionality. For
the defense strategy that aims at sensors attack, it has not been

achieved in current touch-enabled screen devices because of
the friendly interactive interfaces and many other reasons.

The attack against unlock passwords using wireless sig-
nals is always neglected by people, and the attack is similar
to gesture recognition system based on wireless signals.
However, the attack is different from gesture recognition
system, because gesture recognition system [7, 17] can only
detectmore notablemotions because of the limited frequency
of the wireless transmission, and those tiny motions cannot
be detected. Besides, previous gesture recognition studies
used machine learning to recognize the gesture because of
the few number of gestures in the control system. However,
for unlock passwords, there are a large number of unlock
passwords and the influenced signal traces are also different
when different people unlock the same kind of devices
with the same unlock passwords. Given that, learning-
based approach is not appropriate for unlock passwords
recognition. This paper introduces an attack against unlock
passwords using wireless signals, which is immune to those
defense strategies. The attacker can turn on the wireless
hotspot functionality of their smart devices and the smart
devicewith hotspot functionality can be used as a transmitter;
once the signal reflections from the users’ finger motions
during the unlocking period are collected by an attacker, the
users’ unlock passwords will be leaked.

3. System Overview

WiPass is an unlock passwords recognition system that
enables mobile smart devices with wireless hotspot func-
tionality to “see” the unlock passwords if the influenced
signal traces from finger motions during unlocking period
are collected by attackers.

Following a common practice in gesture recognition
system, WiPass leverages a wireless transmitter to transmit
wireless signals. The difference of WiPass and gesture recog-
nition system is that the transmitter of WiPass is a smart
mobile device with wireless hotspot functionality instead of a
wireless router. InWiPass, one antenna is enough for receiver
to capture signal reflections, and current mobile devices with
two omnidirectional antennas can be used as the receiver.
Figure 2 illustrates the framework of WiPass. It consists of a
transmitter and a receiver. The transmitter transmits wireless
signals and the receiver extracts signal reflections from finger
motions.

To recognize an unlock password, at a high level WiPass
goes through the following steps:

(i) WiPass collects the signal reflection information
when there exists an unlock password.

(ii) WiPass removes the noise from the collected signal
reflection information using Symlet filter, and the
details are introduced in Section 4.2.

(iii) WiPass extracts the influenced signal traces from
the noise-removal signal reflection information using
DCASW, and the details are introduced in Section 4.3.

(iv) By comparing and matching the desired unlock
password’s finger motion profile with the reference
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Figure 2: The overview of WiPass.

unlock passwords’ finger motion profiles, as described
in Section 4.5, WiPass identifies the desired unlock
password.

In unlock passwords recognition, there are a large num-
ber of reference unlock passwords. It is difficult and time-
consuming to do unlock passwords matching using DTW, as
described in Section 4.5. In Section 5, we describe a hierar-
chical approach to recognize the desired unlock password.

The next few sections elaborate on the above steps,
providing the technical details.

4. Designs

4.1. Signal Collecting. In experiments, the data starts to be
collected before the user starts to unlock the device and ends
being collected after the user ends unlocking the device. The
purpose of such collection is that we need to make sure that
the collected data contains the influenced signal traces during
the unlocking period.What we have collected is a sequence of
CSI data and each CSI represents the phases and amplitudes
on a group of 30 OFDM subcarriers.

4.2. Noise Removal. After obtaining the signal, noise needs to
be removed from obtained signal, because when the signal is
collected, it is unavoidable that the noise in the environment
is also collected. For example, additive white Gaussian noise
is common in the environment, and the collected signal
always contains such noise. In this paper, discrete wavelet
decomposition is used to remove noise from obtained signals
[18]. Using wavelet decomposition has the following twofold
advantages:

(1) It facilitates signal analysis on both time and fre-
quency domain. This attribute can be leveraged in
WiPass for analysing the finger motions in varied
frequency domains. It can also help WiPass locate
the start time for finger motions when one unlock
password happens.

(2) It achieves fine-grained multiscale analysis. In
WiPass, the finger motions share a lot in common
when the unlock passwords of touch-enabled screen
devices are similar, such as the “𝑍” in the top left
corner and the “𝑍” in the bottom right corner, and it
makes them difficult to be distinguished. By applying
discrete wavelet packet transform to the original
signals 𝑦

𝑖
that contains noise, the tiny differences can

be figured out among the similar unlock passwords.

