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ABSTRACT
With parallel decoding for backscatter communication, tags are
allowed to transmit concurrently and more efficiently. Existing par-
allel decoding mechanisms, however, assume that signals of the
tags are highly stable, and hence may not perform optimally in
the naturally dynamic backscatter systems. This paper introduces
FlipTracer, a practical system that achieves highly reliable parallel
decoding even in hostile channel conditions. FlipTracer is designed
with a key insight: although the collided signal is time-varying
and irregular, transitions between signals’ combined states follow
highly stable probabilities, which offers important clues for identi-
fying the collided signals, and provides us with an opportunity to
decode the collided signals without relying on stable signals. Mo-
tivated by this observation, we propose a graphical model, called
one-flip-graph (OFG), to capture the transition pattern of collided
signals, and design a reliable approach to construct the OFG in a
manner robust to the diversity in backscatter systems. Then Flip-
Tracer can resolve the collided signals by tracking the OFG. We
have implemented FlipTracer and evaluated its performance with
extensive experiments across a wide variety of scenarios. Our ex-
perimental results have shown that FlipTracer achieves a maximum
aggregated throughput that approaches 2 Mbps, which is 6× higher
than the state-of-the-art.
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1 INTRODUCTION
Backscatter provides the benefits of energy harvesting and low-
power communication, making it attractive to a broad class of
applications [16, 17, 20–23]. These applications, such as warehouse
inventories, object tracking, and industry surveillance, involve large
volumes of data carried by a large number of deployed tags. There-
fore, how to fully utilize the channels and enhance network through-
put, turns to be a crucial problem in the relevant area.

One potential solution to provide high throughput is to paral-
lelize multiple backscatter transmissions. This however leads to an
important challenge in parallel transmission: how collided signals
can be decoded. Existing work proposed to use network coding, but
it incurs computational overhead on the tags, which may not be
realistic. More recent works [6, 7, 13] propose to shift the workload
from tags to backscatter readers. Specifically, the reader can separate
the interleaved signal edges from different tags using its capability
to sample at a much higher rate than a tag. Then, according to the
signals’ locations in the In-phase and Quadrature (IQ) domain, the
reader can decode the transmitted signals of tags.

Unfortunately, in order to distinguish signals from different tags,
the above parallel decoding proposals rely on stable and distinct
features of signals in the time and/or the IQ domain. On the con-
trary, in our real-world experiments, we have observed that signal
features are likely to be highly dynamic and unpredictable. As a
result, applying the existing proposals in practice usually results
in unacceptably high decoding error rates, which in turn affects
transmission efficiency and network throughput negatively.

It is therefore highly desirable to design practical protocols for
parallel backscatter transmissions with hostile channel conditions.
In our experiments, we have made a surprising observation. Despite
the lack of stable features in the time and IQ domains, transitions
between the combined states of these signals follow highly stable
probabilities. To be more specific, due to the intrinsic asynchro-
nism of signals from different tags, a higher transition probability
between two combined states indicates higher similarity between
their corresponding signals. Tracking these transition probabilities
may help to distinguish signals’ states, offering plenty of informa-
tion for parallel decoding.

Towards the design of a practically usable solution, we still need
to address the following challenges. First, factors like noise and
frequency drifts of antennas may negatively affect signals’ states,
which need to be identified in a consistently correct fashion. Second,
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it is challenging to capture the stable transition probabilities in
unstable signals, and to design a new model to represent these
probabilities. Last but not the least, signal processing and counting
are often error-prone, which must be taken into account when
designing a practical decoding scheme.

In order to address the above challenges, we in this paper propose
FlipTracer, a practical system that uses the observed transition
probabilities between signals’ combined states as input, and based
on this information alone, achieves highly reliable parallel decoding.
To realize this vision, we construct a graphical model, called one-
flip-graph (OFG), to capture the signals’ transition pattern across the
combined states, and provides fine-grained information about the
similarity between signals’ combined states. Based on the one-flip-
graph, FliperTracer can decode the collided signal without relying
on the stability of signal features, and is highly efficient and robust
in awide variety of practical scenarios. To the best of our knowledge,
FlipTracer is the first practical solution that achieves highly reliable
parallel decoding in practical scenarios.

In summary, our key contributions are two-fold:

• With a new graphical model (OFG) that translates the tran-
sition probability between combined states to the similarity
between their corresponding signals, we are able to guaran-
tee high efficiency under parallel decoding in hostile channel
conditions.

• In practice, we have designed and implemented FlipTracer, a
practical system that integrates twomain techniques: reliable
OFG constructing based on the trajectory of the signals in
the IQ domain, and collided signal identification by tracking
the constructed OFG. Our experimental results have shown
that its achievable aggregate throughput approaches 2Mbps,
which is 6× higher than the state-of-the-art [13].

In the rest of the paper, we discuss related work in Section 2,
and describe the motivation of our design in Section 3. The design
details of FlipTracer are introduced in Sections 5∼7. Sections 8 and 9
evaluate the performance analytically and empirically. We conclude
the paper in Section 10.

2 RELATEDWORK
There have been many efforts made to enable multiple accesses in
backscatter communication. The existing commodity backscatter
systems typically adopt the slotted aloha scheme [1]. This scheme
however incurs high coordination overhead and low throughput,
especially when collision occurs. Although some recent methods
[2] can deal with the collision problem, the throughput is bounded
at one packet per time slot. To further improve the throughput,
recent works try to parallelize multiple backscatter transmissions:

Using coding mechanisms. A direct method for parallel trans-
mission is to exploit coding mechanisms [5, 9, 11, 12, 14] on tags
to facilitate collision recovery. In these methods, each tag exploits
an orthogonal code for encoding data where each bit is converted
to a long PN sequence. Although such methods enable concurrent
transmission, they incur unaffordable overhead on the tag side.

To solve this problem, some recent works propose to decode
concurrent transmissions by extending the decoding capacity at
the reader-side [3, 4, 6, 7, 10, 13, 18, 19]. Specifically, in these works,

(a)

(b)

Figure 1: Signals in time domain: (a) a single tag. (b) two tags.

the reader decode the collided signals according to the signals’
features in time and/or IQ domain:

Using tags’ IQ domain features. Theoretically the channel
coefficients of the colliding tags are stable and collided signal is
the linear combination of these tags’ channel coefficients. Thus the
collided signals with specific combined states will exhibit specific
positions on the IQ plane. Under this assumption, designs like
[7, 18, 19] propose to identify the collided signals based on their IQ
domain positions.

