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Abstract— Asynchronous duty cycle is widely used for energy
constraint wireless nodes to save energy. The basic flooding
service in asynchronous duty cycle networks, however, is still
far from efficient due to severe packet collisions and contentions.
We present Chase, an efficient and fully distributed concurrent
broadcast layer for flooding in asynchronous duty cycle networks.
The main idea of Chase is to meet the strict signal time
and strength requirements (e.g., Capture Effect) for concurrent
broadcast while reducing contentions and collisions. We propose
a distributed random inter-preamble packet interval adjustment
approach to constructively satisfy the requirements. Even when
requirements cannot be satisfied due to physical constraints (e.g.,
the difference of signal strength is less than a 3 dB), we propose
a lightweight signal pattern recognition-based approach to iden-
tify such a circumstance and extend radio-on time for packet
delivery. We implement Chase in TinyOS with TelosB nodes and
extensively evaluate its performance. The implementation does
not have any specific requirement on the hardware and can be
easily extended to other platforms. The evaluation results also
show that Chase can significantly improve flooding efficiency in
asynchronous duty cycle networks.

Index Terms— Wireless communication, concurrent broadcast,
Internet of Things, network flooding, asynchronous duty cycle.

I. INTRODUCTION

INTERNET of Things (IoT) [23], [25], [33] is becoming
a promising way to enhance our daily life. Many battery

powered wireless nodes in IoT have limited power supply.
To save energy, low duty cycle radio management is widely
used as radio is a major part for energy consumption [12].
Asynchronous duty cycle, namely LPL (Low Power Listening)
(e.g., Box-MAC [26], Zisense [34], [35]), is one of the most
commonly used low duty cycle modes [2], [19]. In LPL,
instead of keeping radio always-on, each node periodically
turns on the radio to detect potential signal by sampling
the received signal strength (RSS). If a signal is detected,
the node keeps the radio on to receive potential incoming
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packet. Otherwise, the node turns off its radio and sleeps for a
certain time period (called sleep interval). In LPL, nodes are
not synchronized and have different schedules to turn on their
radios (called active schedule).

Flooding is a fundamental service and a basic building
block for LPL networks. For example, flooding is the basis
for propagating messages (such as binary image [4], [6], [27],
[36], time stamp [11], [24], etc) to all nodes. Flooding is
also widely used to notify nodes [21] and update system
parameters [32], which is common for practical networks.

In LPL, each node keeps transmitting the same
packet (called preamble packet) for whole sleep interval
in order to ensure that the receiver can wake up once.
In flooding, multiple nodes may simultaneously broadcast
the same packet. Thus those nodes will keep transmitting
the preamble packets at the same time, which introduces
much more packet contentions and collisions than that in
traditional networks [1]. This further leads to a dilemma for
flooding in LPL. On one hand, a node needs to transmit
the preamble packet multiple times to ensure the packet
can be delivered. On the other hand, transmitting preamble
packets from multiple nodes at the same time results in
packet contentions and collisions. Consequently, as observed
in Section II, the delay of flooding in LPL is very large.

Despite of the practical prevalence of LPL, the basic LPL
network flooding is still not efficient. Many flooding protocols
[5], [15], [16], [27], [31], [37] assume the radio is always
on. Based on either structure or structureless methods, they
select the optimal set of senders to quickly cover all nodes
with the minimum packet transmissions. However, they are
hard to adapt the temporal diversity of asynchronous duty
cycle in LPL. Combining with explicit wake-up schedules of
neighbors and data collection tree structure, Guo et al. [14]
propose opportunistic flooding for duty cycle network. One
practical limitation is that it is hard to obtain the wake-up
schedules of all neighbors in dense network. Thus, some
delivery chances may be overlooked. Moreover, the wake-
up schedules of neighbors and data collection tree structure
also need extra maintenance overhead. Further, synchronous
flooding protocols (e.g., Glossy [11], Splash [4] and Pando [6])
use constructive interference to fast flood packet after all nodes
synchronously wake up. Synchronous flooding protocols fit
those applications with periodical flooding demands so that
the applications can periodically make all nodes wake up
from asynchronous duty cycle. However, they do not work for
irregular flooding requests. As a result, network protocols and
services (e.g., network parameter update, network notification)
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built on top of flooding are also not efficient in LPL network.
In this paper, we present Chase, an efficient and fully

distributed broadcast layer for LPL network flooding. The
basic idea of Chase is to remove the influence of packet con-
tentions/collisions and improve the concurrency of preamble
packets, i.e., improve the successful ratio while multiple nodes
are transmitting the preamble packets. Concurrent broadcast
has strict requirement on time and signal strength. For exam-
ple, for capture effect [10], [18] which enables concurrent
broadcast, the strongest signal should not arrive later than a
certain tiny time offset after the first weak signal. Besides,
the strongest signal strength is at least 3 dB larger than the
sum of others.

In Chase, we use a random Inter Preamble Packet Inter-
val (IPPI) adjustment model to minimize the waiting time to
meet a preamble packet that satisfy the time offset requirement
of capture effect. We use several common random functions
to show that the time offset of capture effect can be achieved
with a high probability. Moreover, when the requirements of
capture effect cannot be satisfied due to physical constraints,
we notice that the shape of the sequence of received signal
strength is much different between concurrent broadcast and
normal transmission. Chase leverages a light-weight classifier
of signal pattern recognition to identify concurrent broadcast.
When concurrent broadcast is detected and no flood packet
is received, Chase extends radio-on time to ensure packet
delivery.

We implement Chase in TinyOS with TelosB nodes. The
implementation does not have any specific requirement on the
hardware and can be easily extended to other platforms. We
conduct extensive evaluation and the evaluation results show
that Chase can significantly improve the flooding performance
in asynchronous duty cycle networks. Our contributions are
summarized as follows.

• We propose Chase, an efficient and fully distributed
broadcast layer to support concurrent broadcast for flood-
ing in asynchronous duty cycle networks.

• We address the difficulties in supporting concurrent
broadcast in practical asynchronous duty cycle networks
and design light-weight and efficient countermeasures.