The steps of noise removal using discrete wavelet decom-
position are usually as follows.

4.2.1. Forward Wavelet Transform. Generally, a discrete sig-
nal 𝑓[𝑛] is approximated by the following equation [18]:
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where 𝑓[𝑛] represents the original discrete signals, and it is
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coefficients conveniently in the decomposition process.
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approximation coefficients and detail coefficients are both
iteratively divided into approximation coefficients and detail
coefficients, just as the strategy in the division.The division is
an iterative step and the times of iteration depend on the level
of decomposition, as shown in Figure 3. The approximation
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𝜙
[𝑗
0
, 𝑘] and detail coefficients𝑊

𝜓
[𝑗, 𝑘] in each

level can be computed as the following equationswhen 𝑗 ≥ 𝑗
0
:

𝑊
𝜙
[𝑗
0
, 𝑘] =
1

√𝑀
∑

𝑛

𝑓 [𝑛] 𝜙𝑗0 ,𝑘
[𝑛] ,

𝑊
𝜓
[𝑗, 𝑘] =

1

√𝑀
∑

𝑛

𝑓 [𝑛] 𝜓𝑗,𝑘 [𝑛] .

(2)

Given the distortion of signals, we apply a two-level decom-
position in this paper.

4.2.2. Threshold Quantification. The threshold plays a very
important role in denosing process. A small threshold value
will still retain the noisy coefficients while a large threshold
value will lose the coefficients that may contain the useful
information of the influenced signals. There are two types
of threshold, and they are separately soft threshold and hard
threshold. For hard threshold, set the smaller coefficients to
zero while keeping the larger coefficients. For soft threshold,
set the smaller coefficients to zero while shrinking the large
coefficients towards zero. Based on that and the effectiveness
and simplicity of soft threshold and its frequency of use in
literature [19, 20], soft threshold is used in this paper.

4.2.3. Inverse Wavelet Transform. Through the above two
steps, the original signals experience 𝑛-level decomposition,
and the numbers of approximation coefficients and detail
coefficients are both 2𝑛−1, so the next step is using the
coefficients to reconstruct the signal to achieve noise removal.

However, the reconstruction efficiency relies on the selec-
tion of wavelet basis. There are 15 kinds of wavelet basis that
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Figure 3: An example of 3-level discrete wavelet packet decom-
position, where in the figure cA and cD separately represent the
approximation coefficients and detail coefficients.
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Figure 4:The comparison between original signals and signals after
noise removal.

Matlab can support and the most commonly used are the
three following families: Daubechies, Coiflets, and Symlets
[20]. An ideal wavelet basis should contain the following fea-
tures: orthogonality, short support, symmetry, smoothness,
and high order of vanishing matrix [21]. However, Symlet is
an improvement of Daubechies, and the symmetry of Coiflets
is higher than that of Daubechies. So Symlets or Coiflets can
be used to achieve noise removal, but which kind of wavelet
basis is better? Actually, after the wavelet transform, what we
have obtained are the coefficients and the coefficients reflect
the main information of original signal, so when the signal
that is reconstructed by coefficients is more similar to the
original signal, the reconstructed signals will not lose useful
information of the original signal. Compared with Symlets
andCoiflets, the constructed signal of Symlets ismore similar
to the original signal; besides Wang et al. [18] and Chavan
et al. [22] also use Symlets to achieve noise removal. Thus,
in this paper, a two-level Symlets wavelet filter is applied to
remove noise and the signal after noise removal is as shown
in Figure 4.

4.3. Feature Extraction. Feature extraction is important for
finger motion profile construction. In this paper, we define
the influenced signal traces as features, and thus the features
just reflect the unlock passwords. If the extracted features
are too little, the extracted features will not fully reflect the
unlock passwords, and if the extracted features are too many,
redundant information about the signal will be stored and
that will lead to a waste of the space and large computational

overhead. So how can we automatically extract the features
and the extracted features just reflect the unlock passwords?