Using tags’ time domain features.An alternativemethod that
has been considered in prior works is separation in the time domain
[7, 13]. They assume that the signal edges of the same tag will come
at a relatively fixed interval (i.e., stable bit duration). Thus they
can separate the signal edges of different tags in the time domain,
and connect with the signal clusters in the IQ domain for collision
decoding. For example, LF-Backscatter [7] applies folding to extract
the periodical signal edges of individual tags. BiGroup [13] achieves
this using the linear regression model.

Although the above methods enable parallel decoding, our study
reveals that they cannot provide satisfactory performance in practi-
cal backscatter systems. The reason is that they have to rely on the
stability of the tags’ signals. In practice, however, signals from the
tags never exhibit stable patterns. According to our experiment, the
dynamics induced by the low-cost hardware components and the
ambient environment severely undermines signal features in both
the time and the IQ domains. Hence, applying the above methods
in practice generally results in high decoding error rates, which in
turn hurts the transmission efficiency and throughput.

Different from all the above works, FlipTracer neither requires
modifications on the tag side, nor assumes stable features of the
collided signals. FlipTracer exploits the transition pattern among
the signals which is fairly stable and robust against the dynamics in
both the time and the IQ domains. Our experimental results show
that FlipTracer is able to achieve highly reliable parallel decoding
under various conditions.

3 BACKGROUND AND MOTIVATION
3.1 Preliminary
In backscatter systems, the tag encodes its data by reflecting or
absorbing the carrier waves, resulting in two possible states: “High
(H)" and “Low (L)", which can be decoded using a magnitude thresh-
old (as shown in Figure 1(a)). When N tags transmit concurrently,
their signals add up at the reader, and the collided signal will have
2N combined states, forming 2N signal levels. One combined state
is theoretically a linear combination of all the N tags’ signal state,
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Figure 2: Symbol clusters: (a) a 2-tag collision example. (b) collided signal from two sequential packets under dynamic working condition. (c)
2-tag collision with non-linear dependency. (d) overlapped clusters.
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Figure 3: CDF of the measured drifting rate of 20 tags.

denoted as S = [S1, S2, ..., SN ], where Si = Hi or Li indicates the
state of tag i . Figure 1(b) shows the example of a 2-tag collision
case. We find that we cannot determine the threshold to detect the
states of either individual tag.

We further show the IQ signals received from 2 tags in Figure
2(a). We find that the symbols form four separable clusters, each
represents a combined state of the tags. Therefore, if we can identify
the combined state of each cluster, we can know whether an indi-
vidual tag i’s transmission state Si = Hi or Li for each i = 1, ...,N .
Then the collision is decoded. However, this is a challenging task
due to the dynamics in the backscatter signals.

3.2 Signal Dynamics
The challenges for collision decoding in practical backscatter sys-
tems mainly lie in the highly dynamic signal of tags, in both the IQ
and the time domains.

Dynamics in the IQdomain.Theoretically, the combined states
of the clusters can be identified based on their locations in the IQ
domain if the channel coefficients of tags are stable and are lin-
early combined when collision occurs. However, we observe both
dynamic and non-linear depended signals in the IQ domain:

1) The positions of the clusters in the IQ plane will change with the
dynamic environment. Figure2(b) shows the IQ symbols collected
from two sequential packets (0.2s apart) when an obstacle moves
around the reader. We can observe great difference between the po-
sitions of the two packets’ symbol clusters. In this case, the decoding
methods [19] which rely on channel coefficients have to conduct
channel measurements frequently to deal with the changing envi-
ronment. This significantly increases the protocol overhead.

2) The locations of clusters may sometimes exhibit non-linear de-
pendence. In practice, whenmultiple tags coexist, tags may backscat-
ter the signals from nearby tags, resulting in the non-linear depen-
dency in the combined signals received at the reader [13]. Figure
2(c) gives an 2-tag collision case. In such a scenario, the reader
cannot identify the clusters based on their position on the IQ plane.
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Figure 4: Signal series of a 4-tag collision.

3) The clusters may be too close to be separated.When the number
of tags increases, the number of clusters will increase exponentially,
resulting in clusters being closer to (or even overlapwith) each other.
What is worse, in a low SNR scenario, noise from the environment
will increase the radius of the clusters, which incurs overlap even in
2-tag collision scenarios (as shown in Figure 2(d)). In such scenarios,
we can not even separate different clusters.

Dynamics in the time domain. Distinguishing the collided
signals in time domain is also challenging. Specifically, to map each
signal edge to the flipping of each tag, an important assumption
is that the tags have relatively stable bit durations. This requires
the built-in oscillators have low drifting rate (less than 200ppm is
tolerable [7]). However, due to the low cost design, the oscillators
used in backscatter tags typically exhibit high drifting rates [7, 8, 24].
Figure 3 shows the CDF of the measured drifting rates of 20 tags.
We can observe that 70% of tags’ clock drifting rates fall between
40,000 ppm and 68,000 ppm. Consider a concrete example where
tags transmit 100-bit packets at 100Kbps. Such high drifting rates
can lead to 40 ∼ 68µs time offsets within one-packet duration. Since
the bit duration is only 10µs , 40 ∼ 68µs offsets will inevitably incur
excessive errors in the edge identification process.

Some schemes [13] propose to address this problem by using
linear regression. Such schemes work only if the signal flips infre-
quently. Under this assumption, the long distance between edges
can be used to gain confidence in edge detection. However, when
multiple tags transmit concurrently at high bitrates (as shown in
Figure 4), signal edges are stacked side by side. In this situation, the
reader can hardly distinguish the edges from different tags.