• We implement Chase in TinyOS with TelosB nodes [30].
The evaluation results show that Chase can significantly
improve flooding speed.

The rest of paper is organized as follows. Section II illus-
trates the basic model of LPL broadcast and performance of
LPL flooding. Section III shows the detailed design of Chase.
Section IV and V show the implementation details and evalu-
ation results, respectively. Section VI introduces the related
work. We discuss several technical issues in Section VII.
Finally, Section VIII concludes this work.

II. EMPIRICAL STUDY

In this section, we analyze the performance of flooding in
LPL networks, and conduct experiments to show the ineffi-
ciency of flooding in LPL networks.

A. Flooding in LPL
As shown in Figure 1, S broadcasts packets to two neighbors

A and B. The sleep interval is Tl for both A and B. In LPL,

Fig. 1. Illustration of LPL broadcast from sender S to its neighbors A and B.

Fig. 2. Illustration of the situation of packet mishear and packet collision.
(a) Packet mishear. (b) Packet collision.

the active schedule are asynchronous. After turning on the
radio, a node continuously samples the RSS for a time
period of Ts (called RSS Sampling). Sometimes, the radio
is further kept on for Tt (called Tail) to receive potential
preamble packets. When S prepares to broadcast, S turns on
the radio and keeps transmitting the preamble packets for a
time period of Tp. The Inter Preamble Packet Interval between
two consecutive preamble packets (i.e. IPPI) is denoted as
Tippi. The on air time of a preamble packet is denoted as Ta.

There are two requirements for broadcast in LPL. First,
Tp > Tl to ensure S can meet A and B at their rendezvous.
Thus, broadcast in LPL will occupy the channel for a long
time. Second, Ts > Tippi to ensure A and B can detect the
signal from S. In practice, Tt is usually several times of Ta to
ensure A and B can successfully receive at least one preamble
packet.

The impact of flooding in LPL is from the following aspects.
First, flooding in LPL will result in backoff for preamble
packets, which further leads to the increasing of IPPI Tippi.
As we have mentioned, the sampling time Ts is related
to Tippi. When Tippi increases, the sampling time Ts becomes
less than Tippi. As shown in Figure 2(a), S1 and S2 are
broadcasting. S2 takes random backoff when it detects signal
from S1. The backoff can significantly increase Tippi. Thus Ts

of C becomes less than Tippi. Then C might fail to detect the
signal from S2. We call such a phenomenon Packet Mishear.

Second, it is even worse when two or more nodes cannot
hear from each other. They may simultaneously transmit
preamble packets which further results severe collisions. As
shown in Figure 2(b), S1 and S2 are hidden terminals. There-
fore, preamble packets from S1 and S2 collide sequentially.
S1 must rebroadcast till B successfully receives one preamble
packet.

B. Impact of Mishear and Collision

We further conduct experiments to show the impact
of packet mishear and packet collision in real networks.
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Fig. 3. The impact of channel contention and hidden terminal on Tippi, packet reception ratio and delay. (a) Tippi distribution. (b) Packet Reception Ratio.
(c) Delay distribution.

Fig. 4. Default settings of Box-MAC LPL in TinyOS.

As shown in Figure 4, we use the default settings of Box-MAC
[26] in TinyOS. Tp is set to 532ms, which is 20ms larger than
Tl. Ts is set to 12ms. The length of each preamble packet is
set to 77 bytes and the corresponding on-air time is 2624 μs.
We use channel 26 in the experiments, the least overlapped
channel with coexistent interference (e.g. WiFi, Bluetooth).

First, we use two TelosB nodes S1 and S2 as shown
in Figure 2(b). We first record Tippi of S2 when only S2

broadcasts. We also record Tippi of S2 when both S1 and S2

broadcast. The distribution of Tippi is shown in Figure 3(a).
For the first case, over 99.9% of Tippi is less than Ts. However,
for the second case, about 67.7% of Tippi is less than Ts. Thus
the probability of packet mishear is significantly increased.
Even C detects the signal from S2, about 14% of Tippi is
larger than Tt so that C may not receive any preamble packet
in tail.

In the second experiment, the topology is shown
in Figure 2(b). We set the power level of S1 and S2 to 7.
The average RSS difference between S1’s and S2’s signals is
about 2 dB for B. The capture effect does not work in most of
cases. We separately measure the packet reception ratio of link
S1→B under clear environment and hidden terminal. As shown
in Figure 3(b), almost all packets can be successfully received
under clear environment. Under hidden terminal, although
B can receive a few of packets, the packet reception ratio
dramatically decreases to 12.2%.

We further examine the impact of packet mishear and colli-
sion on delay. We measure the flooding delay of C and B under
clear environment. As shown in Figure 3(c), the broadcast
delay is almost uniformly distributed between 0 and Tl in clear
environment. However, the delay is significantly increased due
to packet mishear and packet collision. About 36.2% of delay

Fig. 5. Overview of Chase.

is larger than Tl due to packet mishear. Moreover, over 86.2%
of delay is larger than Tl due to packet collision.

To conclude, due to the long time transmission of multiple
preamble packets and bursty broadcast, the probability of
packet contentions and collisions is high in LPL network
flooding, which further increases the flooding delay. Con-
current broadcast in LPL is not well supported by existing
strategies. Thus, we need to develop a practical strategy for
reliable concurrent broadcast in LPL. With reliable concurrent
broadcast, each node can immediately broadcast its received
packet during flooding. The speed of network flooding is
accelerated.

III. Chase DESIGN

The goal of Chase is to improve reliability of concurrent
broadcast in LPL. To achieve the design goal, there are several
requirements:

• First, to support concurrent packet transmission, there are
strict requirements on packet transmission. We leverage
capture effect in Chase by distributedly and constructively
satsifying two requirements: 1) signal time: the strongest
signal must be received no later than 160μs after the first
signal, and 2) signal strength: the strongest signal must
be 3 dB larger than the sum of other signals.

• Second, when the signal time or the signal strength
requirement cannot be satisfied due to physical constraint,
Chase should ensure that broadcast packet can also be
successfully delivered.

