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Abstract—RFID systems nowadays are operated at large-scale
in terms of both occupied space and tag quantity. One may
have prior knowledge of the complete set of tags (denoted by
N ) and any set of wanted tags (denoted by M ) within the
complete set, i.e. , M ⊆ N . Then here comes an open problem:
when one is particularly interested in a subarea of the system,
how to collect information (not simply tagIDs) from a wanted
subset (denoted by dM ) of the interrogated tags (denoted by
dN ) in that subarea? This issue has great significance in many
practical applications but appears to be challenging when there
is a stringent time constraint. In this work, we first establish
the lower-bound of this problem, and show a straightforward
polling solution. Then, we propose a novel polling protocol called
LocP, which consists of two phases: the Tags-Filtering phase and
the Ordering-and-Reporting phase. LocP employs Bloom Filter
twice to significantly reduce the scale of candidate tags in the
Tags-Filtering phase. In the Ordering-and-Reporting phase, tags
determine their own transmission time-slots according to the
allocation vectors iteratively broadcasted by the reader. LocP thus
achieves a delicate tradeoff between time and polling accuracy.
We conduct extensive simulations to evaluate the performance
of LocP. The results demonstrate that LocP is highly efficient
in terms of information collection time, leading to convincing
applicability and scalability of large-scale RFID systems.

I. INTRODUCTION

Radio Frequency IDentification (RFID) technology has

gained popularity with many important applications, such

as access control [1][2], object identification [3], inventory

management [4], transportation and logistics [5], localization

[6][7], and tracking [8][9], and so on. In recent years, there

are two new trends in RFID area. One is a trend of applying

RFID at large scale in terms of both tag quantity and occupied

space. Another trend is the increasing need of management

granularity of the RFID information (e.g. SenseID data) [10].

Those trends make query processing an even more complex

and challenging problem, in which time efficiency is a critical

factor.

It is easy to numerate many large-scale RFID applications

with such information collection and management require-

ments. The first example is a RFID assisted baggage sortation

system [8][11] in the airport, as shown in Figure 1(a). Bag-

gages from different check-in counters are carried on a shared

conveyor and mixed together. It is important to efficiently

identify the baggages of a particular flight among piles of

baggages and sort them out efficiently without any missing
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Fig. 1. Two information collection examples in large-scale RFID systems

/ extra item. A similar scenario appears in the distribution

centers of Amazon and Alibaba, where the numbers of postal

parcels are usually hundreds of thousands. During the batch

processing, it is important for those tags to report their status

after executing a batch command to check whether there are

any failures. Also, in large food warehouses, traditional passive

tags and sensor-augmented tags (such as WISP [12]) usually

coexist. As shown in Figure 1(b), one may carry a mobile

reader and walk through the warehouse along a predefined path

to collect sensor-produced information from a specified subset

of tags. If abnormal temperature is detected, the reader can

identify the corresponding items and make prompt reactions

to ensure food security.

To tackle information collection in large-scale RFID sys-

tems, a number of protocols like MIC [13], ETOP [14] and

BIC [15][16] have been proposed. In this paper, we study a

new problem, localized polling. We assume that one has prior

knowledge of the complete set of tags (denoted by N ) and

any set of interested tags (denoted by M ) within the complete

set, i.e., M ⊆ N . When he/she is particularly interested

in a subarea of the system, how to collect information (not

simply tagIDs) from a wanted subset (denoted by dM ) of

the interrogated tags (denoted by dN ) in that subarea? This

problem is completely different from previous literature shown

in Figure 2 and cannot be well resolved by existing protocols,

as will be discussed in Section II.

In this paper, we propose a novel solution, called Localized

Polling protocol (LocP), which consists of two phases: the
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Tags-Filtering phase and the Ordering-and-Reporting phase.

The objective of the first phase is to filter out most of the

unwanted tags with two Bloom Filters respectively construct-

ed on the reader and tags. Then the reader allocates each

candidate tag to an unique time slot for collecting the tag’s

information in the second phase. Note that there is a dilemma

we have to face. That is, singly reducing the time of any

one phase of the two will cause increase in time in another

phase. A sophisticated design is needed to enhance the overall

polling efficiency. Based on limited prior knowledge, LocP
sets a delicate tradeoff between these two phases, so that the

overall execution time is drastically reduced.

Our contributions can be summarized as follows.

• We are the first to formally define the localized polling

problem in large-scale RFID systems, and propose a

novel solution LocP, which consists of a Tags-Filtering

phase and an Ordering-and-Reporting phase to resolve it.

• In the Tags-Filtering phase, when determining the length

of second filter vector, the cardinality of alert tags which

can pass the test of first filter vector is required. We

establish an upper bound for this cardinality, so that a

cardinality estimation round is not needed. Meanwhile,

using this upper bound, a tradeoff between the two

phases of LocP is obtained to enhance the overall polling

efficiency.