3.3 Transition Probabilities Between Clusters
The above experimental results present a conundrum that: how to
identify the combined states of each cluster based on such dynamic
and irregular signals? Our idea is to leverage signals’ transition
probabilities between clusters. Specifically, Figure 5 shows the trans-
fer trajectories of collided signals from two tags under different
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Figure 5: Transition pattern among clusters: (a) a 2-tag collision example. (b) collision under a dynamic working condition. (c) collision with
non-linear dependency

(a) (b)

Figure 6: TheCDF for the transition probability between both neigh-
bor and non-neighbor clusters: (a) two tags; (b) five tags.

scenarios. We find that although the signals are dynamic and irreg-
ular, signals’ transition probabilities between different clusters are
highly stable and traceable. Indeed, a higher transition probability
between two clusters implies the higher similarity between their
corresponding combined states.

Let us explain the reason behind. In practice, flipping of tags
makes the collided signal to transfer among clusters. Specifically, the
flipping of a single tag causes the transition between two clusters
whose combined states have only one different state (e.g., “L1L2"
and “L1H2"), while the concurrent flipping of multiple tags causes
the transition between two clusters whose combined states have
multiple different states (e.g., “L1L2" and “H1H2"). We term the
former cluster pair as neighbor clusters and the latter as non-neighbor
clusters. Given that the state flipping of different tags are interleaved
most of the time [7, 13], the transition probabilities between the
neighbor clusters are obviously higher than those between the
non-neighbor clusters.

As a concrete example, consider the transition probability be-
tween non-neighbor clusters in a 2-tag collision case where each tag
transmits at 100Kbps and the USRP reader samples at 25 MHz (i.e.
the reader samples 250 times for each bit duration). An edge has a
width of 3 samples at the reader’s sampling rate, which means that
we can stack at most 250

3 = 83 separated edges in one bit duration.
Thus the probability for the two tags to flip their state at exactly the
same time can be calculated as: 1−(83·82)/(83·83) = 1.2%. Moreover,
even under high concurrency scenarios, we can still observe very
low transition probability between non-neighbor clusters (detailed
discussion is given in Section 8.2).

We further conduct experiments to show the distinctness and
consistency of the transition probability between neighbor clusters.

Distinctness.We plot the CDFs of the transition probabilities
between both neighbor and non-neighbor clusters in Figure 6(a),
which is calculated based on more than 100 collided packets of two
concurrent tags (bitrate of the tags is 100Kbps). We can see that
the transition probability between neighbor clusters is almost 8×
higher than that between non-neighbor clusters. This ensures that
we can correctly find the neighbors for each cluster.

Consistency. We have shown in Figure 5 that the signal’s tran-
sition pattern is stable under dynamic scenarios, now let us look at
its stability when the concurrency level is high. Figure 6(b) plots
the CDFs of the transition probabilities between neighbor and non-
neighbor clusters in a 5-tag collision case. We can see that when
the concurrency level is high, the transition probabilities between
neighbor and non-neighbor clusters are still distinguishable.

4 FLIPTRACER OVERVIEW
FlipTracer is a practical parallel decoding approach in which the
collided signals are identified based on the transition probabilities
between symbol clusters. In this system, the tags transmit pack-
ets concurrently when they receive a query from the reader. The
collided packets will be resolved on the reader-side after every
transmission. The FlipTracer system architecture is shown in Fig-
ure 7:

• OFG construction. FlipTracer first clusters the physical
symbols in the IQ plane. Then, based on the observed signal
transition probabilities among symbol clusters, FlipTracer
constructs a graph, termed as one flip graph (OFG), which
connects all the neighbor clusters. The OFG acts as an im-
portant reference for the cluster identification component.

• Cluster identification. By tracking the OFG, FlipTracer
identifies the combined states of all the clusters in the OFG.
Then, by examining the identified combined states, Flip-
Tracer outputs N sequences of binary states that represent
the transmitted signals of the N colliding tags.

• Decoding. For each tag, FlipTracer applies a Conditional
Random Field based decoder on the binary sequence to iden-
tify the most likely sequence of bits.

The next few sections elaborate on the above components, pro-
viding the technical details.
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5 THE ONE-FLIP-GRAPH
The One-Flip-Graph (OFG) is denoted as OFG = (C,E), where
C = {C1, ...,CNc } denotes the Nc = 2N symbol clusters and if Ci
and Cj (Ci ,Cj ∈ C) are neighbor clusters, we have < Ci ,Cj >∈ E.
In this section, we describe how to construct the OFG based on the
collected IQ symbols.

5.1 Symbol Clustering
The first challenge we face is reliable symbol clustering. Although
symbol clustering methods have been proposed in some recent
works [7, 13], they can not separate overlapping clusters which
are common in noisy environments. To separate the overlapping
clusters, we need to first find their centers. Hence we employ local
densities1 based clustering methods. Specifically, a cluster center
typically has high local density and is surrounded by symbols with
lower local densities. Although clusters overlap with each other,
we can still find their centers by finding the density peaks.

Our clustering approach is designed based on the algorithm
introduced in [15] (we call it LDBC in this paper). We first use
the idea in LDBC to find the Nc cluster centers, and estimate for
each symbol i the probability that it belongs to each cluster Ck
(Ck ∈ C = {C1, ...,CNc }) as Pd(i) = {pdki | 1 ≤ k ≤ Nc}, where
pdki is determined by the location and the local density of symbol i .

Then it seems that we can directly classify symbol i to Ck if
pdki is the maximum in Pd(i). However, since the symbols located
at the overlapping area (termed as confused symbols) may exhibit
similar pdki for the corresponding clusters, classifying the confused
symbols based only on their Pd(i) may incur errors. We propose to
leverage the time domain information to address this problem.

In practice, the signal will dwell on a certain cluster for a while
between two transitions, thus successive symbols are likely to be-
long to the same cluster. We propose a parameter Pt(i) = {ptki |

1 ≤ k ≤ Nc} to describe from time domain that how likely symbol
i belongs to cluster Ck . We have ptki = #Ck

wc
, where #Ck denotes

the number of symbols belonging to cluster k in the time window

1The local density of a symbol is defined as the number of symbols located within a
cutoff distance.

Confused
Symbols

(a)

(b)

(c) (d)

(b) (c)

Confused
SymbolsCluster center

(a)

Cluster center

Figure 8: Symbol clustering: (a) received symbols. (b) identified clus-
ter centers. (c) confused symbols. (d) symbols are finally classified
to each cluster.

centered at symbol i . The length of the window is set according to
the bit duration of the tags and the sampling rate of the reader.