Inspired by the sliding window feature extraction [23], the
cumulative amplitude of the sliding window can be used to
extract the features. However, for the cumulative amplitude
of the sliding window, the features are usually extracted
according to thresholds and the thresholds are generally
obtained after many attempts in actual experiments, the
process is time-consuming. Besides, there are many unlock
passwords for touch-enabled screen devices and the impacts
of finger motions on wireless signals for different unlock
passwords are different; thus, for different unlock passwords,
different thresholds need to be set to extract features. Thus,
a new efficient method to extract features is needed to be
considered.

In this paper, difference of the cumulative amplitude
of the sliding window (DCASW) is used to extract the
feature. DCASWneeds no threshold; thus, it reduces the time
overhead. The accumulated amplitude of the sliding window
can be calculated by the following equation:

𝐹
𝑖
=
󵄨󵄨󵄨󵄨Sum𝑖 − Sum𝑖−𝜏

󵄨󵄨󵄨󵄨 , (3)

where 𝜏 is the size of the sliding window and Sum
𝑖
is the

cumulative amplitude of the sliding window, which can be
computed as follows:

Sum
𝑖
= Sum

𝑖−1
+ 𝐴
𝑖
;

Sum
0
= 0,

Sum
1
= 𝐴
1
,

(4)

where 𝐴
𝑖
represents the amplitude of 𝑖th received packets.

Then the difference of cumulative amplitude of the sliding
window is computed to extract the feature, and the compu-
tation is as follows:

𝐷
𝑖
= 𝐹
𝑖
− 𝐹
𝑖−1
. (5)

The max value of the difference can be seen as the
beginning of the unlock passwords (where the user starts
to unlock the device). That is because when the unlock
password begins, the signals begin to fluctuate while the
signals keep stable when there is no unlock password, as
shown in Figure 4. So the max value of the difference can
be thought to be the beginning of the unlock passwords.
When the unlock passwords end, the signal will return to
keep stable, and the min value of the difference that occurs
after the max value can be thought to be the ending of the
unlock passwords. The result of the feature extraction using
DCASW is shown in Figure 5.

4.4. Finger Motion Profile Construction. After removing the
noise from the collected original signals and extracting
features, what we have obtained is a sequence of cleaned CSIs.
Each CSI represents the phases and amplitudes on a group
of 30 OFDM subcarriers. Since the noise has been removed
from the signals, there would be little dramatic fluctuation
caused by interference or noise [24]. Thus, the cleaned CSIs
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Figure 5: The comparison between signals after noise removal and
signals after noise removal and feature extraction.

can represent the influenced signal traces caused by finger
motions (features), and we define the cleaned CSIs as a finger
motion profile.

4.5. Unlock Passwords Recognition. After building the finger
motion profiles, the next work is how can we recognize the
different finger motion profiles and further recognize the
unlock passwords. Having recognized the similarity between
time-series datamatching and unlock passwords recognition,
we borrow the technique dynamic timewarping (DTW) from
time-series datamatching to recognize the unlock passwords.

Dynamic time warping is widely used in time-series data
matching, and it is used to quantify the similarity of two
time-series data sets. However, our work is quantifying the
similarity of two signals; they have something in common.
Besides, Rath and Manmatha [25] exploit the potentiality
of dynamic time warping to match word image, Wang and
Katabi [26] evaluate the similarity between the multipath
profiles of the desired tag and the multipath profiles of the
reference tags by using dynamic time warping, and many
others [18] also leverage dynamic time warping to achieve the
evaluation of similarity between two series. Thus, we can use
dynamic time warping to quantify the similarity between the
signals of two different unlock passwords.

The input of DTW is two signals, one is reference signal
and another is desired signal, and the output of DTW is a
calculated distance. When given a desired signal, what we
want to know is which reference signal is the most similar
to the desired signal. The only measurement index is the
calculated distance, and the reference signal whose calculated
distance with desired signal is the minimum can be thought
to be the most similar to the desired signal [27, 28].

5. Hierarchical Approach for Unlock
Passwords Recognition

After computing the distances between the desired signals
and reference signals, WiPass will identify the unlock pass-
words. However, there exist plenty of reference signals.When
the distances are computed between desired signal and all
those reference signals, that will cost a lot of time and
computational complexity will be high. Hence, in order to
keep the cost and computational complexity low, WiPass

recognizes the unlock passwords hierarchically using the
protocol below.