• We conduct extensive simulations with different pa-

rameter settings, for the purpose of collecting different

amounts of information. The results demonstrate the

superior efficiency of LocP in almost all the cases,

compared with other feasible protocols.

The rest of the paper is organized as follows. We discuss

the related work in Section II. In Section III, we give out

the system model and formally define the localized polling

problem in a large-scale RFID system. We establish the lower

bound of this problem, and propose the basic Polling Protocol

(BLP) in Section IV. We present detailed description of the

LocP protocol and analysis in Section V. And in Section VI

we conduct extensive simulations to evaluate the proposed

protocols. We conclude this work in Section VII.

II. RELATED WORK

How to process large quantities of tags has been a hot topic

in the RFID community. A school of existing works put their

efforts on designing time efficient anti-collision protocols to

collect tags’ identification (tagIDs). Existing tag identification

protocols can be classified into two categories: aloha-based

protocols [17] and tree-based protocols [18]. In recent years,

several novel identification works exploiting collision [19] [20]

and physical layer information [21][22] are proposed to further

improve the efficiency of identification.

Driven by the need of utilizing the increasingly rich infor-

mation from RFID tags, recent studies focus more on infor-

mation collection, a process to collect not tagIDs but dynamic,

real-time information associated with tags, e.g. sensor readings

from sensor-augmented tags. To this end, S. Chen et al. first

put forward this problem in [13] and tackled the issue of

(a) MIC (b) ETOP

(c) BIC (d) LocP

Fig. 2. Problem difference among MIC, ETOP, BIC and LocP, where blue
circles represent the wanted tags and gray circles represent the unwanted /
uninterested tags

collecting information from all the N tags in the interroga-

tion region, with N known in advance, as shown in Figure

2(a). Their proposal called Multi-hash Information Collection

protocol (MIC) lets the reader schedule tags transmission by

broadcasting hash-selection vectors. Aiming at reducing per-

tag energy consumption, Y. Qiao et al. [14] extend the problem

to collect information of M tags out of total N tags as shown

in Figure 2(b), and propose two Tag Ordering Polling protocol,

TOP and ETOP. TOP and ETOP require both N and M be

known in advance. Both MIC and ETOP are only applicable in

single reader scenarios. To cope with multi-reader scenarios,

H. Yue et al. propose BIC [15][16], which can efficiently

collect information from unknown-subset tags of total N
tags as shown in Figure 2(c). In order to improve the time

efficiency, a Bloom Filter which is distributively constructed

by tags are transmitted to the reader to identify the interrogated

tags from N . BIC does not assume to know anything about

the target tags, and so only can collect information of all the

tags in the communication range.

In order to efficiently collect information from a subset of

wanted tags in a subarea of the whole system, it is essential

to approximatively know which wanted tags are located in the

subarea. While it is not so easy to achieve this objective with

limited priori knowledge of N and M , especially when the

quantity of tags is usually large in large-scale RFID systems.

Existing protocols cannot effectively address the localized

polling problem well. This is indeed an open problem in the

community that has great significance in practice. Our work in

this paper is to release the assumption of prior knowledge of

dN and dM , and realize time efficient information collection

in large-scale RFID systems.

III. PRELIMINARIES

A. System Model

Consider a large-scale RFID system serves in a large phys-

ical space, all the tags can be classified into two categories,

namely wanted tags whose information needs to be collected

and uninterested tags which can be ignored temporarily. We
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assume that all the tagIDs (N ) including all the wanted tagIDs

(M ) in the whole system have been obtained and stored in the

backend database in advance [15]. Because of the dynamic,

these two kinds of tags may be mixed together and distributed

across the whole space, and it is impossible to get a description

of the tags’ distribution. On the other hand, due to the limited

communication range, a reader monitors only a limited subarea

of the whole system. Hence, in any subarea, the reader does

not have any prior knowledge about the interrogated tags (both

dN and dM ) in the communication range.

The communication model between the reader and tags is

Reader-Talks-First and bit- or time-slotted, which follows the

EPCglobal C1G2 standard [23] in general. The reader ini-

tializes the communication by sending out a request message

and several parameters, such as frame size, number of hash

functions, random seeds, etc. Once receiving a request, each

tag selects one or several slots to transmit its data in the

following bit- or time-slotted frame, according to the results

of hash functions. The clocks of tags are synchronized by the

reader’s signal.

B. Problem Definition

Assuming there are total n tags in the whole RFID system,

denoted by N , i.e. n = |N |. Let M be the wanted subset of

N , which needs to collect information in the whole system,

and m = |M |. So we have M ⊆ N and m ≤ n. As

aforementioned, both N , M and n, m can be got easily

according to the backend database. However, when coming to

a particular subarea of the whole system, neither tags in the

reader’s communication range (dN ) nor the wanted tags whose

information needs to be collected in current subarea (dM )

are unknown. Similarly, we let dn = |dN |, dm = |dM | and

dM ⊆ dN . So there must be dM ⊆ dN ⊆ N , dM ⊆ M ⊆ N ,

dm ≤ dn ≤ n and dm ≤ m ≤ n.