Now we can classify the confused symbols based on a joint
consideration of Pd and Pt. Specifically, we calculate the Pcluster(i) =
{pdki · ptki | 1 ≤ k ≤ Nc} for each symbol i , and classify symbol i
to cluster Ck if pdki · ptki is the maximum in Pcluster(i).

FlipTracer goes through three steps to classify the symbols (Fig-
ure 8 gives an example of the symbol clustering process for a 2-tag
collision):

• It uses the idea in LDBC to estimate the Pd for each symbol
(as shown in Figure 8(b)).

• It classifies each symbol i to the cluster which achievespdki >
PDth (we empirically set PDth = 0.4). If there are multiple
(or no) clusters achieve ptki > PDth , it denotes symbol i as a
confused symbol (as shown in Figure 8(c)).

• It estimates Pcluster for the confused symbols, and classifies
the confused symbols based on Pcluster. The final clustering
result is shown in Figure 8(d).

Now each symbol is marked by the label of its cluster.

5.2 Building connections in the OFG
Now we have the symbol clusters (the nodes in the OFG), and the
next step is to build the connections, namely, to form the neigh-
bor relationships between clusters. Based on our observations in
Section 3, the transition probabilities between neighbor clusters
are significantly higher than those between non-neighbor clusters.
Thus we can recognize neighbor clusters based on the transition
probabilities between clusters.

However, we face a problem that due to the reader’s query, signal
edges of different tags might be aligned during the initial period
of a concurrent transmission (as shown in Figure 9(d)). It results
in high transition probabilities between non-neighbor clusters, in
the initial period (as shown in Figure 9(a)). If such alignment lasts
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Figure 9: Impact of aligned signal flipping on the transition proba-
bilities: (a)-(c) are the transition probabilities between clusters dur-
ing the alignment period, the entire signal series and the misalign-
ment period, respectively. (d) signal series. (e) the number of the
state flipping. (f) CUSUM of the state flipping number.

for a long period of time (which is caused by very similar clock
rates between tags), the gaps between the transition probabilities
for neighbor and non-neighbor clusters will be small. This may
incur errors in the neighbor identification process. Therefore, for
reliable neighbor identification, we would like to first filter out
those aligned signals, then calculate the transition probabilities
based on only the misaligned signals.

Filter out the aligned signal flipping. The intuition of our
method for detecting the aligned signals is that state flipping oc-
curs more frequently in the misaligned signals than in the aligned
signals. Figure 9(e) shows the number of state flipping counted
over successive windows. Obviously, signal alignment leads to less
frequent signal flipping. However, we cannot find an appropriate
threshold to separate the aligned and misaligned signals.

To solve this problem, we use the Cumulative Sum (CUSUM)
test, a method designed to detect the change in data distribution,
to detect the change in flipping frequency. We apply the CUSUM
on top of the series in Figure 9(e), and show the cumulative sum in
Figure 9(f). We can see that now the aligned and misaligned signals
are separable. After filtering out the aligned signals, the transition
probabilities between neighbor clusters are highly distinct from
those between non-neighbor clusters (as shown in Figure 9(c)).

Finding the neighbors.We first calculate the transition proba-
bilities between clusters. For each cluster Ci ∈ C, we can calculate
the transition probability betweenCi and every other clusterCj as:

Ptrans (Ci ,Cj ) =
#(Ci ↔ Cj )∑

Ck ∈C #(Ci ↔ Ck )
(1)

where #(Ci ↔ Cj ) denotes the number of transitions between
Ci and Cj , and

∑
Ck ∈C(Ci ↔ Ck ) denotes the total number of

transitions between Ci and all the other clusters in C. Transitions
between clusters can be detected using the method given in [13].
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Figure 10: OFG example: (a) received symbol samples of a 3-tag col-
lision. (b) constructed OFG for the received symbol clusters.

In a N -tag collision case, each cluster Ci has n neighbors, de-
noted as Cnei(Ci ). Theoretically, the N neighbors of Ci should be
the N clusters leading to the N highest Ptrans (Ci ,Cj ), termed as
potential neighbors ofCi (denoted as Cpos(Ci )). In practice, however,
burst noise may result in wrong cluster labels, bringing deviations
to the measured transition probabilities. An extreme case is that,
for a cluster Ci , the measured transition probabilities between Ci
and its non-neighbor clusters might be even higher than that be-
tween Ci and its neighbors. Thus, directly identifying Cpos(Ci ) as
Cnei(Ci ) may incur errors. To solve this problem, we propose a new
metric Conf (Ci ) for each cluster Ci to describe the confidence for
identifying Cpos(Ci ) as Ci ’s neighbors:

Conf (Ci ) =
min{Ptrans (Ci ,Cpos(Ci ))}

max{Ptrans (Ci ,Cnopos(Ci ))}
(2)

whereCnopos(Ci ) denotes the clusters that do not belong toCpos(Ci ).
A larger gap between Ptrans (Ci ,Cpos) and Ptrans (Ci ,Cnopos) indi-
cates a higher confidence.

To improve neighbor identification robustness, we propose to
first sort the clusters in descending order of theirConf , and identify
the neighbors for the clusters sequentially. This allows us to process
the clusters that have the higherConf earlier. Specifically, for the k-
th cluster, ifm of its N neighbors have been covered by the previous
k − 1 clusters (which have higher Conf ), we only need to identify
its other (N −m) neighbors based on Ptrans .

5.3 Correcting false connections
Now we have both the symbol clusters (nodes in the OFG) and the
connections between neighbor clusters, so we can get the OFG. As
an example, Figure 10(a) shows the received symbols of a 3-tag
collision case, and Figure 10(b) shows the corresponding OFG. One
problem we face, however, is how to handle the false connections
(the connections which connect two non-neighbor clusters) in the
OFG. Although it is a fairly rare occurrence, when it occurs, the
following cluster identification process will be seriously affected.
Thus we propose a false-tolerance design to avoid forming such
false connections when constructing the OFG.