Protocol. In stage 1, several finger motion profiles of each type
of unlock passwords are chosen as the reference signals.Then
DTW will compute the distances between the desired signal
and reference signals. In the computed distances, there will
exist a type of the unlock passwords whose distance is much
smaller than other types, and the desired unlock password is
thought to belong to that type.

In stage 2, the unlock passwords with similar shape can
be thought to belong to one kind, and the different kinds of
unlock passwords are chosen as the reference signals. Similar
to stage 1, the unlock passwords will belong to one kind of the
unlock passwords with similar shape.

In stage 3, the unlock passwords will be matched with
the kind of unlock passwords and finally the desired unlock
password will be recognized.

Computational Complexity. The complexity of WiPass comes
from the number of the reference signals and the length of
the features of desired signals and reference signals. Let 𝑁
be the total number of reference signals, let 𝐿

1
be the length

of the feature of desired signals, and let 𝐿
2
be the length

of the feature of the reference signals. Thus, recognizing the
desired unlock password has a complexity of 𝑂(𝑁𝐿

1
𝐿
2
).

Using hierarchical approach can reduce the complexity to
𝑂(𝑛𝐿
1
𝐿
2
), where 𝑛 is total number of reference signals that

are matched with the desired signal, and 𝑛 ≪ 𝑁.
The runtime of unlock passwords matching is 37.131518

seconds when the system computes the calculated distances
between one desired unlock password and 25 reference
unlock passwords (the length of the unlock passwords is
more than 300 packets). The runtime of unlock passwords
matching is 9.668004 seconds when the system computes the
calculated distances between one desired unlock password
and 5 reference unlock passwords (the length of the unlock
passwords is more than 300 packets). The runtime of finger
motion profilematching is 0.243151 seconds when the system
computes the calculated distances between one desired finger
motion profile and 5 reference finger motion profiles (the
lengths of the finger motion profiles are 60 packets). The
experiments are done using MATLAB R2012b on a 64-bit
machine with Intel Core i3-4150 Quad-Core processor and
8G memory. The actual runtime experiments demonstrate
that the complexity of WiPass is positively correlated to the
number of the reference signals and the length of the features.

6. Implementation and Microbenchmark

We implement WiPass on current mobile smart devices with
the wireless hotspot functionality and evaluate its perfor-
mance in typical indoor scenarios.

6.1. Hardware and Scenarios. A smart device with wireless
hotspot functionality is used as the transmitter (IPhone 6
plus), and a desktop equipped with Intel 5300 NIC (Network
Interface Controller) is used as the receiver. The transmitter
operates in IEEE 802.11n.The receiver has 3working antennas
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and the firmware is modified to report CSIs to upper layers.
During the measurement, the receiver continuously pings
packets from the smart devices at the rate of 5 packets per
second. The collected CSIs are stored and processed at the
receiver.The tested mobile phone is SAMSUNGGalaxy Note
3.

The experiments are conducted in a typical indoor office
whose area is 3.6m × 6.6m. To evaluate WiPass’s perfor-
mance, the experiments are done in two scenarios, LOS
scenario and NLOS scenario.

LOS Scenario: Line of Sight. The target person is just on the
straight line between transmitter and receiver and is within
the radio range of the transmitter, as shown in Figure 6(a).

NLOS Scenario: Nonline of Sight. The target person is not on
the straight line between transmitter and receiver but also
is within the radio range of the transmitter, as shown in
Figure 6(b).

6.2. Unlock Passwords Vocabulary. The unlock passwords
are divided into four types, some of each type of unlock
passwords are chosen as the tested unlock passwords, and 25
unlock passwords are chosen randomly as the tested unlock
passwords. All the tested graphical unlock passwords can be
divided into four types, and one type of the unlock passwords
is that there is no inflection points in the unlock passwords,
one is one inflection point in the unlock passwords, one is two
inflection points in the unlock passwords, and the last is three
or more than three inflection points in the unlock passwords.
As shown in Figure 7, unlock passwords pattern 1, pattern 2,
and pattern 3 can be thought to be the first type of unlock
passwords, and unlock passwords pattern 4 and pattern 5 can
be thought to be the second type, unlock passwords pattern
10 and pattern 11 can be thought to be the third type, and
unlock passwords pattern 23, pattern 24, and pattern 25 can

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 7: 25 tested unlock passwords in the experiment.

be thought to be the last type. In the second type, there are
three kinds of unlock passwords, pattern 4 to pattern 7 belong
to the first kind, pattern 8 and pattern 9 belong to the second
kind, and pattern 17 and pattern 18 belong to the third kind.
The first three types of unlock passwords can be thought to
be simple unlock passwords, and the last can be thought to
be complex unlock passwords.

