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Abstract—Software-defined networking (SDN) is deemed as a
promising direction to offer generalizability of wireless sensor
networks (WSN). To introduce SDN into WSNs, however, means
a series of non-trivial challenges due to the wireless and ad-
hoc nature of WSNs. In this paper, we present our study to-
wards a software-defined architecture for multi-function wireless
sensor networks. Our proposal called Pangu is built upon the
opportunistic routing protocol stack and introduces the concept
of modality properties of sensor nodes. It enables centralized
network control over a WSN while preserving the flexibility of
underlying ad-hoc routing. We tackle the critical problems of the
architecture design by presenting three essential components of
Pangu. Moreover, we implement Pangu on a real-world testbed
and evaluate it with various experiments.

I. INTRODUCTION

As a technology to bridge the physical world and the
cyberspace, wireless sensor network (WSN) has developed a
lot in the past two decades. Today the WSN area faces an
awkward dilemma. On one side, there have been countless
research results regarding almost every building block of the
technology, showing good readiness towards various practical
uses. But on the other side, in spite of the ever increasing and
prosperous demands, real WSN applications and systems are
still far restricted to very few scenarios [1][2].

Poor generalizability is the major obstacle. In conventional
WSNs, the upper-level applications are deeply coupled with
the lower-level network stacks. The development of a WSN
application always means considerable cost and low efficiency.
The structure as well as the performance of underlying net-
works cannot smoothly evolve as the application demands are
modified. Deep coupling also makes it extremely difficult to
figure out a one-size-fits-all solution to be standardized and
applied to a wide range of scenarios.

In the process of tackling the above problem, we are
enlightened by the concept of software-defined networking
(SDN). SDN, which separates the control plane from the
data plane, brings flexibility of applications and simplicity
of management into the wired network, especially the data
center network [3][4]. The OpenFlow [5] protocol enables
network users to centrally manage the network from a higher
perspective through the standardized and expressive interfaces.

What about incorporating SDN into the design of a WSN?
That is a natural question many researchers would think about.
Working out a satisfactory answer, however, is a non-trivial
task. We highlight the following comparisons between a WSN
and a wired network, to identify the critical challenges of
designing a software-defined architecture for WSNs.

• Connectivity. Unlike wired connections, wireless connec-
tions are intrinsically localized. A controller of a WSN
cannot be directly connected to every sensor node at
no expense, and vice versa. This introduces considerable
delay and uncertainty into the processes of network state
collection and control dissemination.

• Consistency. Network-wide consistency of configurations
is a key element of SDN, but consistency is relatively hard
to maintain in WSNs, due to unreliable wireless transmis-
sions and unpredictable delay of multi-hop forwarding.

• Data flow. Unlike the scattered data flows in a wired
network, data flows in a WSN generally converge to the
sink node(s). Managing WSN data flows, however, is not
simplified at all. Not only the routing direction, but also
the data delivery performance, should be considered.

Given the above facts, we realize that completely separating
the control plane from the data plane as traditional OpenFlow-
based SDNs do is not well-suited for WSNs. Centralizing
the entire control logic in remote controller(s) means a great
deal of network overhead for frequent state report and control
dissemination. Moreover, the delay of the multi-hop duty-
cycled communication makes it difficult to modify flow entries
to match the network fluctuation.

Consequently, in this work, we present Pangu1, a software-
defined architecture that enables network users to centrally
control WSNs over the robust and efficient opportunistic
routing stack. Pangu is designed to enhance WSNs with much
more flexibility and also preserve the ad-hoc nature of WSNs.
Especially, we tailor Pangu to a multi-function WSN that
serves multiple applications with different types of sensor data.

To be more specific, Pangu defines the forwarding behaviors
of the nodes over an opportunistic routing (OR) stack [6][7].
The main novelty is that we introduce the concept of modality
properties (node modality and modal filter) of the sensor
nodes. A node marks its node modality on the network-layer
header of every packet it generates. The modal filter of a
node declares a collection of modalities it should forward.
Thus, modality is a representation of grouping. Identified by
it, nodes could be grouped by the data types, the capacities of
their hardware, or even the priorities of sensing tasks, etc.