We propose such a design based on our intuition that the false
connections will lead to abnormal structures in the OFG. In practice,
if all the connections in the OFG are correctly formed, there will be no
odd-node loops in the OFG. Specifically, a loopwith an odd number of
nodes implies that for an arbitrary cluster on the loop, its combined
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Figure 11: Loops in the OFG of a 3-tag collision case: (a) an example
of a correct loop. (b) and (c) are two examples of the abnormal loops.

state can transfer to the initial state through an odd number of
transitions, which is however impossible. The reason is that for a
combined state [S1, ..., SN ], its each state Si has to experience two
transitions to transfer to its initial state (i.e., Si → Si → Si ). Thus
the combined state [S1, ..., SN ] has to experience an even number
of transitions to transfer to the initial combined state. Figure 11(a)
shows an example of the loop with four nodes.

However, a false connection will inevitably form a loop with an
odd number of nodes. As an example, consider a false connection <
Ci ,Cj > connecting two clusters whose combined states have two
different states (denoted as States Sp and Sq ). Thus, the combined
states of Ci and Cj will have at least one common neighbor cluster
(denoted as Ck ) which have one different state (Sp or Sq ) with Ci
and Cj . Clusters Ci , Cj , and Ck form a 3-node loop. Figures 11(b)
and 11(c) show two examples of such abnormal loops.

The above observation indicates that we can avoid forming false
connections by detecting such abnormal loops. Specifically, before
forming a connection < Ci ,Cj >, we will first check whether
< Ci ,Cj > leads to an abnormal loop. If it does, we will label Cj as
a non-neighbor cluster of Ci 2.

6 CLUSTER IDENTIFICATION
In this section, we introduce how to identify the combined state of
each cluster by tracking the OFG.We assume that there is an anchor
cluster, whose combined state is known. This is reasonable because
we can always identify the cluster representing all “L" states when
all tags are being charged.

To describe the cluster identification process more clearly, we
have to first layer the OFG. Specifically, the anchor cluster is the
root (Layer 0) of the OFG, denoted asCroot . We define the neighbors
of Croot as its child nodes, which form the first layer of the OFG.
For each Layer l cluster (denoted as Cil , and l > 0), we define its
neighbors, that is not in Layer (l − 1), as its child nodes. The child
nodes of the Layer l clusters form the (l + 1)-th Layer of the OFG.

Now we can identify the clusters in the OFG layer by layer,
starting from Croot .
2Note that this process assumes the connects that formed earlier (which exhibit higher
Conf ) are more likely to be correct.
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Figure 12: The process of decoding a 3-tag collision: (a) Identify the
first layer clusters. (b) Identify the clusters in Layer l − 1.

Claim 1. We can identify the combined states of the Layer-1 clus-
ters based on the combined state of Croot .

If the combined state of Croot is [S1, S2, ..., SN ], we can identify
its neighbor clusters (i.e., the Layer 1 clusters) as [S1, S2, ..., SN ],
[S1, S2, ..., SN ], ..., [S1, S2, ..., SN ]. Figure 12(a) gives an example of
the above process, in a 3-tag collision case. In this example, if we
denote the tags that cause transitions between Clusters 1 and 2, 1
and 3, 1 and 4 as Tag 1, Tag 2, and Tag 3, respectively3, the Clusters 2,
3, and 4 can be identified as [S1, S2, S3], [S1, S2, S3], and [S1, S2, S3],
respectively. We will show in the appendix with a concrete example
that different assignments of the Layer 1 nodes do not affect the
decoding result.

Claim 2. There are l different states between the combined states
of Croot and each Layer l cluster.

We define the distance between two clusters Ca and Cb as the
number of different states between their combined states, denoted
as d(Ca ,Cb ). Obviously, the distance betweenCroot and each Layer
1 cluster Ci1 is 1. Denote the k-th child node of Ci1 as Ch(C

i
1,k), we

have i)d(Ch(Ci1,k),C
i
1) = 1, and ii)d(Ch(Ci1,k),Croot ) > d(Ci1,Croot ) =

1. Thus, we can derive that d(Ch(Ci1,k),Croot ) = d(Ci1,Croot ) +
1 = 2, namely d(Ci2,Croot ) = 2. Iteratively, we can derive that
d(Cil ,Croot ) = l .

Now we can provide a set of candidate combined states for the
Layer l (l > 1) clusters. Taking the 3-tag collision case in Figure 12
as an example, we can provide a set of candidate combined states
for the Layer 2 clusters as [S1, S2, S3], [S1, S2, S3] and [S1, S2, S3].
The next task is to map each combined state in the candidate set to
each cluster.

Claim 3. We can identify the combined states of the Layer-l clus-
ters based on those of the Layer-(l − 1) clusters.

As discussed in Claim 2, the distance between Cil and Croot is
l . Thus, there are l different states between the combined states
of Croot and Cil . We denote these states as Sk1 , Sk2 , ..., Skl , where
k1,k2, ...,kl are the indexes of the states. Its easy to understand that
Cil have l fathers in Layer (l − 1), and the different states between
Croot and its fathers are {[Sk2 , Sk3 , ..., Skl−1 , Skl ], [Sk1 , Sk3 , ..., Skl−1 ,
Skl ], ..., [Sk1 , Sk2 , ..., Skl−2 , Skl−1 ]}. Thus if the combined states of
3Such IDs are the “temporary IDs” which are used to distinguish (rather than to denote)
the signals from different tags. What we essentially care about are the IDs (or data)
embedded in the payloads of the packets.
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the Layer-(l − 1) clusters have been identified (which means that
k1,k2, ...,kl are known), the combined state of Cil can be identified
accordingly. As the example shown in Figure 12(b), the combined
state of Cluster 5 can be identified as [S1, S2, S3] if Clusters 2 and 3
are identified as [S1, S2, S3] and [S1, S2, S3], respectively.

The process of cluster identification can be concluded as follow:
• identify the combined state of an anchor cluster;
• identify the Layer 1 clusters based on Claim 1;
• identify the clusters in Layer 2∼ N based on Claim 3;

Then the combined states of all the clusters can be identified.

7 RELIABLE DECODING
Now the combined states of all the clusters are identified. By exam-
ining those combined states, FlipTracer outputs a sequence of “H"
and “L" states to represents the transmitted signal for each tag. The
sequence can be decoded using the conventional single tag decoder.