The lengths of extracted features (the number of received
packets for the influenced signal traces) of different types
of unlock passwords are different, since the time spent on
unlocking for simple unlock passwords and complex unlock
passwords is different when the same group of persons
unlock the same-size touch-enabled devices. The impacts
of finger motions of different kinds of unlock passwords
are also different; thus, the hierarchical approach is feasible
theoretically.

6.3. Microbenchmark Experiment. We start with a micro-
benchmark experiment to provide insights into the working
of WiPass. In order to better understand how unlock pass-
words influence the wireless signals, we conduct a simple
experiment of two different unlock passwords. The exper-
iments are conducted in the conditions that there are no
surrounding people in the environment and the user does not
move while unlocking the devices.

Figure 8 shows the signals under different conditions
for two different graphical unlock passwords when the
transmitter is current smart mobile phone with wireless
hotspot functionality. As Figure 8 shows, the impacts of
finger motions of different unlock passwords on wireless
signals are different. When there is no surrounding people
in the environment and there exist no unlock passwords, the
collected signals keep relatively stable. When the user starts
to unlock the device, the collected signals will fluctuate, and
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Figure 8: Microbenchmark experiments of two different unlock passwords.

when the user ends unlocking the device, the signals will
return to be relatively stable. Thus, the unlock passwords can
be recognized.

6.3.1. Recognition among Unlock Passwords with Great Dif-
ference. We can see from Figure 8 that, after noise removal
and feature chosen, the signals are different in amplitude. In
Figure 8(a), after noise removal and feature chosen, the signal
amplitude of the unlock password pattern 25 is between 8
and 12 while, in Figure 8(b), the signal amplitude of unlock
password pattern 5 is between 14 and 18. Besides, when
there exists great difference among the unlock passwords,
the lengths of the features of unlock passwords are different.
For example, in Figure 8(a), the length of the feature of
unlock password pattern 25 is 75 while the length of the
feature of unlock password pattern 5 is 50.That is because, for
different types of unlock passwords, the spent time is usually
different, and, after noise removal and feature chosen, the
lengths of the features are different, as shown in Figure 8.
Thus, using the signal amplitude and the length of the feature
can distinguish the unlock passwords with great difference.
In addition, there is another information that can be obtained
from CSIs except amplitude and it is phase. Using phase can
also recognize the unlock passwords with great difference
successfully. Figure 9 can demonstrate it. Figures 9(a) and
9(b) separately represent the relationships between amplitude
and phase of two different unlock passwords with great
difference. We can see from Figure 9 that the relationships
between phase and amplitude are different no matter what
in terms of one antenna or in terms of three antennas. So,
for those unlock passwords with great difference, the unlock
passwords can be recognized using amplitude and the length
of features or using amplitude, phase, and the length of
features.

6.3.2. Recognition among Similar Unlock Passwords. For
those graphical unlock passwords with great difference, the
representations of signals are different in amplitude in time
domain, as shown in Figure 8. However, for those similar
unlock passwords, such as unlock passwords pattern 11,
pattern 12, pattern 13, and pattern 14, the representations
of signals are similar in amplitude in time domain and
the lengths of the features are also the same. Besides, the
relationships between amplitude and phase are also similar,
as shown in Figure 10. Figures 10(a) and 10(b) represent
separately the relationships between amplitude and phase
of unlock passwords pattern 11 and pattern 13. We can see
from Figure 10 that, for those similar unlock passwords, the
relationships between amplitude and phase are also similar
no matter what in view of one antenna or three antennas. So
how can we recognize those similar unlock passwords? It is
known that phase is another information that can be obtained
from CSIs, and it can be expressed in time domain, as shown
in Figure 11. We can see from Figure 11 that the phases
of pattern 11 and pattern 13 are different in time domain
no matter what in view of one antenna or three antennas.
Thus, for those similar unlock passwords, when their signal
amplitudes are similar, the lengths of features are the same,
and the relationships between amplitude and phase are also
similar, the phase information can be used to recognize the
unlock passwords successfully. So, in this paper, amplitude
and phase are used together to recognize the similar unlock
passwords.