A. Design Overview

We illustrate the design overview of Chase in Figure 5. The
design of Chase mainly consists of two components.
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First, instead of using explicit signal time controlling tech-
nique as in existing approaches, a randomized IPPI tech-
nique is proposed to satisfy the signal time requirement. The
technique is fully distributed while introduces no additional
overhead. With randomized IPPI technique, we show that as
long as the signal strength requirement of multiple received
signals can be satisfied, receiver can successfully receive a
preamble packet in short time.

Second, it is also possible that signal strength cannot be
satisfied. We propose a signal pattern based tail extension
method. With such a method, each node can detect whether
there are broadcast packet collisions even without receiving
packets. If there are, the node will extend the radio-on time
until a packet is successfully received.

We take Figure 5 as an example to illustrate the principles of
Chase. S1 and S2 concurrently broadcast the flooding packet.
The average received RSS difference between strong and weak
signals is 2 dB for B and 13 dB for C. Compared with weak
signal from S1, the time offset for strong signal from S2 varies
with random IPPI (details are in Section III-B). As long as
there exists a difference less than 160μs, C can receive the
S2’s preamble packet.

Meanwhile, due to signal strength constraint, B in no means
can successfully receive any overlapped preamble packet as
shown in Figure 5. In such a case, B needs to first detect
the existence of collided broadcast packets. Chase achieves
this by analyzing the signal pattern since the signal pattern
of collided broadcast packets is different from that of single
LPL transmission (details are in Section III-C). We add a
time extension to Tt for node B such that B can receive
the incoming preamble packets after S1 or S2 finishes its
transmission.

In asynchronous duty cycle network flooding, it is rare that
all broadcast packets from different senders (e.g., S1 and S2
in Figure 5) are transmitted at the same time. Once it happens,
receiver (e.g., B in Figure 5) may fail to receive any preamble
packet. In such a case, the receiver will immediately send
a request to ask senders to rebroadcast when the signals of
collided broadcast packets disappear, but no broadcast packet
is successfully received. When sender receives the request
from receiver, it will start to broadcast after a random backoff.

B. Random IPPI Adjustment

To reduce packet collision, each concurrent sender dis-
tributedly and randomly sets its Tippi in order to achieve a
time offset to satisfy the temporal constraint of capture effect
at a receiver. We first give the basic two-senders model in
Section III-B1. Further, we construct multiple-senders model
and show the efficiency of random IPPI with increasing of
concurrent senders in Section III-B2.

1) Two-Senders Model: In two-senders model, as shown
in Figure 6, the sender that provides high RSSI is called
strong signal, the other is called weak signal. After a receiver
wakes up, it continuously hears some overlapped preamble
packets. θ indicates the time offset between the first pair of
overlapped preamble packets. If θ does not satisfy the temporal
constraint of capture effect, the receiver cannot successfully

Fig. 6. Definition of valid packet that satisfies the time requirement of capture
effect in concurrent broadcast.

decode the preamble packet of strong signal. The question is
how to make a preamble packet of strong signal to fulfill the
temporal constraint of capture effect as soon as possible by
randomly adjusting Tippi.

Tippi must be less than RSS sampling time Ts to avoid
that receiver misses the rendezvous with sender. In Chase,
we require Tippi be in the range [0, Ts − δ], where δ serves
as a guard time. Assume fclock is the frequency of MCU
clock, Tippi is mapped to random integer X in the range
of [0, (Ts − δ)fclock]. We define valid packet to indicate the
preamble packet of strong signal that satisfies the temporal
constraint of capture effect. In contrast, the other preamble
packets are called collision packet Given the packet on-air time
Ta and the initial time offset θ, our objective is to choose X to
minimize the expected delay Δvalid (denoted as E(Δvalid))
which is from the beginning of the first collision packet to the
coming of the earliest valid packet.

We assume that k preamble packets of strong signal and
k′ preamble packets of weak signal are transmitted during
Δvalid, respectively. In Figure 6, both k and k′ are 3. The
(k + 1)th (e.g., 4 in Figure 6) preamble packet of strong
signal is the earliest valid packet. We use Tippi and T ′

ippi to
denote the random IPPI for strong signal and weak signal,
respectively. T i

ippi and T ′i
ippi denote the ith IPPI between the

ith and (i + 1)th preamble packets. Xi and X ′
i denote the

corresponding random integers of T i
ippi and T ′i

ippi. We have

min E(Δvalid)

where Δvalid = kTa +
k∑

i=1

T i
ippi

s.t. Ta ∈ [574, 4256]μs 1
θ ∼ uniform((160, Ta]) 2

(k′ − k)Ta +
k′∑

j=1

T ′j
ippi − θ

−
k∑

i=1

T i
ippi + 160 ≥ 0 3

(k − k′)Ta +
k∑

i=1

T i
ippi

−
k′−1∑

j=1

T ′j
ippi + θ ≥ 160 4

∀i ∈ [1, k], T i
ippi = Xi/fclock 5

∀j ∈ [1, k′], T ′j
ippi = X ′

j/fclock 6
X, X ′ ∼ f(X) 7
∫ (Ts−δ)fclock

0

f(X)dX = 1 8 (1)
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Fig. 7. (a) shows CDFs (Cumulative Distribution Function) of three distribution of random variable X. The CDF of Δvalid given
(b) X ∼ Exponential(1/180), (c) X ∼ Uniform(0, 180) and (d) X ∼ Gaussian(180, 60) separately with diverse Ta ∈ [576, 4256]. (e) Fixed
Exponential Distribution. (f) Fixed Uniform Distribution.

The constraint 1 defines the range of Ta. The constraint 2
defines the random initial time offset θ corresponds to an
uniform distribtuion. The constraint 3 means that the valid
packet of strong signal comes no later than 160μs after that
of weak signal. This corresponds to temporal constraint of
capture effect. The constraint 4 indicates that the valid packet
of strong signal comes a preamble length (i.e., 160μs) later
than the end of the last collision packet of weak signal. This is
a sufficient condition to ensure that no collision packet of weak
signal already triggers receiving process when the preamble
of valid packet is coming. The constraints 5 and 6 show the
relationship between each IPPI of strong and weak signals
and the random integers X and X ′. Due to the feasibility of
system deployment and management, all nodes usually take
the same random strategy. The constraint 7 means X and X ′

are independent and identically distributed. f(X) indicates the
probability density function. The constraint 8 shows the range
of X is [0, (Ts − δ)fclock].