Our objective is to design a time efficient localized polling

protocol to collect information from dm wanted tags (dM ) out

of dn interrogated tags (dN ) in a subarea of the whole system,

where both dM and dN are unknown, but all the tags (N ) and

all the wanted tags (M ) in the whole system are known in

advance. Note that the information collection here means not

only getting the set of information simply, but also mapping all

the information to corresponding tags, so that we can associate

the information with corresponding items quickly.

The time efficiency performance, i.e. the minimization of

protocol execution time is the most primitive objective in this

paper. There are two reasons as follows: First, for a large-

scale RFID system, the number of RFID tags may be come to

millions scale, such as 2 millions tags in a large supermarket.

So the polling protocol should guarantee both efficiency and

scalability. Second, the communication rate between reader

and tags is low, so the communication overhead between the

reader and tags, namely the overall protocol execution time

should be minimized.

IV. BASELINE SOLUTIONS

A. Lower Bound

Intuitively, the lower bound to collect information of dm
wanted tags in a subarea is dm × tinf , where tinf represents

the time for a tag to transmit its information. However, this

bound can never be achieved because of two reasons. First,

the reader does not know dM or dm at all. Second, RFID

network is a typically centralized network, tags cannot hear

each other’s transmission, so there must be collisions at the

reader side. To avoid these collisions, the only method is to

schedule the tags’ transmission at the reader side, and let

the reader broadcast the scheduling result to all the tags. So

the overall execution time of localized polling must be larger

than the lower bound. Nevertheless, it offers a benchmark to

evaluate the performance of our protocols.

B. Basic Localized Polling Protocol (BLP)

The straightforward way to resolve the localized polling

problem is to let the reader broadcast the tagIDs in dM one

by one. After it broadcasts a tagID, it waits for a time-slot

of tinf to receive the information. When receiving a tagID,

each tag compares the received tagID with its own tagID.

If it is matched, the tag transmits its information and does

not participate in the rest of protocol again. Otherwise, it

keeps silent. However, the reader does not have any priori

knowledge about dM . A feasible inferior scheme is to let the

reader broadcast the tagIDs in M one by one rather than dM .

In this way, the reader totally needs to broadcast m tagIDs.

No matter whether the request tag is in the communication

range, the reader has to waiting for a time-slot to receive

information. So the overall time cost is m × (ttag + tinf ).
This can be time-consuming, especially when m is large but

dm is small. We regard it as a Basic Localized Polling protocol

(BLP), a much more efficient polling protocol should take less

time than BLP.

V. EFFICIENT LOCALIZED POLLING PROTOCOL DESIGN

In this section, we present the detail of LocP, which employs

Bloom Filters twice to filter out most uninterested tags and

allocation vectors to schedule the candidate tags’ information

transmission in a proper order.

A. Protocol Overview

When coming to a particular subarea, the reader does not

have any prior knowledge about the interrogated tags (dN ) and

the wanted tags (dM ) which need to be collected information.

Fortunately, the reader can get all the tags (N ) and all the

wanted tags (M ) from the backend database easily. It is time-

consuming to get the accurate dM by identifying tags in dN
one by one, due to the inefficiency of identification protocols.

Even the BLP which broadcasts the tagIDs in M one by

one is not a good choice as verified later. Similar to existing

approaches [13][14][15], to reduce the overall execution time,

we tend to let the reader schedule the tags’ transmission order

after filtering out most uninterested tags. The whole procedure

of LocP is showed in Figure 3.
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Fig. 3. The overview of our LocP

LocP consists of two phase, a Tags-Filtering phase and

an Ordering-and-Reporting phase. The purpose of former

phase is to filter out most uninterested tags and reduce the

number of candidate tags to a much smaller scale with two

Bloom Filters which are constructed at reader and tags side

respectively. According to the property of Bloom Filter, we can

guarantee that all the wanted tags in dM must be in the final

candidate tags. In the second ordering and reporting phase, the

reader allocates each candidate tag to an unique time-slot by

broadcasting allocation vectors, information of candidate tags

is collected round by round until all the information has been

collected.

Obviously, the overall execution time of LocP is the sum-

mation of Tags-Filtering phase and Ordering-and-Reporting

phase. And the procedure of first phase is quite similar with

CATS [4] and ITSP [24], which aim at minimizing the length

of filter with the guarantee of tolerable false positive. If we

directly employ these tag search protocols in the first phase,

the time of first phase can be minimized, but there will be more

candidate tags and thus longer execution time in the second

phase, so the overall execution time does not necessarily be

minimized. On the other hand, increasing the length of filter

can reversely decrease the false positive probability [25], and

then reduce the number of candidate tags. While a continual

increasing may has insignificant contribution in reducing the

overall execution time of LocP when the length has been large

enough. Hence, there is a dilemma as showed in Table I.