7. Evaluation

In this section, the recognition accuracy of graphical unlock
passwords when using amplitude only and using amplitude
and phase together is computed. This section also compared
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Figure 9: Comparison of the relationships between phase and amplitude of two graphical unlock passwords with great difference after noise
removal and feature chosen.

the complexity of feature chosen when using AP (Access
Point) as the transmitter and when using a smart mobile
phone with wireless hotspot functionality as the transmitter.

7.1. Wireless Device Diversity: Router versus Smart Phones.
We can see from Figure 12 that when the transmitter is TP-
Link wireless router and there exist no unlock passwords,
the signals after noise removal keep stable, as shown in
Figure 12, when the number of received packets is between
0 and 160. However, when the transmitter is the smart phone
with the wireless hotspot functionality, the signals after noise
removal just keep relatively stable, as shown in Figure 8.
That is because, for TP-Link wireless router, there is only
one kind of antenna, and it is WiFi antenna and it is used
to transmit the wireless signals while, for smart phones
with the wireless hotspot functionality, there are also other
antennas besides WLAN antenna, such as communication
antenna, GPS antenna, Bluetooth antenna, andNFC antenna.
When there exist no unlock passwords and the environment
is stable, there is no other interferences that influence the
signals; thus, the signals after noise removal keep stable
when the transmitter is TP-Link wireless router, while when
the transmitter is the smart phone with wireless hotspot
functionality, there will exist other interferences coming from
other antennas that influence the signals; thus, the signals

after noise removal just keep relatively stable. Thus, when
the transmitter is TP-Link wireless router, the feature chosen
is easier than when the transmitter is a smart phone with
wireless hotspot functionality. In this paper, the smart phone
with wireless hotspot functionality is used as the transmitter
just because, for those places where there does not exist a
wireless router (e.g., in the bus), the attack against unlock
passwords cannot occur; however, it should be a warning for
mobile phone user that the attack can occurwhen the attacker
has a smart mobile phone with wireless hotspot functionality
regardless of the place where the attacker is.

7.2. Graphical Unlock Password Accuracy. In this section, the
accuracy of graphical unlock passwords is tested. In order
to test the accuracy of similar unlock passwords, some of
the unlock passwords of each type are tested. As shown in
Figure 7, 25 unlock passwords are tested and each unlock
password is tested 20 times.

7.2.1. Recognition Using Amplitude Only. For those unlock
passwords with great difference, the lengths of features and
the amplitude of the signals are usually different; thus, using
amplitude can recognize the unlock passwords successfully.
In order to demonstrate it, 6 unlock passwords are chosen as
the tested unlock passwords, and they are separately unlock



10 Mobile Information Systems

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 2

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 1

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 3

(a) Graphical unlock password pattern 11

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 2

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 1

10

20
30

210

60

240

90

270

120

300

150

330

180 0

Antenna 3

(b) Graphical unlock password pattern 13

Figure 10: Comparison of the relationships between phase and amplitude of two similar graphical unlock passwords after noise removal and
feature chosen.

passwords pattern 2, pattern 5, pattern 9, pattern 10, pattern
21, and pattern 23. The results are shown in Figure 13.
We can see from Figure 13 that the recognition accuracy
can achieve 60% at least, and the recognition accuracy is
between 60% and 80%. The average recognition accuracy
of the six unlock passwords is 70%; thus, for those unlock
passwords with great difference, using amplitude only can
recognize the unlock passwords. However, for those similar
unlock passwords, using amplitude only cannot recognize
the unlock passwords successfully. To further demonstrate it,
three groups of similar unlock passwords are tested, and one
group is unlock passwords pattern 4, pattern 5, pattern 6, and
pattern 7, one group is unlock passwords pattern 10, pattern
11, pattern 12, pattern 13, and pattern 14, and the last group
is unlock passwords pattern 19, pattern 20, pattern 21, and
pattern 22. The results of recognition accuracy are shown in
Figure 14. As shown in Figure 14, the recognition accuracy
is low and most of the accuracy are between 20% and 50%,
except pattern 10 and pattern 21. The average recognition
accuracy of the three groups of similar unlock passwords
is 37%. Thus, using amplitude only cannot recognize those
similar graphical unlock passwords successfully.