To evaluate the impact of X , we use two common strategies.
First, X varies for each IPPI. We set three distributions of
X , namely Exponential, Uniform and Gaussian. X randomly
varies and follows the corresponding probability distribu-
tion (i.e., exponential, uniform, gaussian). Second, X is fixed,
but its value varies in different nodes. We further use Fix
Exponential and Fix Uniform contributions. Given different
random seeds (e.g., node ID) of strong signal and weak signal,
the values of X and X ′ are calculated by the seeds and
follow corresponding probability distribution (i.e., uniform,
exponential). On TelosB node, the finest granularity of stable
MSP430 MCU clock is 32768 Hz. According to default Box-
MAC [26], we set Ts and δ to 12ms and 1ms, respectively. The
CDFs of the five distributions of X are shown in Figure 7(a).
To show the influence of Ta on X selection, we select
6 different values of Ta ranging from 574μs to 4256μs.

The results are shown in Figure 7. We can see that for
all five distributions, Δvalid increases while Ta increases.

The reason is that the length of overlapped signals is long
with large Ta. The long overlapped signals need more time
to reverse the order. Moreover, compared with Exponential
(Figure 7(b)), the Δvalid of Fix Exponential (Figure 7(d))
increases much faster. No more than 70% of Δvalid is less
than 100000μs when Ta is larger than 2796μs. The trend is
much similar in the comparison between Uniform (Figure 7(c))
and Fix Uniform (Figure 7(f)). This observation indicates that
the strategy of fixed X is less efficient than varied X . The
reason is that the difference between X and X ′ is also fixed
with fixed X and X ′. Either small or large fixed difference
needs more time to reverse the order of overlapped signals.

Moreover, compared with Uniform (Figure 7(c)) and Expo-
nential (Figure 7(b)), the Δvalid of Gaussian (Figure 7(d))
increases much faster. No more than 20% of Δvalid is less than
100000μs when Ta is larger than 2796μs. The reason is that
the variance of Tippi under gaussian distribution is less than
the other two distributions as shown in Figure 7(c). It needs
more time to reverse the order of overlapped signals with small
variance of Tippi. The trend of Exponential (Figure 7(b)) and
Uniform distribution (Figure 7(c)) is much similar. After about
5000μs waiting, it is possible to capture one valid packet when
Ta is 4256μs. After 100000μs waiting, at least one valid packet
can be captured for all Ta.

Next, we will carefully compare the E(Δvalid) between
Exponential and Uniform. Since Δvalid is non-negative,
the relationship between E(Δvalid) and CDF function
F (Δvalid) is as follow:

E(Δvalid) =
∫ ∞

0

(1 − F (Δvalid))d(Δvalid) (2)

In Figure 7, E(Δvalid) is equal to the area of the upper left
region encompassed with CDF curve, left and upper border
axes. Figure 8 shows the difference of E(Δvalid) between
Exponential and Uniform under various of Ta. When Ta is less
than 2796 μs, the E(Δvalid) of Exponential is about 33 0μs
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Fig. 8. The difference of E(Δvalid) between uniform and exponential
distribution of X under different on-air time.

smaller than Uniform. The E(Δvalid) of Uniform is smaller
than Exponential when Ta is larger than 2796 μs. When Ta

is 4256 μs, the E(Δvalid) of Uniform is 815 μs smaller
than Exponential. In summary, Chase chooses Exponential
distribution when Ta is smaller than 2796 μs and Uniform
distribution for the rest of Ta.

2) Multiple-Senders Model: Two senders construct the basic
concurrent transmission scenario, but there are usually more
concurrent senders in real scenarios. In general, we can divide
those signals into two categories, the strongest signal and other
signals. We call the overlapped other signals as “weak signal”.
Due to the extreme diversity of “weak signal”, it is hard to
put the timing of “weak signal”into a nutshell. However, in the
most conservative case, the temporal constraint between “weak
signal” and the strongest signal is satisfied when temporal
constraint between each independent signal of the “weak
signal” and the strongest signal is satisfied. Thus, we define
a multiple-senders model as the combination of multiple two-
senders models. We use this model to show the lower bound
of E(Δvalid) under multiple senders scenario.

We assume that “weak signal” contains Π signals. For the
wth signal, the initial time offset is θw and k′

w preamble
packets are transmitted during Δvalid. Moreover, we use
T ′i

ippi(w) to depict the ith IPPI between the ith and (i + 1)th

preamble packets. X ′
i(w) denote the corresponding random

integer of T ′i
ippi(w). Base on two-senders model, we have

min E(Δvalid)

where Δvalid = kTa +
k∑

i=1

T i
ippi

s.t. Ta ∈ [574, 4256]μs 1
∀w ∈ [1, Π], θw ∼ uniform((160, Ta]) 2

∀w ∈ [1, Π], (k′
w − k)Ta +

k′
w∑

j=1

T ′j
ippi(w)

−θ −
k∑

i=1

T i
ippi + 160 ≥ 0 3

∀w ∈ [1, Π], (k − k′
w)Ta +

k∑

i=1

T i
ippi

−
k′

w−1∑

j=1

T ′j
ippi(w) + θ ≥ 160 4

∀w ∈ [1, Π], ∀i ∈ [1, k],
T i

ippi(w) = Xi/fclock 5

Fig. 9. The E(Δvalid) under different number of concurrent broadcast and
different preamble packet on-air time.

∀w ∈ [1, Π], ∀j ∈ [1, k′],
T ′j

ippi(w) = X ′
j(w)/fclock 6

X, X ′ ∼ f(X) 7
∫ (Ts−δ)fclock

0

f(X)dX = 1 8 (3)

Compare with Equation 1, we renew several constraints to
adapt multiple senders scenario. In constraints 3 and 4, we add
temporal constraint for each signal that belongs to “weak
signal”. In this way, we guarantee the (k + 1)th preamble
packet of the strongest signal satisfies temporal constraint
when it coexists with “weak signal”.