Unlike the single tag transmission scenario, however, in the col-
lision scenario, wrong labels in the symbol clustering process may
increase the BER (bit error rate) of individual tags. Thus, we would
like to correct the errors in the state sequence before inputting it
to the decoder. The predictable state flipping pattern of the stan-
dardized FM0 and Miller codes suggests a possible solution - we
can simply leverage the fact that certain state sequences are not
possible. For brevity, we will later use FM0 code as a vehicle to de-
scribe our error correction method. Our method can be generalized
to handle Miller codes as well with slight modifications.

FM0 code inevitably inverts the signal state at every bit boundary
(as shown in Figure 13(a)). Thus it is a obvious error if two chips4
on the opposite sides of a bit boundary have the same state. We
term such a bit boundary as an abnormal bit boundary and the state
sequence with a length of K chips (K = 6 in our implementation)
centered at this abnormal boundary as a suspicious segment (as
shown in Figure 13(b)). Once we detect an abnormal bit boundary,
we use a Conditional Random Field based decoder to correct the
errors in the corresponding suspicious segment.

For a tag i , suppose that we detect a suspicious segment with
a sequence of k = 1, 2, ...,K chips in the state sequence. For each
chip, we introduce a random variable Sk (Sk = H or L) to represent

4The FM0 code uses two chips to represent one bit

its state. The joint probability of assigning a sequence of states
{S1, S2, ..., SK } to all the chips k = 1, 2, ...,K is given as follows:

P (S) = β
∏
k
ϕ(Sk )

∏
k,k+1

ψ (Sk , Sk+1) (3)

where β serves as a normalization constant. The factor ϕ(Sk ) repre-
sents the emission probability of assigning Sk to k , which is highly
related to the confidence of the clustering process (i.e., Pcluster).
Thus ϕ(Sk ) can be given by the Pcluster of the symbols in CSk ,
where CSk represents the clusters indicating a Sk state of tag i .
The factorψ (Sk , Sk+1) in equation (3) presents the transition proba-
bility between Sk and Sk+1. Specifically, if the transition between
Sk and Sk+1 indicates a bit boundary, we have ψ (Sk , Sk+1) = 1 if
Sk+1 = Sk , and ψ (Sk , Sk+1) = 0 if Sk+1 = Sk . Otherwise, we have
ψ (Sk , Sk+1) = 0.5.

We calculate P (S) for all possible state assignments and identify
the one which the maximum P (S) as the correct assignment for the
corresponding sequence.

8 ANALYSIS
In this section, we provide theoretical analysis on the performance
of FlipTracer.

8.1 Computation Overhead and Latency
The computation overhead of FlipTracer is dominated by the symbol
clustering, OFG construction and cluster identification components.

In the symbol clustering component, to reduce the input size
for faster clustering, FlipTracer aggregates received symbols into
grids (which are much fewer than symbols) and cluster those grids
(similar with BiGroup [13]). This reduce the computation overhead
to O(k · loдk + M), where k is the number of grids and M is the
number of confused samples. In FlipTracer, k is around 200 andM is
influenced by the SNR of the collided signals (the average number
is 80 according to our experiments).

Let N be the number of the tags. The computation overheads
of the OFG construction and cluster identification components are
O(N 2 + 2N−1 ·N ) andO(2N−1 ·N ), respectively. Since the sampling
capacity of the reader is limited, the aggregated throughput can-
not increase infinitely with the number of tags. We find through
experiments that the performance of FlipTracer peaks at N = 5.

We implement FlipTracer on an USRP N210 connected to a gen-
eral PC equipped with 3.6GHz CPU and 16G memory. FlipTracer
takes 180∼320µs to decode the collided packet when N = 5. Our the-
oretical analysis tells that the upper bound of aggregated through-
put that FlipTracer can achieve is “8 tags transmit at 500Kbps”. In
this case, we can still keep the time overhead inms level.

8.2 Upper Bound Throughput
The aggregated throughput of FlipTracer is determined by two
factors: the number of tags and the bitrate of each individual tag.
Since the sampling capacity of the reader is limited, when the
number of tags scales or the tags transmit at higher bitrates, signal
edges of different tags may be aligned with each other with a higher
probability. When the proportion of the aligned edges reaches a
certain level, FlipTrace is likely to build false connections when
constructing the OFG. This leads to errors in the decoding process.
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Figure 14: Transition probability vs. number of tags

Figure 15: Maximum throughput vs. bitrates.

As noted earlier, if the transition probabilities between a cluster
Ci and its neighbors are higher than that between Ci and other
clusters, we can correctly find all the neighbors for Ci . Assume
that N tags transmit concurrently with the same bitrate B and the
sampling rate of the reader is S . Further assume that the signal
edge has a width of e samples at the reader’s sampling rate. The
transition probability between Ci and another cluster Cj , can be
calculated as follows, where d(Ci ,Cj ) = dis5:

P (Ci ,dis) =
( S
B ·e
1
)
·
( S
B ·e −1
N−dis

)
· (N − dis)!

S
B ·e

N (4)

If we have P (Ci , 1) > P (Ci ,dis) and dis ≥ 2 for each Ci , we can
correctly construct the OFG.

Figures 14(a) and 14(b) show the transition probability vs. the
number of concurrent tags (under different dis), with the bitrates of
the tags set at 100Kbps and 500Kbps, respectively. We find in Figure
14(a) that when N ≥ 21, the transition probabilities between neigh-
bor and non-neighbor clusters are too close to be differentiated. In
this case (B = 100Kbps), the maximum throughput is 2.4Mbps. Simi-
larly, Figure 14(b) shows that the maximum throughput is 4Mbps for
B = 500Kbps . We also find that the transition probabilities between
non-neighbor clusters decrease as N increases. This is because the
number of clusters increases exponentially with that of the tags.
Therefore, the transition probability between each two clusters will
decrease accordingly.

We further show the maximum throughput of FlipTracer under
different bitrates in Figure 15. Figure 15 presents the theoretical
upper bound of the throughput that FlipTracer can achieve, i.e.,
4Mbps (concurrent transmissions from 8 tags at 500Kbps)

5Note that d (Ci , Cj ) = dis means the transition between Ci and Cj is caused by
the aligned edges from dis tags. Clearly, d (Ci , Cj ) = 1 means that Ci and Cj are
neighbors.
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Figure 16: Experimental setup.