In the tradition OR, upon receiving a packet, the node
that first wakes up decides relaying or dropping it, only
by checking whether himself has a routing progress, e.g.

1In Chinese mythology, Pangu was an ancient god who remoulded the earth
by creating mountains and rivers, as what this work does to the OR in WSNs.
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Fig. 1. An overview of our software-defined architecture for WSNs, Pangu. The underlying OR protocol stack is enhanced with modality module and
local state module to achieve central control. The nodes communicate with the controller through the sink node.

a smaller expected transmission count (ETX) [8], over the
last-hop node [7]. To alter forwarding behaviors, we propose
modality matching as an additional condition. Therefore, by
centrally defining modality properties of all sensor nodes,
one can dynamically manage the network without digging
into the underlying protocol stack. We choose OR for two
reasons: 1) there are multiple potential forwarders of one
packet in opportunistic routing, which provides the redundancy
for pruning, and 2) in a receiver-dominated protocol, a node
makes routing decisions only by considering received packets
and its current state, which reduces the computation and
simplifies the design.

Such a design has following potential advantages: First,
defining modality properties draws an appropriate boundary
between the centralized part and the distributed part of the
control plane. Second, assigning modality properties to sensor
nodes does not sabotage the flexibility of ad-hoc routing.
Third, sensor functions and hardware capacities are easily
available information for network users. Thus, they could
manage a WSN from high-level perspectives simply by al-
locating modality properties. The contributions of our work
are summarized as follows.

• We discuss how to split the control plane for a feasible
software-defined architecture for WSNs, and propose a
practical solution, Pangu, which enables central control
over distributed routing (§III).

• In our design, Pangu is dedicated to addressing the prob-
lems of maintaining the global network state, generating
a feasible modality allocation under certain application-
level constraint(s) and disseminating the centralized con-
trol (§IV).

• We implement Pangu with TinyOS and a 50-node test-
bed. Then we conduct extensive experiments to evaluate
the efficacy of Pangu and the network performance in
terms of multiple metrics (§V).

II. RELATED WORKS

For decades, the exploration of providing flexible WSNs
has never stopped. Network reprogramming is one the most
representative works, which replace logical modules of sensor
nodes just over the radio [9][10][11][12]. Nevertheless, this
technique involves piles of interactions with the underlying
system implementation, which is of high technical barriers.

Differently, Pangu provides simple interfaces for network users
to flexibly alter forwarding behaviors of nodes.

Another family of state-of-the-art works introduces role-
based approaches [13][14][15], in which roles are interpreted
from the perspective of upper-level applications. Kochhal
et al. [13] introduce a distributed algorithm for assigning
hierarchical roles, and Frank et al. [14] propose a framework
with generic role specification as a programming abstraction.
Based on these works, Miyazaki et al. [15] present a software-
defined WSN that assigns application roles. However, Pangu
defines routing roles of nodes, instead of application roles.

Recently, some works have extended SDN to WSN, trying
to make WSN configurable by centrally defining forwarding
behaviors of nodes [16][17][18]. Among those works, SDN-
WISE [18] is the first OpenFlow-like prototype implemented
on real world sensor nodes. By referring to a stateful flow
table, the node in SDN-WISE can make forwarding decisions
according to the centrally-defined flow rules and its local state
machine. However, SDN-WISE neither leverages the ad-hoc
nature of WSNs, or emphasizes critical problems such as the
maintenance of global states and the dissemination of control
instructions. Furthermore, the state machine involves deep
packet parsing, which lacks abstraction for the application
layer and is of high overhead.

In order to provide a practical SDN architecture for WSNs,
the basic intuition is that we could only centralize one part of
control logic and must preserve the other part on sensor nodes.
Fibbing [19] gives us an exquisite example of how to feasibly
draw this boundary. By introducing the concept of fake nodes,
Fibbing can tell small lies to unmodified OSPF routers to
accomplish desired alteration of underlying routing structure.
In short, OpenFlow-like approaches completely define the un-
derlying routing structure, while Fibbing just modifies parts of
it. We believe that a feasible software-defined WSN should be
even more conservative. Thus, Pangu just prunes the original
routing structure into sub-nets of desired routes.