We use the same LPL settings of Section III-B1. We set
X with adaptive distribution of uniform and exponential to
evaluate the E(Δvalid) under different number of concurrent
broadcasts and different preamble packet on-air time. The
results are shown in Figure 9. When Ta is small (e.g., 608 μs),
a valid packet appears no later than about 36ms under 11 con-
current broadcasts. With the increasing of Ta, E(Δvalid) is
also getting larger. When Ta is 2067 μs, E(Δvalid) increases
to about 400ms under 11 concurrent broadcasts. With the
maximum preamble packet on-air time 4256 μs, E(Δvalid) is
about 400ms under 7 concurrent broadcast. Further, E(Δvalid)
quickly becomes much larger than 1000ms. Thus, Chase
should control the number of concurrent broadcasts when the
length of preamble packet is close to maximum.

C. Tail Extension Strategy

It is possible that the requirements of capture effect cannot
be satisfied in Tt. In such a case, the receiver will extend
its tail time in order to receive more preamble packets when
collision occurs. Thus, our objective is to distinguish the
collided broadcast packets. Here, we exploit the RSS features
resulted from the sum of multiple preamble packets of different
senders with random IPPI. More specifically, we explore two
features (i.e., variances of on-air time and segment interval)
of continuously sampled RSS sequence to detect the collided
broadcast packets. If collided broadcast packets are detected
and no preamble packet is successfully received, Tt should be
extended.

1) RSS Sequence Sampling and Features: After each node
wakes up, it continuously samples the RSS. The RSS sampling
rate is fs. The sampled RSS sequence is denoted as R =
{r1, r2, ..., rn} in tail. Take TelosB node as an example, the fs

is set as about 3 samples per microsecond. When Tt, Ta and
Ts is 20ms, 3ms and 4ms, respectively, the sampled RSS
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Fig. 10. Illustration of the difference between RSS sequences of (a) signal
transmission and (b) concurrent broadcast.

sequences of single transmission and concurrent broadcast are
shown in Figure 10. The bottom RSS (about -96 dB) indicates
the noise floor, which corresponds to the signal strength of
background noise. The consecutive samples that are higher
than noise floor consist signal segment. Each RSS sequence
consists of segments connected by noise floor.

The first feature is the variance of on-air time, which
indicates the time difference of signal segments. As shown
in Figure 10(a), the on-air time of each segment of single
transmission is a fixed value in the range of [574, 4256]μs.
However, as shown in Figure 10(b), due to overlap of multiple
preamble packets of different senders in concurrent broadcast,
the on-air time of each segment varies and may be longer than
that of single transmission. The on-air time of each segment
is randomly distributed in the range of [574, +∞)μs. Thus,
the variance of on-air time of single transmission is almost
zero, while that of concurrent broadcast is not.

The second feature is variance of segment interval, which
indicates the difference of the interval between two adja-
cent segments. For single transmission, the segment interval,
namely Tippi, is almost fixed, as shown in Figure 10(a).
However, with the random IPPI adjustment, the segment
intervals of concurrent broadcast are randomly distributed
in the range of [0, Ts − δ]. Thus, the variance of segment
interval of concurrent broadcast is larger than that of single
transmission. The detailed steps for extracting features are as
follows.

2) RSS Sequence Segmentation: Given RSS sequence R =
{r1, r2, ..., rn}, the objective of segmentation is to extract
segments. If the RSS value increases from noise floor (denoted
as Noise) by a threshold Δrss, a start point is detected.
Similarly, when a RSS sample falls back to noise floor, an end
point is detected. Thus, the sets of start (S) and end (E) points
of segments are:

S = {s||rs−1 − Noise| < Δrss, |rs − Noise| ≥ Δrss} (4)

E = {e||re−1 − Noise| ≥ Δrss, |re − Noise| < Δrss} (5)

We set S and E in ascending order and put them in two
separated arrays IS and IE . We use IS(k) and IE(k) to
indicate the kth start and end points separatively. It is possible
that the start point of the first segment or the end point of the
last segment are not in S or E. To address the first case,
we remove IE(1) from IE if IS(1) is larger than IE(1).
To address the second case, we remove IS(|IS |) from IS if
IE(|IE |) is smaller than IS(|IS |). Hence, we have |IS | equals
to |IE | as the total number of segments K . The kth segment
can be represented by Rk = {rIS(k), rIS(k)+1, ..., rIE(k)}.

Algorithm 1 Identification Algorithm
Input: Feature temple (Von, Vsegi), decoded vector D.
Output: Whether the corrupted preamble packets belong

to concurrent broadcast.
1: if K equals 0. then
2: return FALSE.
3: else if ∃i ∈ [1, K], Di equals to 1. then
4: return FALSE.
5: else if K equals 1. then
6: return TRUE.
7: else if K equals 2 and Von < κ then
8: return FALSE.
9: else if Von < κ and Vsegi < τ . then

10: return FALSE.
11: end if
12: return TRUE.

3) Feature Extraction:
Variance of on-air time: The on-air time of the kth

segment is calculated as:

Ton(k) = (IE(k) − IS(k))
1
fs

(6)

where fs is RSS sampling rate. For K segments of RSS
sequence R, the variance of on-air time is calculated as the
difference between the largest and smallest Ton.

Von(R) = max{Ton(i) − Ton(j)|1 ≤ i, j ≤ K}. (7)

Variance of segment interval: The segment interval
between the kth and (k + 1)th segments is calculated as:

SegI(k) = (IS(k + 1) − IE(k))
1
fs

(8)

where fs is RSS sampling rate. For K segments of RSS
sequence R, the variance of segment interval is the maximum
gap among total K − 1 segment intervals.