Therefore, a time tradeoff between the two phase of LocP
is needed for the purpose of reducing the overall execution

time. Next, we first show the basic LocP without optimization

(i.e. calculate the length of two filters with known m and

n respectively). Then we try to establish an upper bound of

the cardinality of tags which can pass the test of first filter

BF (M). Then we can calculate the length of second filter in

TABLE I
THE DILEMMA IN LOCALIZED POLLING

First Phase Second Phase Execution Timefilter time candidate tags time
shorter shorter more longer longer
longer longer less shorter longer

the Tags-Filtering phase with this upper bounder, rather than

the large n in LocP with optimization. In such a way, not only

the cardinality estimation round before the construction of the

second filter can be canceled, but also can improve the polling

efficiency by significantly reducing the length of second filter,

even if this may lead to a slightly increase of the number of

candidate tags in the Ordering-and-Reporting phase.

B. Tags Filtering Phase

Since the wanted tags in dM which need to transmit

information in current subarea must belong to M , i.e. there

must be dM ⊆ M , we could use the Bloom Filter BF (M)
which is constructed with the known M to filter out the most

tags which do not belong to M , and can guarantee all the

wanted tags dM are included.

To get BF (M), the reader maps all the wanted tags

in M into an L1 bits vector using K1 independent hash

functions with random seeds S1. Then the reader broadcasts

the BF (M), together with L1, K1 and S1 to all the tags in

dN .

When receiving BF (M), L1, K1 and S1, each tag in dN
uses the same K1 hash functions, the random seeds S1 and

their own tagIDs to check whether the all K1 bits in BF (M)
are ’1’s. If any bit of the K1 bits is ’0’, the tag cannot pass the

test of BF (M), it means that this tag must not be an element

of M . Hence, it also must not be an element of dM because

dM ⊆ M . So it should keep silent and does not participate

in the rest of protocol. Otherwise, if all the K1 bits are ’1’s,

the tag passes the test of BF (M), and keeps alert to continue

participate in the following steps.

Because dM ⊆ M , according to the property of Bloom

Filter, all the tags in dM can pass the test of BF (M). On the

other hand, there may be false positives in Bloom Filter, so a

tag in dN but not in dM may also pass the test. In a word,

the tags which can pass the test of BF (M) include all the

tags in dM and the tags which can also pass the test in dN
but not in dM , we denote all these tags as d′N . So we have

dM ⊆ d′N ⊆ dN .

According to [25], given the number of all wanted tags m
and the false positive probability p, the optimal length L1 of

Bloom Filter BF (M) and the number of hash functions K1

can be calculated as

L1 = −m× ln p

(ln 2)2
(1)

K1 =
L1

m
ln 2. (2)

But there is still a problem, as the tags in d′N merely know

they may be a member of M locally, the reader still know
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nothing about the d′N . Obviously, it is not a good idea to

collect all the tagIDs with an identification process. So we

employ the Bloom Filter again, the only difference is that

previous BF (M) is constructed at the reader side, while the

new one is distributively constructed by the tags in d′N .

In order to get the information of d′N , the reader first

constructs an L2 bits vector BF (d′N ), all the bits are initialized

to be ’0’s. Then the reader broadcasts a request message to

start a new frame, which contains three parameters L2, K2,

and S2. L2 is the length of the Bloom Filter, K2 is the number

of hash functions, which can be calculated using the known n
as [15] did. So,

L2 = −n× ln p

(ln 2)2
, (3)

K2 is the number of hash functions can be calculated as

K2 =
L2

n
ln 2. (4)

And S2 is a set of random seeds used with the hash functions.

Once receiving the request message, each tag in d′N also

constructs a L2 length vector which is also initialized to ’0’s.

Each tag calculates K2 hash values with random seeds in S2

and its own tagID using K2 hash functions independently. And

assigns the corresponding K2 bits in the vector to ’1’s. After

having generated the vectors, all the tags in d′N start to transmit

their vector simultaneously. If the binary is ’0’, the tag does

not transmit anything, and if it is a ’1’, the tag transmits a

short signal in the physical layer. The reader only needs to

sense the physical channel, in the ith bit-slot, if the channel is

idle, it means that there are no tag transmit in this bit-slot, the

reader sets the ith bit to ’0’ in the BF (d′N ). On the contrary, if

the channel is busy, which means more than one tags transmit

signals, the reader sets the ith bit to ’1’. After L2 bit-slots,

the reader can get a new Bloom Filter vector BF (d′N ).
Then the reader uses the BF (d′N ) to test all the tags in

N . As the reader knows all the parameters including L2, K2

and S2, for each tag in N , the reader calculates K2 hash

values as the tags do. If any bit of the K2 bits is ’0’, the tag

cannot pass the test of BF (d′N ). Otherwise, if all the bits are

’1’s, this tag passes the test. We take all the tags which can

pass the test of BF (d′N ) as the candidate tags, denoted as

N ′. According to property of Bloom Filter, we have dM ⊆
d′N ⊆ N ′. Combining with dM ⊆ M , we can get that dM ⊆
(M ∩N ′).