9 EVALUATION
9.1 Experiment Setting
The hardware platform is shown in Figure 16.

USRP Reader. FlipTracer is built based on the USRP N210 soft-
ware radio reader with UBX RF daughterboards and two 900 MHz
circular antennas. By default, the sampling rate is set as 20MHz,
and the Tx-Gain is 20dBm.

Backscatter tags. Since COTS RFID manufacturers only pro-
vide limited interfaces to developers, we implement FlipTracer on
programmable WISP tags. This only requires a slight modification
to the EPCglobal C1G2 protocol. Specifically, we just remove the
elements for Slot Aloha operation and thus the tags will respond
concurrently. The packets are encoded with FM0 encoding scheme.
The default bitrate is set as 100Kbps and the default packet length
is set as 100 bits.

We compare FlipTracer with the following three schemes:
• Cluster-based parallel decoding (CB). This approach as-
sumes that tags’ channel coefficients are static and can be
linearly combined when collision occurs.

• BiGroup. BiGroup [13] assumes that the signal edges of
a tag come with a relatively fixed interval. It extracts the
sequence of each tag’s signal transitions in the time domain,
and connects with the symbol clusters in the IQ plane for
parallel decoding.

9.2 Evaluation of OFG construction
We first focus on the OFG construction component. As a core com-
ponent of FlipTracer, it has a significant impact on the overall
performance.

Two factors can affect the performance of this component - the
number of concurrent tags and the SNR. In practice, a higher con-
currency means a higher probability for multiple tags to flip their
states concurrently, which may lead to higher error rate when iden-
tifying neighbour clusters. On the other hand, a lower SNR will
incur more errors in both the symbol clustering and the neighbour
identification processes.

In the experiments, we increase the number of tags from 2 to 5.
For each concurrency level, we change the SNR of the signals by
adjusting the gain of the transmitting antenna from 0 to 20dBm.
We collect 100 collided packets for each setting and show the corre-
sponding error ratio of the OFG construction component in Figure
17. The error ratio is calculated as the number of wrong OFGs over
the constructed 100 OFGs. We find that: i) when the number of
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trates.

tags ≤ 4, the error ratio can be controlled under 5% even when the
TX Gain is 0dBm; and ii) when the TX Gain ≥ 10dBm, the error
ratio can be controlled under 10% (the TX Gain of the commercial
RFID reader is 30dBm). Clearly, FlipTracer can correctly construct
an OFG with high reliability.

9.3 FlipTracer Goodput
In this section, we look at the benefit of FlipTracer in terms of
throughput and BER.

Aggregated throughput. Figure 18 compares the aggregated
throughput achieved by different schemes for different numbers
of colliding tags. We can see that the throughput of FlipTracer is
very close to the maximum possible throughput in all cases. The
throughput gain of FlipTracer is big: in the 5-tag collision case,
FlipTracer is 2.5× better than BiGroup and 15× better than CB.

BER. Figure 19 plots the BERs of different schemes. When col-
lision occurs, the decoding scheme may output multiple packets.
Average BERs are record by comparing each output packet and the
transmitted counterpart.

In Figure 19, we see that FlipTracer greatly outperforms CB and
BiGroup. In the 5-tag collision case, the BER of FlipTracer is 28×
lower than that of CB and 17× lower than that of BiGroup. We
also find that for all three schemes, the BERs rise rapidly if the
number of tags is larger than 4. This is because the error probability
for cluster identification increases with the number of tags, which
leads to excessive bit error in the decoding process.

To further investigate the major reason of the bit errors, in Figure
20 we plot the CDFs of BERs for the three schemes in the 5-tag
collision case. The BERs above 0.1 are caused by errors in the cluster
identification process, which generally results in excessive bit errors.

We can see that the cluster identification error of FlipTracer is much
lower than that of BiGroup and CB.

Breaking down the benefits. Let us now break down the ag-
gregated throughput by different components of our design to see
how much each of them matters. Figure 21 shows the result. We
start with the approach that only uses the core design of FlipTracer6.
Then we add bit error correction module (BCM). Finally we add the
OFG correction module (GCM).

We see that each of these benefits the overall throughput: the
core design of FlipTracer does really well by itself, but there are
more errors as the number of tags increases. For example, when
the number of the colliding tag is 5, the core design of FlipTracer
causes about 20% of throughput reduction, compared to what is
achieved by FlipTracer. Bit error correction component improves
the throughput by about 5% and adding the OFG correction compo-
nent further improves it by another 15%. We can see that the OFG
correction component leads to more performance gain than the bit
error correction component.

9.4 Impacts of Practical Factors
To understand the impacts of some practical factors on FlipTracer,
we conduct the following experiments.

Bitrate. As shown in Section 8, besides the concurrency level, bi-
trate is another factor that can affect the performance of FlipTracer.
In this experiment, we vary the bitrate of the 5 tags from 100Kbps to
600Kbps, and observe the aggregated throughput. Since the WISP
platforms currently support only a 256Kbps bitrate, we conduct sim-
ulations to see the performance of FlipTracer with 500∼600 Kbps

6FlipTracer that is not integrated with the OFG correction module and the bit error
correction module
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bitrate. Figure 22 shows that the aggregated throughput crash at
600Kbps. This gives us an empirical upper bound on the aggregated
throughput FlipTracer can support - concurrent transfer from 5
tags at 500Kbps. The crash is not surprising. Our reader samples
at 20 MHz, and tags transmit at 600Kbps, so we can stack at most
12 separated edges in one chip (half bit) duration. Our deployment
have 5 nodes, so there is a large number of aligned signal edges,
which may overthrow our assumption that “the signal edges from
different tags are separated most of the time".

In Figure 23, We compare the aggregated throughput for 5 con-
current tags achieved by BiGroup and FlipTracer (since CB can
not support more than 4 tags) under different bitrates. We observe
that the throughput of BiGroup crash after 200Kbps. The reason is
that a high bitrate will make the signal edges from different tags
be too close to each other. Given that the bit duration for each tag
is not stable, the reader can hardly distinguish the edges of differ-
ent tags. This results in excessive errors in the decoding process
of BiGroup. Figure 23 also shows that the maximum aggregated
throughput of BiGroup is 300Kbps. Compared with BiGroup, Flip-
Tracer is more robust to the high bitrate: when tags transmit at
500Kbps, the throughput of FlipTracer is 14× higher than that of
BiGroup.