Vsegi(R) = max{SegI(i)−SegI(j)|1 ≤ i, j ≤ K − 1} (9)

4) Decoded Preamble Packets Mapping: For overlapped
preamble packets, one segment at least contains one preamble
packet. For RSS sequence R, decoded vector D is used to
indicate whether the signals of K segments are successfully
decoded, i.e.,

Di =

{
0, No decoded preamble packet

1, Otherwise
(10)

for 1 ≤ i ≤ K . If all elements in D are zero, all preamble
packets in Tt are corrupted. Then, receiver needs further to
extend Tt when these corrupted preamble packets belong to
concurrent broadcast. Otherwise, receiver will start to broad-
cast when the decoded preamble packet is a flooding packet.

5) Identification Algorithm: Given the feature
tuple (Von_air , Vsegi) of sampled RSS sequence R and
the corresponding decoded vector D, Algorithm 1 shows the
process to verify whether collided broadcast packets exist.
At line 1, if no segment is detected, there is no transmission.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

THE SUMMARIZATION OF SYSTEM PARAMETER SETTINGS

At line 3, if one preamble packet is successfully received,
receiver needs not extend Tt. At line 5, if only one segment
is extracted, due to the window of RSSI sampling is usually
longer than the length of a packet, Chase conservatively
treats the overlapped signals as concurrent broadcast. κ is
the threshold of variance of on-air time. τ is the threshold
of variance of segment interval. As shown in Section III-C1,
when there is no concurrent broadcast, κ and τ is close
to 0. Otherwise, κ and τ is usually larger than 0, due to the
diverse pattern of signal overlapping. At line 7, if there are
two segments, only Von is available. There is no concurrent
broadcast when Von is smaller than κ. At line 9, in other
cases, Tt will not be extended if both Von and Vsegi of the
signal are smaller than κ and τ . Thus, with smaller κ and
τ , the signal tends to be identified as concurrent broadcast.
The time and space complexity of identification process
are O(K).

D. Influence on Other Traffics

It is possible that both flooding and other network traffics
coexist in networks. Chase can also work with other kinds
of network traffics, for instance, for widely used data col-
lection traffic [1], [13], where packets are forwarded to sink
with multi-hop unicast relay. In LPL, unicast traffic adopts
carrier sense and random backoff to avoid packet collision.
With Chase broadcast, Chase can quickly complete network
flooding. Thus, unicast traffic can be transmitted when the
channel is clear. Chase keeps the efficiency of those kinds of
traffic as much as possible.

IV. IMPLEMENTATION

We implement Chase with TinyOS 2.1.2 on TelosB nodes.
We use the implementation of Box-MAC LPL as the MAC
protocol. Besides the default Box-MAC LPL parameters as
shown in Figure 4, other parameter settings are summarized
in Table I. Chase may benefit from better-performing LPL
MAC protocols, such as ContikiMAC [7].

A. Random Function

We empirically choose the boundary Tx as 2067μs. The
decision criteria of X distribution is shown in Equation 11.

X ∼
{

Exp(2fclock/(Ts − δ)), 0 < Ta <= 2067
Uni(0, fclock(Ts − δ)), 2067 < Ta <= 4256

(11)

To ensure the stability, we select the clock source of fclock

as the watch crystal of MSP430f1612 MCU with frequency

32768 Hz on TelosB. The guard time δ is set as 0.1ms to make
sure Tippi is smaller than Ts and keep the range of Tippi large.

We use LCG (Linear Congruential Generator) to obtain uni-
form distribution. To guarantee the diversity among different
nodes, the initial seed is set according to node ID. Further,
we generate exponential distribution by the transformation of
uniform distribution.

B. Precise IPPI Control

It is important to guarantee the actual Tippi is exactly
corresponding to the random function. MCU controls the
operation of radio through SPI. Due to the arbitration of SPI
resource in TinOS, MCU can not transmit any packet when
it uses SPI to read the data of received packet from radio
buffer (RxFIFO in CC2420). To remove the potential delay
of resource arbitration, sender disables the interrupt service
of packet reception during broadcast. For CC2420 radio on
TelosB, the packet reception can be turned off by strobing
SRFOFF register.

C. RSS Sampling Control

After TelosB node has detected wireless signals, it contin-
uously samples RSS by reading the register RSSI.RSSI_VAL
of CC2420. The higher the frequency of MCU DCO (Digital
Crystal Oscillator) is, the faster the RSS sampling rate is. The
maximum frequency of MCU DCO is about 4MHz. To achieve
higher RSS sampling rate, we set MCU DCO frequency as
4MHz after radio has been turned on. The resulted RSS
sampling rate fs is 31250Hz (i.e., 32μs per sampling) to obtain
fine grain channel profile. To ensure the detection reliability
of collided broadcast packets, we empirically set the threshold
of κ and τ as a small value 64μs, which is the time of two
RSS samples. In 20ms tail, the time of RSS sampling is set as
16ms. Total 500 RSS samples can be recorded. The average
time of RSS sequence processing is about 2.73ms, which is
completely covered by the 4ms rest tail. If no preamble packet
is successfully received and collided broadcast packets are
detected in tail, the tail is extended another 20ms each time.

Moreover, due to the SPI resource arbitration,
the RSS.RSSI_VAL register can not be accessed when
MCU reads the received data from radio buffer (RxFIFO
in CC2420). Even with 4MHz MCU DCO, RxFIFO buffer
swapping takes about [130, 1280]μs for different Ta. The
long time blank space of RSS sampling incurs uncertainty
on segmentation. In our implementation, instead of reading
all data of RxFIFO, we directly read the CRC byte after
the frame length byte has been read. If the packet CRC is
valid, we read the rest of bytes. Otherwise, we flush RxFIFO
and continuously sample RSS again. The delay of reading
length and CRC bytes is only about 20 μs, in which few RSS
sample is lost.

V. EVALUATION

In this section, we verify the efficiency of Chase through
both controlled and testbed experiments.
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Fig. 11. Illustration of the topology and link state in controlled experiments.

Fig. 12. PRR performance under different IPPI adjustment strategies.

A. Chase Efficiency

We use 6 TelosB nodes in control experiments. The topol-
ogy and link state are shown in Figure 11. A, B and C
are three receivers, waiting for packets broadcasted by three
senders S1, S2 and S3. The power is set to 7 and the average
receivers’ RSS of the packets from different senders is shown
in Figure 11.