III. PANGU DESIGN

A. Overview

Figure 1 presents an overview of Pangu. The nodes with
an ORW stack [7] are centrally controlled by a controller.
The communication between sensor nodes and the controller
can be divided into two parts, the multi-hop wireless com-
munication between sensor nodes and the sink node, and the
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Fig. 2. How Pangu prunes underlying routing structure with modality properties. Suppose there are 2 modalities m1,m2 in the network. Left part of
the figure shows one possible routing structure constructed by OR protocol, and one possible corresponding modality allocation of the nodes. Middle part
details forwarding behaviors of node F under the allocation where NM(F ) = m1 and MF(F ) = {m1}. Right part shows the pruning results under current
allocation and the different forwarding behaviors of the nodes in 2 paths.

serial communication between the sink node and the controller
running on a PC. The controller contains 4 components,
Northbound User Interface, Allocation Generator, Topology
Manager and Southbound Communicator. It enables network
users to centrally allocate modality properties to alter forward-
ing behaviors based on high-level demands.

The 5-step work flow of Pangu is shown in Figure 1:

1) Local network state report: The nodes maintain local
network states in a distributed manner, and adaptively
report to the controller.

2) Global network state construction: After local net-
work states being parsed asynchronously by Southbound
Communicator, Topology Manager should construct a
global network state, in spite of the inestimable latency
and the possible incompleteness.

3) Modality properties allocation: Northbound Interface
presents the inferred global network state. And network
users can either input their own modality allocation
through the interface, or simply utilize the automatic Al-
location Generator with specific performance demand(s).

4) Control dissemination: The allocation is encapsulated
and sent to the sink node, and then been disseminated
through the whole network. We ensure that no error oc-
curs due to possible inconsistencies of local forwarding
behaviors, and the system can be eventually consistent.

5) Data collection: Finally, the nodes generate and relay
data packets according to the OR mechanism and modal-
ity properties.

B. Routing with Modality

Next, we describe how to change forwarding behaviors of
the nodes by defining modality properties. The principles are:

• A node v has two centrally-defined modality properties,
node modality NM(v) and modality filter MF(v).

• v should mark its current node modality NM(v) on the
network-layer header of every packet it generates.

• If v is going to forward a packet p from a neighbor u,
v should be the first to receive p and have a routing
progress over u (OR conditions). Moreover, v’s modal
filter MF(v) must contain the modality marked on p
(Modality requirement).

Consequently, a node with a non-empty modal filter might
relay some specific packets, while a node with an empty modal
filter would never relay any packet. Then we can just define
modality properties of the nodes centrally, to modify their
network behaviors.

The priority of OR conditions is always higher than that
of the modality requirement, which means such centrally-
controlled forwarding routes just belong to a subset of the
underlying routing structure. Thus, the modality requirement is
a method for pruning the OR routing structure. The advantages
are as follows:
• Pruning the routing structure means that we don’t have

to track the status of all wireless links in real time.
• The efficiency of OR is preserved since a packet can still

be relayed opportunistically by a remote node, only if
that node satisfies the modality requirement.

Figure 2 presents how Pangu prunes local routing structure
into two paths. Suppose there are 2 modalities m1 and m2 in
the network. The annotation shows that for node F , NM(F ) =
m1, MF(F ) = {m1} in Figure . Since NM(F ) = m1,
node F marks m1 on every packets it generates. Because
MF(F ) = {m1}, node F will only relay m1 packets (m1 ∈
MF(F )) and drop m2 packets (m2 /∈ MF(F )). Thus, under
this allocation, the nodes make forwarding decisions according
to their modality properties and this local network is pruned
into one path for m1 data and another for m2 data.

IV. PANGU COMPONENTS

This section presents detailed designs of three main compo-
nents of Pangu, which address the problems of maintaining the
global network state (§IV-A), generating a feasible modality
allocation under certain application-level constraint(s) (§IV-B)
and disseminating the centralized control (§IV-C).