C. Ordering and Reporting Phase

So far, the reader has obtained the candidate tags N ′, we

can start to collect information from them. To avoid collisions,

the whole process consists of several rounds. Algorithm 1

regulates the behavior of the reader in this phase.

In each round, we let U be the subset wanted tags which

have not completed their information transmission, and ini-

tially U = M ∩ N ′. And let CN be the subset tags of N ′

which are allocated to current round, CU be the wanted tags

allocated to this round. The reader first maps all the tags in

N ′ to an allocation vector V whose length is set to |N ′|. If

Algorithm 1 Ordering and Reporting Algorithm for reader

1: R ← φ
2: U ← M ∩N ′

3: while |U | > 0
4: Generate V and get CN
5: CU ← M ∩ CN
6: Broadcast V and the random seed s
7: while |CU | > 0
8: if there is a response in a time-slot then
9: t ← Identification the corresponding tag in CN
10: Save the information

11: Delete t from U and CU
12: Add t to R
13: end if
14: end while
15: Send out a command to terminate this round

16: Update N ′ ← N ′ − CN
17: U ← M ∩N ′

18:end while

multiple tags allocate to the same bit, it means that these tags

will cause collisions, so the reader keeps the corresponding

bit to ’0’, and let these tags keep silent in this round, and

participate in the next rounds. On the contrary, if only one tag

hashes to a particular bit, which means this tag is allowed to

transmit its information to the reader in this round, so set the

bit to ’1’ and adds it from CN , particularly, if it also is a

member of M , then add it to CU .

After getting V , the reader then sends out a request message

together with the allocation vector V and a random seed s,

and then waits for the response in the next time-slotted frame.

If the length of V exceeds the length of tagID, the reader can

divide V into several segments and transmit the segments one

by one in a time-slot of tid to all the tags.

When receiving the request message, each tag calculates the

position of its indicator bit in V using the random seeds s and

the same hash function exploited by the reader. If the bit is

’0’, the tag realizes that it should not participate in this round

to avoid collisions. While if the bit is ’1’, the tag realizes

that it is the right round it should transmit its information.

To know which time-slot to respond, the tag examines how

many ’1’s preceding to its own indicate bit. If there are total

i ’1’s preceding its indicate bit in V , the tag will reporting its

information in (i+ 1)th time-slot of current round.

Once receiving information in any time-slot, the reader can

identify the corresponding tag according to the transmission

slot quickly, because the reader knows the expected transmis-

sion order according to V . After saving the information, we

can delete it from U and CU , and add it to R, which turns out

to be dM at the end of LocP. When CU turns out to be empty,

which means all the wanted tags allocated to this round have

completed their information transmission, the reader sends

out a command to terminate this round. The process repeat

until the U is empty, which means all the wanted tags have

completed their information transmission. In such way, we not
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only can get all the information of dm wanted tags in current

subarea, but also can get the dM efficiently.

D. Parameters Optimization

With a given false positive probability p, the parameters of

L1 and K1 have been optimized according to Equation 1 and

2, because the reader knows the accurate value of m. While the

L2 and K2 calculated with a large n according to Equation

3 and 4, have the gap to be improved. As aforementioned,

although a longer L2 can reduce the number of candidate tags

and thus the execution time of the second phase of LocP, while

it does not necessarily reduce the overall execution time of

LocP. To reduce the overall execution time, a feasible method

is letting the reader perform a cardinality estimation for d′N ,

while this may also be time-consuming. Instead of a time-

consuming cardinality estimation round, we try to establish

an upper bound of the cardinality of d′N (denoted as n̂) with

the known BF (M).
In order to illustrate the principles, we assume that there

is a rough estimation round, which is unneeded actually. The

purpose of the estimation round is to get a rough estimation

about n̂ with a new Bloom Filter vector BF . And the

construction procedures of BF is same as BF (d′N ), the length

of BF is set to w = L1, the number of hash functions is

k = K1.

THEOREM 1. In BF , which is constructed by all the tags in
N using w and k, the probability arbitrary ith bit to be ’0’ is

Pr{BF (i) = 0|i ∈ [1, w]} = e−λ, (5)

and correspondingly,

Pr{BF (i) = 1|i ∈ [1, w]} = 1− e−λ, (6)

where λ = kn̂
w .