1) Delivery Reliability: For each testing round, three
senders concurrently broadcast 100 packets with different
sequence number to receivers. To guarantee concurrent broad-
cast of each packet, all senders are synchronized at the
initialization phase and start to broadcast preamble packets
with a random [5, 100]ms delay to imitate the asynchronous
transmission in practical. The initial phase does not appear
in later testbed experiments. The initial phase is just used to
guarantee concurrent broadcast in the controlled experiments.
At the end of each testing round, each receiver calculates
the packet reception ratio (PRR), i.e., the number of received
non-duplicate packets divided by 100. For each experiment
setting, we run 30 testing rounds and calculate the average
PRR and radio duty cycle of individual receiver to measure the
delivery reliability and energy efficiency. The packet length is
37 bytes, with an on-air time of about 1.34ms. We shorten Ts

to 2.9ms for reducing the baseline of energy consumption as
Zisense [34] does.

To examine the influence of different components of Chase
on delivery reliability, we compare Chase with other three
concurrent broadcast strategies: (1) set IPPI as zero (default
LPL), (2) set a large and fixed IPPI as 2ms (adaptive LPL
for concurrent broadcast [22]), and (3) use uniform random
IPPI in the range of [0, 2.8]ms (optimized LPL for concurrent
broadcast in Section III-B).

The results are shown in Figure 12. With large IPPI 2ms,
the PRR of all receivers is increased, about 2.7 times improve-
ment for A. The reason is that 2ms IPPI leaves more space
for those preamble packets transmitted when other senders

Fig. 13. PRR performance under different detection RSS sampling duration.

Fig. 14. Tail length under different detection RSS sampling duration.

are waiting during IPPI. Moreover, the PRR of all receivers
further increases and becomes larger than 85% with random
IPPI. Compared with fixed IPPI, random IPPI makes different
arrival time for different overlapped preamble packets to avoid
the strongest signal arrives too late every time. With large and
random IPPI, the increasing of duty cycle also indicates the
receivers have more chances to successfully receive packet
than zero IPPI.

Further, the PRR of A and B is increased to nearly 100%
with Chase. As shown in Figure 11, at A and B, the RSS
difference between strong and weak signals may be smaller
than 3 dB so that capture effect does not work. Without capture
effect, the fixed tail 20ms may not be long enough to resolve
continuous collision of preamble packets. In Chase, the adap-
tive tail extension further ensures the delivery reliability.

In above experiments, the delivery reliability of Chase
achieves almost 100% under fixed Ta (1.34ms) and Ts (2.9ms).
We further test the delivery reliability under different
Ta and Ts on the controlled topology. The results are shown
in Figure 13. When Ta is 1344 μs, the average PRR is
close to 100% under all ZigBee detection time Ts. However,
as increasing of Ta, the PRR falls down with the decreasing
of Ts. The reason is that when Ts is small, the range of
random Tippi becomes small. With large Ta of preamble
packet, the frequency of long overlapped ZigBee signals
increases so that the number of segments in RSS sequence
may decrease. With few segments, false negative ratio of
identification algorithm increases. Therefore, receiver fails to
extend the tail. Thus the loss of broadcast packet occurs.
However, the probability of false negative is relatively low,
the average PRR is still higher than 95% in the worst case.

2) Energy Efficiency: With the controlled topology, we test
the distribution of the length of tail to successfully receive
one preamble packet under different Ta and Ts. The results
are shown in Figure 14. When Ts > 7ms, for all different Ta,
the average tail length is about 20ms and the maximum tail
length is no larger than 60ms. However, when Ts is less than
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7ms, the tail length with long Ta increases faster than it with
short Ta. The reason is that short random range is probably not
long enough to construct capture effect, especially for long Ta.
It needs to extend the tail to wait for the receiving opportunity
of non-collision preamble packets. When Ta increases to
3904 μs, the average tail length increases to about 270ms and
the maximum tail length is 440ms, about 13.6 and 22 time of
default tail length. Thus, when Ta is long, it is better to set
Ts larger than 7ms to keep energy efficiency in Chase,

To conclude, Chase largely improves the delivery reliability
of concurrent broadcast under various settings. The cost of
reliable concurrent broadcast becomes larger when the gap
between Ta and Ts becomes smaller.

B. Number of Concurrent Broadcast

In the controlled experiments, the number of concurrent
broadcast is fixed as 3. We further conduct experiments to
show the impact of the number of concurrent broadcast.
In the experiments, we compare Chase to random IPPI strat-
egy (Section III-B) with fixed tail 100ms and 200ms. With
fixed tail, the tail will not be adaptively extended by the
detection of collied broadcast packets and the receiver only
depends on the chance of capture effect the constructed by
random IPPI strategy. Ta is set as 3584 μs. Other parameters
is set as default. The senders are randomly put on a cycle,
whose radius is about 20cm. The receiver is put on the centre
of the cycle. Due to the heterogenous sensitivity of receiver
radio in different direction, the RSS of different signals may
not the same. We use the same way of Section V-A to ensure
the concurrent broadcast. The power of senders is set as 7.
We use the average PRR to indicate the delivery reliability of
the concurrent broadcast.

The results is shown in Figure 15. We can observe that when
the number of concurrent broadcast is less than 5, the PRR of
all three strategies is 100%. Moreover, with 100ms fixed tail,
the PRR decreases when the number of concurrent broadcast
is larger than 5. In contrast, the decrease of PRR begins when
the number of concurrent broadcast reaches to 8 and 10 for
200ms fixed tail and Chase. The PRR of 100ms fixed tail
strategy drops faster than the other two. When the number
of concurrent broadcast is 13, the PRR drops to 31.5%. The
PRR is 84.7% with 200ms fixed tail under the same situation.
With Chase, the PRR is not less than 97% under all situations.
To conclude, we can see the random IPPI strategy is efficient
when the number of concurrent broadcast is less than 5. With
too many concurrent broadcast, the probability to construct
capture effect is getting low and the probability of physical
constrain is getting high. It needs more time to resolve the
collision. Hence, the longer tail can tolerant more number
of concurrent broadcast. Chase adaptively extents the tail so
that the reliability is guaranteed. The 3% decrease on PRR of
Chase comes from the false of identification algorithm.