A. State Maintenance

The prerequisite for making centralized control is to get a
real-time and complete global network state at the controller.
However, the latency in a multi-hop wireless network, where
nodes work in a duty-cycle mode, is inevitable. The constraint
on network overhead and the limitation on payload length
together make it unrealistic to report the complete local state.
Meanwhile, the integrity of the global network state can not



Node
Neighbors

Node	EDC

Neighbor	List
Address1

Address2

...

Addressn

Battery	Level Congestion	Level

Node	EDC Link	Quality Link	RSSI

vital state recovery state QoS state

Fig. 3. Content of local network state.

be guaranteed due to the unpredictable packet loss in WSNs.
Thus, making a feasible state maintenance strategy is one of
the most essential problems we focus on.

The process of state maintenance has two alternating steps,
state report and state inference. State report, running on the
node side, decides what and when to report, while state infer-
ence, running on controller side, determines how to tolerate
the possible incompleteness of the local network state.

State category. The local network state of a node contains
two parts, the state of the node itself, including its EDC
(Expected number of Duty-Cycled wake-ups, an improved
version of ETX in OR [7]), the battery level, the congestion
level, etc., and the state of its neighbors, including their
addresses, EDCs, link ETXs, RSSIs, etc. Figure 3 shows
3 categories of local network states. Vital state including
node EDC and its neighbor list is requisite for reconstructing
the underlying opportunistic routing structure. Recovery state,
including node EDC, link ETX and RSSI of neighbors, is
redundant and used to tolerate possible incompleteness of vital
state. All the other properties of the node, e.g. the battery level
and the congestion level, etc., which enable the network users
to making QoS decisions, are called QoS state.

State report. A node piggybacks its local state in the
payload of packets. Reporting frequency is controlled by a
period parameter T adaptively ranging from Tmin to Tmax.
Initially, T is set to Tmin during bootstrapping, in order to
catch up with network fluctuations in this phase. Then, T
increases additively until reaching Tmax. During the process of
additive increase, a node u computes the fluctuation parameter
of its local network state:

fu =

|NBu|∑
t=1

sgn(EDCu − EDCNBu(t) − ω)× 2t−1

NBu is the neighbor list of u, and |NBu| refers to the
length. NBu(i) denotes the ith neighbor of u. Parameter ω
is a constant value describing the cost of forwarding a packet

over one hop [7]. sgn(x) =

{
1 , x ≥ 0

0 , x < 0
is a sign function.

As we can see, only when the fluctuation is huge enough to
alter the underlying routing structure will fu changes. Thus,
Pangu uses fu as an indicator, and multiplicatively decreases
T when detecting a significant fluctuation.

State inference. Next, we describe how to utilize these
asynchronous reports to infer a global network state. In a
network of n sensor nodes, we denote the minimal global
network state as an adjacent matrix A = (aij)n×n and an

EDC vector E = (ei)1×n, which are essential for centralized
modality allocation. Here, we choose to use vital stateand
partial recovery state (neighbor EDCs) to infer A and E .

To get A and E , we introduce the concept of EDC matrix
M = (mij)n×n representing both two of them. mii = ei is
the EDC of node i. If mij > 0 (i 6= j), it means that j is
a neighbor of i, and i receives j’s EDC, mij . If mij equals
0, it means that node i and j are not adjacent. Ideally, we
should have a synchronous state where ∀i ∈ [1, n],mii > 0
and mji = mii,∀j ∈ {j | mji > 0, j ∈ [1, n]}. However, the
reports come asynchronously with unpredictable packet losses.
Thus, the controller can only maintainM by processing these
reports one by one, with the consideration of filling vacancies.