Proof. Assuming that all the hash functions used by the n̂ tags

are following a uniform distribution, so the probability a hash

function H of a tag selects the ith bit-slot is

Pr{H(·) = i|i ∈ [1, w]} =
1

w
.

Then, the probability of arbitrary bit i in BF to be ’0’ is

Pr{BF (i) = 0} = (1− 1

w
)kn̂,

which means all the kn̂ hash functions of n̂ tags have not

selected the ith bit-slot. Using the approximation of

lim
x→∞ (1− 1

x
)x = e−1,

the above equation can be simplified as

Pr{BF (i) = 0} = (1− 1

w
)kn̂ ≈ e−

kn̂
w = e−λ.

Correspondingly, the probability BF (i) to be ’1’ which means

more than one tag response in the ith bit-slot is

Pr{BF (i) = 1} = 1− Pr{BF (i) = 0} ≈ 1− e−λ.
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Fig. 4. The comparison between Estimation result and Actual cardinality in
d′N

THEOREM 2. Let ρ = 1
w

∑w
n=1 X(i) be the ratio of ’1’s in the

vector BF , where X(i) denotes the ith observation in BF ,
then the cardinality of d′N can be calculated as

n̂ = −w ln (1− ρ)

k
. (7)

Proof. We define X as a random variable which takes value

0 with probability e−λ and value 1 with probability 1− e−λ,

namely,

Pr{X = 0} ≈ e−λ, P r{X = 1} ≈ 1− e−λ.

Obviously, the random variable X follows the Bernoulli dis-

tribution. Therefore, the expectation of X is as follows

E(X) = 1− e−λ.

Besides, assuming that the trails of Xi(1 ≤ i ≤ w) are i.i.d,

then we have E(ρ) = E(X). According to the law of large

numbers, when w is large enough we have

ρ = E(ρ) = E(X) = 1− e−λ.

So we can estimate λ as follows

λ = − ln (1− ρ).

So that, the observation of ρ in BF can be used to estimate

the tag cardinality as follows

n̂ = −w ln (1− ρ)

k
.

Obviously, Equation 7 is a monotonically increasing function

with ρ.

THEOREM 3. Let BF (M) be the Bloom Filter vector con-
structed with M , and BF be the Bloom Filter vector con-
structed by the tags in d′N which can pass the test of BF (M)
using the same parameters as BF (M)’s, then ρ(BF ) ≤
ρ(BF (M)).

Proof. This theorem can be proved using contradiction easily.
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THEOREM 4. Let n̂(BF ) denote the cardinality estimated
using the received BF , which is a projection of the actual
cardinality of d′N , and n̂(BF (M)) denotes the cardinality es-
timated using the known BF (M), then n̂(BF ) ≤ n̂(BF (M)).

Proof. This theorem can be proved according to Equation 7

and Theorem 3.

In other words, we have n̂ ≈ n̂(BF ) ≤ n̂(BF (M)). We

then conduct a simple simulation to verify the relation between

the actual cardinality of d′N , n̂(BF ) and n̂(BF (M)) with

eight different settings, Figure 4 plots two of them. From

Figure 4, we can get that the estimation results with BF could

reflect the actual cardinality well, and the estimation results

with BF (M) are always larger than both the actual number

of tags and the estimation with BF in the all cases.

Based on the above analysis, for the purpose of reducing

the overall execution time, a time tradeoff between the two

phases of LocP is introduced, we use the rough estimation of

n̂(BF (M)) to calculate the length of BF (d′N ) and the number

of hash functions, rather than n̂(BF ), even if n̂(BF ) is much

closer to the actual n̂. Thus, the L2 and K2 of BF (d′N ) can

be calculated as follows,

L2 = − n̂(BF (M))× ln p

(ln 2)2
, (8)

and

K2 =
L2

n̂(BF (M))
ln 2. (9)

In this way, we can not only cut down the communication

overhead to estimate the cardinality of d′N , but also reduce the

actual false positive probability (denoted as p′ and p′ ≤ p) of

BF (d′N ) to a much smaller level by slightly increasing the

length of Bloom Filter vector L2.

E. Time Analysis

The overall execution time of LocP is the summation of

the time for tags-filtering and ordering-and-reporting. For the

purpose of clarity, we ignore the transmission cost of the

configuration parameters including L1, K1, S1, L2, K2 , S2 in

the first phase and s in the second phase, which normally take

several bytes to encode. So execution time mainly consists of

four parts, i.e. the time for the reader to broadcast BF (M)
(denoted by T1) and the time for the tags to construct BF (d′N )
(denoted by T2) in the first phase, the time for the reader to

broadcast the allocation vectors (denoted by T3) and the time

for the candidate tags to transmit their information (denoted

by T4) in the second phase.