7.2.2. Recognition Using Amplitude and Phase. We know
from Figure 14 and the analysis of Section 6.3.2 that when

amplitude cannot recognize the similar unlock passwords
successfully, phase information can help to distinguish them.
To demonstrate it, the amplitude information and phase
information of the three groups of similar unlock passwords
are leveraged together to recognize them. The results are
shown in Figure 15. Comparing with Figure 14, we know
that the recognition accuracy improved significantly and
the average recognition accuracy can achieve 58%. Thus,
amplitude information and phase information can be used
together to improve the recognition accuracy of similar
graphical unlock passwords.

Figure 16 shows the results of recognizing the 25 tested
unlock passwords with one attempt. We can see from Fig-
ure 16 that the recognition accuracy of most unlock pass-
words is above 60%, and the average recognition accuracy can
achieve 66%. However, because DTW computes distances
between the desired unlock password and reference unlock
passwords and if the computed minimum distance is not
matched with the desired unlock passwords, the unlock pass-
words can be matched with the second minimum distance,
third minimum distance. That means we can try to unlock
the device with two attempts or with three attempts. After
three attempts or less than three attempts, the recognition
accuracy of most unlock passwords can achieve above 80%,
and the average accuracy is 85.6%, as shown in Figure 17.
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Figure 11: The comparison of phase after noise removal and feature
chosen between the graphical unlock password pattern 11 and
graphical unlock password pattern 13.
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Figure 12:The signals of graphical unlock password pattern 5 when
the transmitter is TL-WR740N wireless router.

In Figures 16 and 17, the successful recognition accuracy of
similar unlock passwords is relatively low; for example, the
successful recognition accuracy of unlock passwords pattern
11, pattern 12, and pattern 13 in Figure 16 are just separately
40%, 30%, and 40%.However, after several attempts of similar
unlock passwords, the accuracy will be improved and, after
enough attempts of similar unlock passwords, the desired
unlock password will be recognized.

7.2.3. Recognition in NLOS Scenario. The above experiments
are done in LOS scenario. In most cases, the attack occurs
in NLOS scenario; thus, the recognition accuracy in NLOS
scenario is also needed to be considered. Figure 18 shows the
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Figure 13:The accuracy of 6 tested graphical unlock passwords with
great difference when amplitude is used only.
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Figure 14: The accuracy of 13 tested similar graphical unlock
passwords when amplitude is used only.

recognition results of 25 tested graphical unlock passwords
within three attempts in NLOS scenario. We can see from
Figure 18 that most of recognition accuracy of 25 tested
graphical unlock passwords is between 50% and 80% and
the average recognition accuracy can achieve 74.7%. Thus,
in NLOS scenario, the unlock passwords can be recognized
successfully within three attempts. Comparing the recogni-
tion accuracy in LOS scenario with that in NLOS scenario,
the recognition accuracy in NLOS scenario is lower than that
in LOS scenario.That is because, inNLOS scenario, the signal
reflections from finger motions are weaker than that in LOS
scenario; thus, the accuracy is lower in NLOS scenario than
that in LOS scenario.

8. Defense Strategies

Unlock passwords are vulnerable to various attacks, including
the attack using wireless signals. In this section, we discuss a
few strategies to improve the security and protect the privacy
of touch-enabled screen device users.

A few strategies are available to mitigate video attack,
sensors attack, and the attack using wireless signals for
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Figure 15: The accuracy of 13 tested similar graphical unlock
passwords when amplitude and phase are used.
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Figure 16: The accuracy of 25 tested graphical unlock passwords
when amplitude and phase are used.

touch-enabled screen devices without modifying the devices.
The first one is setting complex passwords. Setting complex
unlock passwords can defeat the attacks to some extent;
however, if the complex unlock passwords are common and
it can be thought of by the attacker in advance, the unlock
passwords will be decoded. Besides, setting complex unlock
passwords is inconvenient for users, especially for those who
input passwords frequently.