In Figure 24, we plot the CDFs of BERs for FlipTracer and Bi-
Group when the bitrate is 500Kbps and the number of tags is 5. By
comparing Figures 20 and 24, we find that a high bitrate can seri-
ously affect the cluster identification accuracy of BiGroup, which
results in the throughput crash of BiGroup after 200 Kbps.

Channel condition. Channel condition can also affect the per-
formance of FlipTracer. To evaluate the impact of channel condition,
in this experiment, we use three tags (each transmit at 100Kpbs)
and keep moving the tags further and further away from the reader
to worsen the channels of all tags. Figure 25 compares the aggre-
gated throughput of BiGroup and FlipTracer under different chan-
nel conditions. We can see that when the channel quality is good,
both FlipTracer and BiGroup achieve good throughput. When the
channel worsens, the aggregated throughput of BiGroup decreases
significantly. The reason behind is that under a poor channel con-
dition, clusters become closer to or even overlap with each other,
which brings errors in symbol clustering process of BiGroup.What’s
worse, noise spike occurs frequently in poor channel conditions,
which will be confused as signal edges, making it more difficult to
separate and extract the signal edges of different tags. This incurs

excessive errors in BiGroup. By contrast, FlipTracer is highly robust
to poor channel conditions.

We further plot the CDFs of BERs for BiGroup and FlipTracer
under the poor channel condition in Figure 26. We find that the
channel condition can affect the accuracy in both symbol clustering
and cluster identification components, leading to high BERs even
when the number of the concurrent tags is 3.

9.5 FlipTracer in “bad” working condition
This subsection evaluates the performance of FlipTracer under some
“bad" working conditions.

Dynamic environment. Figure 27 shows the impact of dy-
namic working conditions. Four cases are compared: i) the stable
working condition; ii) the tags and the reader are fixed, but there is
a moving obstacle in the vicinity of the tags and the reader; iii) the
reader is fixed but the locations of the tags keep changing; and iv)
the reader is fixed but the tags’ orientations keep changing.

We find in Figure 27 that the throughput of FlipTracer under
dynamic scenarios is slightly lower than that in the static scenario.
The reason behind is that although the obstacle, rotation and mo-
bility will change the channel coefficients of the tags, FlipTracer
is able to decode the collided signals without channel coefficient
information.

Co-existence of fast and slow tags. One of the key benefits
of FlipTracer is that it can support widely different bitrates among
tags. To evaluate this benefit, we use three tags (denoted as Tags 1,
2, and 3) and evaluate the aggregated throughput in three different
scenarios: i) we let all the three tags transmit at 100Kbps; ii) we let
the three tags transmit at different bitrates (i.e., 100Kbps, 150Kbps
and 200Kbps). iii) we let Tags 1 and 2 transmit very slow (50Kbps)
and Tag 3 transmit very fast (250Kbps).

Figure 28 shows the packet reception rate achieved by each tag
under different scenarios. The results show that: i) the throughput
achieved in the second case is almost the same as that achieved
in the first case. ii) even in the third case where the bitrate of the
fast tag is 5× as that of the slow tags, the throughput only slightly
decreases. The above results imply that FlipTracer can support
concurrency tags with widely different bitrates.

9.6 Impact of unstable clocks
Another key benefit of FlipTracer is its ability to decoding without
stable clocks. Since clock drifting rates of the tags are uncontrollable
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Figure 26: CDF for BERs under poor channel
condition.
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Figure 27: Throughput of FlipTracer under
different working conditions.
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Figure 29: Impact of clock drifting rate.

in the real-world experiment, we conduct simulations to evaluate
the impact of the clock drifting rate. Our simulation inherits the
settings from our experiments.

Figure 29 shows the BER comparison of BiGroup and FlipTracer
under different clock drifting rates, when the number of colliding
tags is 5. We can see that the BER of BiGroup increases rapidly
when the drifting rate increases. In comparison, the increase in the
BER of FlipTracer is almost imperceptible.

10 CONCLUSIONS
We have presented FlipTracer, a practical parallel decoding ap-
proach that is designed to work under highly dynamic backscatter
system. FlipTracer achieves this by leveraging the stable transition
pattern of the signals, rather than the dynamic and irregular IQ
and time domain features of the signals. The experimental results
show that FlipTracer is robust in various scenarios and achieves a
nearly 2Mbps maximum aggregate throughput. In the future works,
we would like to explore the scalability of FlipTracer as well as
hardware speedup for better time efficiency.
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A APPENDIX
We explain why different assignments of the first layer clusters of
OFG do not affect the decoding results. In fact, the assignments only
determine the “temporary IDs” of the tags. All the assignments will
eventually output N uniquely determined ‘HL’ sequences (where N
is the number of tags). In other words, different assignments only
lead to different mappings between the N “temporary IDs” and the
N sequences. Note that what we essentially care about is not the
“temporary IDs” (which are used to distinguish different tags in the
decoding process), but the IDs (or data) embedded in the packets
(these IDs are physically associated the tags).

Here we use a concrete example to clearly explain the above
point. Figures 30(a) and 30(b) illustrate two different assignments
of the Layer 1 clusters on the same OFG. In Figure 30(a), we denote
Cluster 2 as HLL (that is to say, we denote the tag which causes
the transition between cluster 1 and cluster 2 as Tag 1), Cluster
3 as LHL, and Cluster 4 as LLH. Assuming the reader receives
Clusters 0, 1, and then 5, the output sequences are: Tag1: ‘LHH’;
Tag2: ‘LLH’; Tag3: ‘LLL’. If we use the assignments in Figure 30(b),
the output sequences will be: Tag1: ‘LLL’; Tag2: ‘LHH’; Tag3: ‘LLH’.
As noted above, the temporary IDs of the tags are just used for
distinguishing these tags (but not used for denoting the tags) in the
decoding process. Once we know there are three tags transmitting
LLL, LLH, and LHH, respectively, such information is sufficient
for correct decoding. After the whole packets of the three tags are
decoded, we can know the IDs (or data which are embedded in the
payloads of the packets) of the tags.
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