The report from node i (∀i ∈ [1, n]) containing
(i,EDCi) and {(j,EDCj)|j ∈ NBi} can be converted
to a sparse report vector Ri = (rk)1×n, where rk ={
EDCk , k ∈ {i}

⋃
NBi

0 , otherwise
. Then, upon receiving Ri, we

could simply replace Mi, the ith row of M, with it. Never-
theless, the order of receiving time on controller doesn’t have
to comply with the order of sending time on the node, due to
the inestimable transmission delay. Thus, before replacingMi

with a newly-comingRi, we should first compare the sequence
number of corresponding packets. The controller records qlast,
the sequence number of the packet associated with the last
replacing operation for each row. And it should abort current
maintenance task if qrcv , the sequence number of the packet
containing Ri, is not larger than qlast.

After the above replacing operation, we should decide
whether to update mjj with the value of rj , ∀j ∈ NBi.
The sequence number won’t work, since the nodes are not
synchronized. We additionally equipM with a reference time
tref . tref (i) stands for the referred sending time of the packet
that updates mii (EDCi). Supposing the packet is generated
by node k, we can define

tref (i) = tupdate(i)− EDCk × Tnode
, where tupdate(i) is updating time and Tnode represents the
constant working period of the nodes. Then, we replace mjj

with rj only when tref (i) > tref (j).
The above strategy based on a transmission model leverag-

ing the definition of EDC is concise but effective. However,
more exquisite and complicated models could take link quality,
link RSSI or the other user-specific recovery state into con-
sideration to obtain a more meticulous global network state.

B. Modality Allocation

As a SDN architecture, Pangu shields underlying details of
the network stack by abstracting nodes’ forwarding behaviors,
and provides the interface of configuring modality properties to
manipulate such behaviors. Although the controller could hand
over the task of modality allocation to network users as what
traditional SDN does, we should have a better understanding
of the allocation problem in some respects, such as how to
generate a feasible allocation and how to satisfy performance
requirements, etc.



From routes to a feasible allocation. With the EDC matrix
M offered by topology manager, one can easily convert it
to the underlying routing structure, which can be represented
as a DAG G(V,E). Then, we can introduce the necessity of
a feasible allocation. After pruning G into a set of sub-nets
{Gi(Ui

⋃
Vi, Ei)|i ∈ [1, k]} (§III-B) with a feasible allocation,

it is necessary to provide ∀v ∈ V with at least one route to the
sink in sub-net Gi, if v ∈ Vi ( NM(v) = mi ). Consequently,
assuming that ∀v ∈ V is provided with a route set Pv that
contains one or multiple routes from v to the sink, we can
generate an allocation with the following steps:

1) Assign ∀v ∈ V with one node modality NM(v) ∈M =
{m1, ...,mk}, guided by upper-level multi-function ap-
plications.

2) For ∀v ∈ V , enumerate every route p ∈ Pv

3) Mark the modal filter MF(u) of node u ∈ {u|u 6= v,
route p contains node u} with NM(v), that is, MF(u) =
MF(u)

⋃
{NM(v)}

Obviously, the easiest way to generate a feasible allocation
is to uniformly set the modal filters of all nodes to M . Then,
Pangu degrades to the ordinary ORW. Hence, to make a more
proper allocation that can really satisfy upper-level require-
ments, it is necessary to bring in additional constraints for the
network, e.g. end-to-end delay, throughput, load balance, etc.

Allocation under one constraint. End-to-end delay is one
of the most common but essential performance requirements
for WSNs. To achieve a lower expected end-to-end delay,
we could generate a modality allocation that minimizes the
maximum hop count from the nodes to the sink, which is often
denoted as network radius. Next, we present a simplified algo-
rithm to generate a minimum-radius allocation by enhancing
breadth-first search (BFS):

1) Do BFS from the sink, and build a BFS tree
TBFS(VTBFS

, ETBFS
)

2) For an edge e = (v, u) /∈ EBFS, if the hop count
difference between v and u equals 1, add e to ETBFS

and finally get a desired route graph GBFS

3) For a node v and its children list CDv , com-
pute its modal filter recursively with MF(v) =⋃

u∈CDv
(NM(u)

⋃
MF(u)).

Step 2 aims at balancing load among the nodes who have
the same hop count in TBFS, without disturbing minimization
of network radius.