According to Equation 1, T1 = −m×ln p
(ln 2)2 × TbitR→T =

− m×ln p
96×(ln 2)2 × tid, where TbitR→T is the time for the reader

to transmit a bit, and tid is the time for the reader to transmit

a tagID. For T2, as the expected value of n̂(BF (M)) is

m, so the expected value of T2 = −m×ln p
(ln 2)2 × TbitT→R =

− m×ln p
32×(ln 2)2 × tinf32, where TbitT→R is the time for the tag

to transmit a bit, and tinf32 is the length of a time-slot which

allows a tag to transmit a 32 bits information.

The expected cardinality of the set d′N can be calculated as

dm + p× (dn − dm).

So the expected cardinality of N ′ (denoted by E(N ′)) is

E(N ′) = dm+p×(dn−dm)+p′×[n−(dm+p×(dn−dm))].

As p′ ≤ p, so the upper bound of E(N ′) can be calculated as

E(N ′) =dm + p× (dn − dm)

+ p′ × [n− (dm + p× (dn − dm))]

≤dm + p× (dn − dm)

+ p× [n− (dm + p× (dn − dm))]

=(1− p)2 × dm + p(1− p)× dn + p× n.

According to [14], the expected number of indicator bits in

the all allocation vectors for each tag is e. Thus the expected

time for the reader to broadcast all the allocation vector

T3 = e×E(N ′)
96 × tid. Since each tag in N ′ is allocated an

unique time-slot to report its information to the reader, the total

number of time slots is E(N ′). Then, T4 = E(N ′)× tinf32.

Based on the above analysis, the expected execution time

of LocP, denoted as T , can be calculated as follows:

T =− m× ln p

96× (ln 2)2
× tid

− m× ln p

32× (ln 2)2
× tinf32

+
e× E(N ′)

96
× tid

+ E(N ′)× tinf32.

When n = 10, 000, m = 8, 000, dn = 3, 000, dm = 1, 000,

and tid = 3, 927μs, tinf32 = 604μs according to Section

VI, so the lower bound of execution time is 0.604s, and

the execution time of BLP is 33.98s. If the false positive

probability of Bloom Filter p is set to 0.05, the upper bound

of E(N ′) is 6,045, so the upper bound of LoP ’s execution

time is 9.6017s, while the actual execution time as showed in

Section VI is only 3.79s. This demonstrates a high efficiency

of the proposed LocP.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of LocP. We

take the LocP without optimization as LocP(B), the LocP with

optimization as LocP(O). As BIC may be available in the worst

case when treats all the interrogated tags as wanted tags which

have information to transmit. So we compare the execution

time of LocP(B), LocP(O) with BLP, BIC (worst case) as

BIC(W) and the Lower Bound as LB in this paper.

A. Simulation Setting

The simulation setting is following the C1G2 standard [23].

Any two consecutive transmission from the reader to tags

or vice versa are separated by a waiting time of 302μs, i.e.

tver = 302μs. The transmission rate from the reader to tags

is 26.5Kb/s, it takes 37.76μs to transmit 1 bit. If the length

of tagID is 96 bits, it totally takes 3,927μs for the reader to
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Fig. 5. Performance Comparison under different N
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Fig. 6. Performance Comparison under different M

broadcast a tagID, i.e., tid = 3, 927μs. The rate from a tag to

the reader is 53Kb/s, it takes 18.88μs for a tag to transmit 1 bit,

tinf1 ≈ 18.88μs. So the time to transmit 32 bits information

tinf32 ≈ 604μs. The false positive probability of Bloom Filter

is set to 0.05 in all simulations, unless otherwise specified.

And for each simulation, we set two different scenarios for

the purpose of transmitting 1 bit and 32 bits information

respectively.

B. Performance comparison

1) Performance comparison under Different N : We first

investigate the performance of LocP under different number of

N . We set the first scenario with the parameters m = 5, 000,

dn = 5, 000 and dm = 2, 000. The second scenario with a

set of different parameters, m = 8, 000, dn = 3, 000 and

dm = 1, 000. In both scenarios, we let the n vary from 10,000

to 200,000. Figure 5 plots the performance of all the protocols

in the first scenario. In Figure 5(a), because both m and dm
are fixed, so the execution times of BLP and the LB also keep

unchanged. And the execution times of BIC(W) and LocP(B)
increase synchronously with the n increase, and even exceed

the time of BLP in the most cases. However, the execution

times of LocP(O) are always within 13 seconds, and almost

do not change with different input of n. The same patten also

appears in the second scenario as shown in Figure 5(b), when

the information length is 32 bits.