Another defense strategy is that in public places, espe-
cially when there are persons near to you, we try not to unlock
the devices so that the unlock passwords cannot be obtained
by the attacker to the maximum possible extent. However,
it is very troublesome for people, because people need to be
careful when there are people near to them.

Onemore defense strategy is unlocking the smart devices
using fingerprints, and it is the most safe unlocking. Current
touch-enabled screen devices should go ahead for that finger-
prints unlocking direction.

9. Discussions and Limitations

In this section, we discuss the limitations of our implementa-
tion.
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Figure 17: The accuracy of 25 tested graphical unlock passwords
within three attempts when amplitude and phase are used.
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Figure 18: The accuracy of 25 tested graphical unlock passwords
within three attempts in NLOS scenario.

(1) User Movement. In this paper, the unlock passwords can
be recognized when the target person does not move. It is
possible that the person unlocks the device while walking.
However, the device-free localization techniques [29] can
achieve real-time tracking, so combiningwithWiPass, we can
achieve the recognition of unlock passwords when the target
person moves.

(2) Impact of Surroundings. Movements of surrounding peo-
ple sometimes can reflect the wireless signals more signifi-
cantly than finger motions do. In this paper, we assume that
there are no surrounding moving people when the target
person is unlocking the devices. It is possible that there are
no surrounding moving people in a silent coffee shop or
library. However, there will always exist surrounding moving
people inmost public places, and that can be solved byMIMO
technique [30]. Then MIMO beamforming will be leveraged
to focus on the targets’ fingers to reduce irrelevant multipath
effects.

(3) Devices Diversity. There are many kinds of smart touch-
enabled screen devices. For each kind of touch-enabled
screen devices, the size of touch screen is different; thus, the



Mobile Information Systems 13

positions of each keypads are different. In this paper, just
one kind of mobile phone is tested to demonstrate that the
unlock passwords can be recognized using wireless signals
and, in future work, more experiments on other kinds of
smart devices will be conducted and the similar smart devices
can be classified into one group (the size of touch screen and
the positions of keypads are the same) to recognize the unlock
passwords in order to be time-saving and labor-saving.

(4)TheDiversity of Unlocking Speeds. For different people, the
unlocking speeds are different.There are four user groups for
smart devices, and one is teenager, one is the young, one is
the middle-aged, and the last is the old. However, the young
is the main user group and, in this paper, the experiments
are conducted with the young people.The future work of this
paperwill analyse the impacts of fingermotions on the signals
when the unlocking speeds are different and the unlocking
passwords of different speeds can be classified into different
groups.

(5) The Size of Patterns. There are a great number of different
unlock passwords. In this paper, only 25 patterns are con-
sidered to demonstrate that your unlock passwords can be
leaked through wireless hotspot functionality. It should be a
warning for current mobile device users. When the desired
unlock passwords are not in the 25 patterns, the desired
unlock passwords will not be recognized successfully. How-
ever, the performance can be improved by a continuously
learning-based approach, where the model keeps evolving
using examples collected in the end-users environments, and
when a user unlocks the device using the unknown unlock
passwords, the unknown unlock passwords will be put into
the size of patterns. That will be a continuous process to
enlarge the size of patterns and improve the recognition
accuracy.

10. Conclusion

This paper presents WiPass, a novel system that enables
wireless signals, which are transmitted by a smart device with
wireless hotspot functionality, to “see” the unlock passwords.
WiPass is easily implemented by current smart devices and
does not need any support of additional hardware. To achieve
the unlock passwords recognition, WiPass first removes the
noise from collected signals using a two-level Symlet filter
and then uses DCASW (the difference of the cumulative
amplitude of the sliding window) to extract the features to
build the finger motion profiles and then uses a hierarchi-
cal dynamic time warping (DTW) approach to recognize
the unlock passwords. The experiment results demonstrate
that WiPass can achieve recognition accuracy of 85.6% for
graphical unlock passwords in line of sight (LOS), 74.7% in
nonline of sight (NLOS). The results also demonstrate that
the recognition accuracy can be improved by using amplitude
information and phase information together and by adding
the times of attempts. We believe that this paper exposes
a serious threat for current touch-enabled screen devices
users, and such attack can happen in public places where the
attacker looks unsuspected.
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