Allocation under multiple constraints. The above algorithm
is supposed to generate a flat routing graph, which makes
backbone nodes with relatively small hop count very busy.
To limit the traffic load of these nodes, the constraint on in-
degrees of the nodes could be further brought in.

A few works have been working on solving the bounded-
degree minimum-radius spanning tree (BDMRST) problem
[20][21]. First, BDMRST is proved to be NP-hard. Then, for
any instance of BDMRST with degree constraint ∆∗, these
works propose (α, β)-bicriteria approximation algorithms to
provide a spanning tree satisfying the following two condi-
tions: 1) The degree of any nodes in the spanning tree is

at most α + ∆∗. 2) The radius of the spanning tree is at
most β ·OPT, where OPT is the minimum possible radius of
any spanning tree whose degree is bounded by ∆∗ [21]. By
improving this family of algorithms, that is α → 0, β → 1,
we can get a more and more accurate approximation of the
optimal solution. Thus, we can apply these algorithms to build
a spanning tree, and then recursively compute modal filters of
the nodes.

The above two examples are common but simple. More
constraints, such as minimum duty cycle, residual power
limitation, QoS constraint, and multi-function priority etc.,
could be considered when generating an appropriate allocation.

C. Control Dissemination

Under different modality allocations, nodes might behave
differently when making routing decisions. Thus, we should
try to avoid the incidents such as packet loss, retransmission
and looping etc., caused by inconsistent local forwarding
behaviors. Pangu uses version number (VN), a common mech-
anism in data dissemination protocols [22][23], to identify
which allocation a node is now referring to.

After generating a feasible allocation, Pangu controller
delivers it with a new VN to the sink via the serial com-
munication. Then, the sink disseminates them to the whole
network rather than to one or some specific nodes at a time,
because the ORW protocol is designed for data collection tasks
and it would take too much effort to implement peer-to-peer
communication.

It takes time to flood a packet to the entire network over
multi-hop wireless links, especially for duty-cycled WSNs.
Thus, during the dissemination of a new allocation, there
could be a period when part of the nodes get the latest
allocation while the others do not. The nodes are not required
to switch to the latest allocation synchronously, because the
time synchronization would incur an additional cost. Instead,
a node instantly updates its local allocation upon receiving
an updated one. However, this light-weighted design might
incur locally-inconsistent forwarding behaviors due to the
differences between 2 contiguous allocations.

Besides data packets Data, extra control packets Request
and Inform are brought in to assist the control dissemination.
A node broadcasts Request packets to ask its neighbors for
the latest allocation. Inform packets containing a modality
allocation are either to passively answer a Request or to
proactively flood the latest allocation. Every packet is marked
with the VN of the node who sends it, in order to make local
inconsistencies of VNs easier to spot.

Proactive broadcast. Next, we will introduce the two-phase
procedure of the control dissemination. The first phase is
called proactive broadcast, during which a node v proactively
broadcasts a newly-arrived Inform, if MF(v) 6= ∅}. We
assume that {v ∈ V |MF(v) 6= ∅} should construct a
connected dominating set of the network. However, although
the proactive broadcast lasts one working period, v’s neighbors
might miss all these proactive Informs due to the channel
interference or conflicts. The eventual consistency of VNs is
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guaranteed by the second phase passive coordination, during
which the latest allocation spreads across the entire network
by exploiting local VN inconsistencies.

Passive coordination. First, we categorize the incidents
caused by local VN inconsistencies. As shown in Figure 4,
we can categorize the inconsistent cases into 2 types: Along
the direction towards the sink,

1) Case 1: An updated node Y generates a packet p1. Along
one of the expected routes towards sink, an updated
node A forwards p1. Then, it happens to be heard by an
outdated node B, who doesn’t know how to handle p1
under the latest allocation.

2) Case 2: An outdated node Z generates a packet p2.
Along one of the expected routes towards sink, an
outdated node C forwards p2. Then, it happens to be
heard by an updated node D, who only knows how to
handle p2 under the latest allocation.