2) Performance comparison under Different M : Then we

compare the performance of all the protocols with different

number of all wanted tags M . The parameters of the two

scenario are set to n = 100, 000, dn = 5, 000 dm = 2, 000
and n = 100, 000, dn = 3, 000 dm = 1, 000 respectively,

and let the value of m vary from 10, 000 to 90, 000. The

simulation results are shown in Figure 6. As the increase

of m, both the execution time of LocP(B) and LocP(O)
increase. And sometimes, the execution times of LocP(B) and

LocP(O) are even slightly greater than BIC(W)’s. However,

the time difference is little. The reason is both the length of

BF (M) and BF (d′N ) have the relationship with m, it is time-

consuming to transmit these two vectors when m is large while

both dn and dm keep unchanged.

3) Performance comparison under Different dN : We then

investigate the performance of LocP under different number

of interrogated tags dN at current subarea. Figure 7 plots

the simulation results of two scenarios, where n = 100, 000,

m = 5, 000, dm = 2, 000 and n = 100, 000, m = 8, 000,

dm = 1, 000 respectively. The BIC(W) performs poorly, and

the execution times even exceed BLP’s in most cases. While

the LocP(B), especially the LocP(O) works well in all the

cases, and the growth of execution time is fairly flat.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

8



3 6 9
0

10

20

30

40

50

n=100000, m=5000 and d
m

=2000

d
n
 (×104)

Ex
ec

ut
io

n 
Ti

m
e (

se
c)

 

 

BLP
BIC (W)
LocP (B)
LocP (O)
LB

(a) Information collection with 1 bit information

1 3 5 7 9
0

40

80

120

n=100000, m=8000 and d
m

=1000

d
n
 (×104)

Ex
ec

ut
io

n 
Ti

m
e (

se
c)

 

 

BLP
BIC (W)
LocP (B)
LocP (O)
LB

(b) Information collection with 32 bits information

Fig. 7. Performance Comparison under different dN

500 1500 2500 3500 4500
0

10

20

30

40

50

n=100000, m=5000 and d
n
=5000

d
m

Ex
ec

ut
io

n 
Ti

m
e (

se
c)

 

 

BLP
BIC (W)
LocP (B)
LocP (O)
LB

(a) Information collection with 1 bit information

100 300 500 700 900
0

20

40

60

80

n=100000, m=8000 and d
n
=3000

d
m

Ex
ec

ut
io

n 
Ti

m
e (

se
c)

 

 

BLP
BIC (W)
LocP (B)
LocP (O)
LB

(b) Information collection with 32 bits information

Fig. 8. Performance comparison under different dM

4) Performance comparison under Different dM : Further-

more, we feed LocP with different number of wanted tags

dM , and fix n = 100, 000, m = 5, 000, dn = 5, 000 and

n = 100, 000, m = 8, 000, dn = 3, 000 in the two scenario

respectively. As showed in Figure 8(a), when the number of

wanted tags dM is 4,500, the execution time of BIC(W) is

202.32s, and the time of LocP(B) is 203.38s which is slightly

larger than BIC(W). The execution time of LocP(O) is 14.78s,

and the LB is about 1.44s. When the dm is smaller, LocP(O)
gets a better performance as showed in Figure 8(b).

C. Protocol Insights

The above results demonstrate a high efficiency of the

proposed LocP. In the next, we investigate in details the impact

of N , M , dN and dM . We adopt one of previous simulation

settings to obtain the number of tags d′N and N ′ both in

LocP(B) and LocP(O), and the length of two Bloom Filter

vectors of BF (M) and BF (d′N ).
Figure 9 compares the number of tags d′N which can pass

the test of BF (M), and the number of candidate tags N ′

which can pass the test of BF (d′N ) in LocP(B) and LocP(O).
As showed, the number of d′N and N ′ in LocP(B) fit well with

little deviation in all the cases. The reason is we calculate the

length of BF (d′N ) with n in LocP(B), so the false positive

probability is small. With a much smaller parameter input in

LocP(O), the length of BF (d′N ) will also be smaller, and

there will be more tags in candidate tags N ′ than LocP(B).
However, the gap of N ′ between LocP(B) and LocP(O) is

small as showed in Figure 9. When coming to the length of

Bloom Filter vector as showed in Figure 10, the length of

BF (d′N ) in LocP(B) is always much larger than the one in

LocP(O).
Taken together, we can get that comparing with LocP(B),

the LocP(O) improves the time efficiency performance by

significantly reducing the length of response Bloom Filter

vector BF (d′N ), which may lead to a slightly increase of the

number of candidate tags N ′.

VII. CONCLUSIONS

This paper presents LocP, an efficient localized polling

protocol to collect information from a wanted subset of

interrogated tags in large-scale RFID systems. LocP first

uses Bloom Filter twice to significantly reduce the number

of candidate tags in the Tags-Filtering phase. Then in the

Ordering-and-Reporting phase, LocP let the reader schedule

tags’ transmission by broadcasting allocation vectors round

by round until all the information has been collected. The

extensive simulation shows that LocP is highly efficient in

terms of both time efficiency and transmission overhead.
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Fig. 9. Comparison of the number of tags under different parameters settings in 32 bits information collection
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