The source node (e.g. Y ), the conflict node (e.g. A) and all
the other nodes between them along the expected route must
have the same VN, otherwise the conflict occurs before. Thus,
in Case 1, if we can update all subsequent nodes of A (e.g. B)
along this route to the latest version, p1 from Y can still reach
sink node along this expected route. However, some packets
already buffered in B before B gets updated might not accord
with new modal filters of B and B’s descendants and may be
discarded by them. In Case 2, the expected route built under
some outdated allocation may be torn apart under the latest
one. Updated subsequent nodes may no longer forward packets
of the same modality as p2. Moreover, the worst case is that
there isn’t any intersection between former and latter expected
routes, in which case p2 must be returned to its source Z.

The similar cases of inconsistent network behaviors do
happen in SDN for wired networks and the predefined default
behavior is often used to avoid packet loss or looping [24].
Pangu inherits similar ideas and leverages the fact that data
packets always flow towards the sink to solve the above
problems. We introduce omni-modality, which can pass any
non-empty modal filter, to play the role of the default behavior.
Packets marked with omni-modality can be forwarded by any
potential nodes who have the routing progress, and finally
will be delivered to the sink. Detailed rules of the passive
coordination are as follows:
• When an outdated node B receives a packet p1 from

an updated node A, B first marks all packets in the
forwarding queue with omni-modality, discards p1 and

does not reply an ACK. Then, B continuously broadcasts
a Request for the latest allocation and suspends its
normal work until getting updated.

• When an updated node D receives a packet p2 from an
outdated node C, D first marks p2 with omni-modality,
buffers it and replies an ACK. Then D broadcasts an
Inform for a working period to make C and all the
other outdated neighbors aware of the latest allocation.

V. IMPLEMENTATION AND EVALUATION

A. System Implementation

Pangu architecture contains two parts of components, the
protocol stack and the controller. We implement the protocol
stack by integrating our approaches into the original ORW
stack on TinyOS. We keep the basic modules that maintain
the neighbor table and compute EDC distributedly, and im-
plement aforementioned centrally-controlled forwarding be-
haviors, state report mechanisms and control dissemination
strategies. In our prototype system, NM is represented as a 8-
bit vector and thus there are 28 types of forwarding behaviors
among the nodes. The header of a Pangu packet only takes
additional 4 bytes. The controller, written in Java 7, fulfills
aforementioned components in §III.

B. Testbed-Based Evaluation

we conduct the evaluation of Pangu on a test-bed of 50
commercial TelosB Motes. The test-bed is a 5× 10 grid and
the distance between any two adjacent motes is 20cm. We put
a unique sink at a corner of the test-bed, and connect it to
the controller running on an Ubuntu system through the USB
serial port. With the transmission power set to a minimum
of -25dBm, the network diameter is about 4 to 5 hops under
the above deployment. In the following experiments, the LPL
period of the motes is set to 2000ms. Basically, the data
sampling period is 30s and the beaconing period is 2min.

The evaluation contains 3 parts, an observation of network
fluctuation during dense control disseminations, an analysis
of allocation convergence time under different circumstances
and a measurement of system performance with multi-function
tasks. All of the modality allocations in these experiments
are automatically generated by the minimum-radius generation
algorithm (§IV-B).

C. Impact of Control Dissemination on Duty Cycle

When a new allocation is disseminated throughout the net-
work with the help of the proactive broadcast and the passive
coordination, the system performance is likely to decrease for
a short period. In this experiment, we analyze the impact of the
control dissemination on the system performance by observing
the duty cycle fluctuation among the nodes.

We set the sampling period to 120s and trigger 4 continuous
control disseminations with an average interval of 100s. The
dissemination interval is comparable to the sampling period,
thus we can observe and compare the fluctuations of the
performance caused by these two factors. In Figure 5, we plot
the duty cycle fluctuations of the overall moving average, the
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Fig. 5. An observation of duty cycle fluctuation during the control
dissemination.
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Fig. 6. The CDF of convergence time under 3 different scales.

duty cycle of a non-leaf node and the duty cycle of a leaf
node.

We can tell from the moving average of duty cycle that
Pangu achieves a low average duty cycle among nodes in the
stable network, and the control dissemination increases the
average duty cycle of the nodes but this impact is acceptable
compared to normal data transmission. By comparing the duty
cycle of the nodes with different forwarding behaviors, we
verify that a non-leaf node has a relatively higher duty cycle
because it does more work during the proactive broadcast and
the passive coordination.

D. Convergence Time under different circumstances

1) Convergence Time and Scale: The interval between the
time when the sink starts disseminating an allocation and the
time when the last node in the network gets this allocation
is regarded as the convergence time. Therefore, the expected
upper bound of the convergence time is in direct proportion
to network diameter.

In this experiment, we measure the convergence times of
three grid networks of different scales (4 × 4, 5 × 7 and
5 × 10). For each scale, we sample the convergence time
for 50 times and plot the CDF in Figure 6. From the CDF,
we could tell that the network with a larger diameter has a
longer average convergence time, and in a specific network,
the system converges quickly in most cases. However, in some
cases, it still takes a relatively long time (e.g. 300s, 2.5X the
data sampling period) for the network to converge, since our
system can ensure the reliability of packet forwarding without
the requirement for the strong consistency of the allocation
version.
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Fig. 7. Convergence time bounded by beaconing period and data
sampling period.
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2) Convergence Time and Transmission Period: Other two
factors, the beacon period Tb and the data sampling period
Tds might bound the convergence time T due to the strategies
of the passive coordination. In this section, we compare
convergence times under the parameters of Tb ∈ {Tb1 =
60s, Tb2 = 120s} and Tds ranging from 10s to 360s. For
each pair of Tb and Tds, we measure T for 20 times.

Figure 7 shows the box plot of T under different configura-
tions. We can conclude from the results that when Tds ≤ Tb1,
Tds bounds T , because regardless of the value of Tb, T in-
creases slightly as Tds increases. And when Tb1 < Tds ≤ Tb2,
either Tb or Tds can bound T , because a decrease of Tb or
Tds could lead to a reduction in T .

E. Multi-Function Pangu Evaluation

Pangu enables multi-function WSNs by providing multiple
choices of node modalities for the nodes. In this experiment,
we evaluate Pangu under different settings of the number of
modalities M , and find that a proper choice of M can benefit
the performance of Pangu in a dense WSN. With M ranging
from 1 to 8, we randomly assign NMs, and measure the
average hop count for each node over a 30min stable time.

As shown in Figure 8, we find that the average hop count
diminishes while M increases. As M increases, the randomly-
generated modality collection becomes more discrete and a
node may have fewer but better choices of forwarders. Our
modality allocation algorithm always provides a node with
multiple optimal forwarders in a simplified model, thus if more
choices are offered, the packets from this node have a higher
probability to be relayed by those forwarders that are actually
sub-optimal.
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Fig. 9. Correlation between the in-degree of a node and the size of its modal filter under different values of M .

Moreover, we analyze the correlation between the in-degree
of a node and the size of its modal filter, which represents
the number of modalities it is allowed to pass, in order to
evaluate the effectiveness of our generation algorithm. Figure
9 shows that basically fewer nodes have a larger size of modal
filter, regardless of the number of modalities M . The result
suggests that the actual work these nodes does can match
their centrally-defined forwarding behaviors, which means our
modality-based software-defined approach and corresponding
allocation generation algorithm can effectively present the
underlying routing structure.

VI. CONCLUSION

In this paper, we propose Pangu, an innovative software-
defined architecture for multi-function wireless sensor net-
works. Pangu enables network users to centrally define the
forwarding behaviors of nodes in the underlying opportunistic
routing protocol. This feature is obtained by introducing the
concept of modality properties of the sensor nodes. With the
help of centrally-defined modality properties, the network is
partitioned into multiple desirable sub-nets that can satisfy the
upper-level requirements for system performance. Moreover,
we explore the critical problems of the architecture design,
such as the maintenance of global states, the allocation and
dissemination of modality properties. Finally, we evaluate the
performance of a prototype system, and the corresponding
results demonstrate the feasibility and the effectiveness of
Pangu.
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