C. Identification Accuracy

According to the performance analysis of delivery reliability
in the controlled experiments, the accuracy of identification
algorithm is key factor. With the controlled topology shown

Fig. 15. The impact of the increasing of concurrent broadcast on delivery
reliability.

TABLE II

THE ACCURACY OF IDENTIFICATION ALGORITHM

in Figure 11, we make A, B and C identify whether the type of
received signals is concurrent broadcast with Chase. We test
the identification accuracy for 4 types of data flows. The first
type is all three senders concurrently broadcast. The second
type is only one sender unicasts or broadcasts. The third type
is all three senders content the channel to unicast or broadcast.
The last type is all three senders are hidden terminal and
concurrently unicast or broadcast. For each transmission of
different data flows, the Ta and Ts is randomly chosen. Each
node identifies 1000 RSS sequences for each type of data flow.

The results are shown in Table II. 98.7% of concurrent
broadcast can be correctly identified. The rest of 1.3% is
false negative due to the lack of features when the number
of segments is small since the signal overlapping is severe.
For single transmission and channel contention, the correctness
of identification is very high, i.e., 100% and 99.2%. With
similar random segment interval and on-air time in channel
contention, the false positive may occur when no preamble
packet is successfully received. However, the loss of preamble
packet is rare due to contention backoff, the false positive is
only 0.8%. For hidden terminal, only 30.5% can be correctly
identified. The reason is that IPPI and on-air time are much
similar between hidden terminal and concurrent broadcast,
it fails to identify whether corrupted preamble packets belong
to concurrent broadcast. To conclude, Chase can correctly
recognize concurrent broadcast in most cases. Thus, the deliv-
ery reliability of Chase is guranteed. For other data flows,
the false tail extension may appear when hidden terminal is
severe.

D. Network Flooding

We evaluate Chase on two real testbeds. One testbed (called
office testbed) have 50 TelosB nodes in our office environment.
The 50 TelosB nodes are deployed as a grid topology as shown
in Figure 16. The distance between two adjacent nodes of both
vertical and horizontal direction is about 20cm. The other is
Indriya testbed [3] with 95 TelosB nodes. We mainly use two
metric to evaluate protocol performance in terms of time and
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Fig. 16. The picture of real testbed with 50 TelosB nodes.

TABLE III

THE INFLUENCE OF TAIL EXTENSION ON BOTH COMPLETION TIME AND

RADIO DUTY CYCLE (RDC) ON OFFICE TESTBED

energy. The first one is flood completion time, which indicates
the delay from the beginning of a network flooding to all of
nodes successfully receive the flooding packet. The second
metric is radio duty cycle (RDC) to reflect the average energy
consumption during a period.

1) Influence of Tail Extension: We evaluate the efficiency
of tail extension strategy on office testbed. We set the trans-
mission power as 2. In such transmission power, the network
diameter of office testbed is about 3 hops. This is a dense
network, where packet contentions and collisions may happen
frequently. The flooding packet length is set as 60 bytes.
Other system parameters are set as default. Node 0 (left
bottom corner in Figure 16) initializes a flooding every 10 s.
We calculate the average radio duty cycle every 60 s. We cal-
culate flooding completion time for each flooding packet, then
calculate the minimum, average and maximum completion
time of continuous 100 flood packet.

The results are shown in Table III. We can see that the aver-
age completion time increases 110.12% without tail extension.
This indicates the channel contention and collision are serious,
the short tail cannot guarantee node to receive a preamble
packet. It also verifies tail extension can keep node awake
and quickly receive a preamble packet with random IPPI
scheme. The average radio duty cycle with tail extension does
not increase, but reduces 0.22%. This is because without tail
extension, transmission failure leads more energy is needed to
retransmit flood packet so that the radio duty cycle has a little
of increment.

2) Influence of Packet Length: As our analysis of ran-
dom IPPI strategy in Section III, flooding completion time
will increase when the packet length is getting large. Here,
we conduct experiments on office testbed to show the trend
of flooding completion time increment with the increasing of
packet length. We set the transmission power as 2 and use
default settings of Chase. We increase packet length from
30 bytes to 120 bytes. For each packet length, we use the
same setting of Section V-D1 to obtain the corresponding
completion time and radio duty cycle.

Fig. 17. The completion time and radio duty cycle of Chase under different
packet length on office testbed. (a) Completion Time. (b) Radio Duty Cycle.

The results are shown in Figure 17. We can see that both
average completion time and radio duty cycle almost linearly
increases. When packet length increases form 30 bytes to
120 bytes, the average completion time increases 180%, from
877ms to 2463ms. The average radio duty cycle increases
18.8%, from 7.1% to 8.44%. This verifies our observation
of random IPPI analysis. With multiple concurrent senders,
node needs more time to receive a preamble packet. This delay
increase quickly with the increasing of packet length. Although
the consequential tail extension further increases the radio duty
cycle, it guarantee the reliability. We can further control the
number of concurrent transmission to improve both completion
time and radio duty cycle by delicate sender selection.

3) Dense Flooding: Here, we compare Chase with four
other protocols on both office testbed and Indriya testbed,
which are dense network environment. The first is deluge
flooding with Box-MAC, in which node will immediately
broadcast the received packet with duplicate suppression [16]
and carrier sense. The second is the widely used flooding
protocol Drip [31] with Box-MAC. In Drip, the broadcast is
controlled by trickle timer [20] after receiving the packet to
further reduce the influence of collision. The third is Drip
with AMAC [9], which is the state-of-the-art energy efficient
receiver-initiated asynchronous duty cycle MAC. The last is
Contiki best effort flooding [8] with ContikiMAC [7]. Contiki
flooding use polite broadcast, in which after a node receives
a flooding packet, if another same flooding packet is received
within a time interval, the node will not broadcast the flooding
packet to reduce channel contention. We use Chase, LPL-Delu,
LPL-Drip, AMAC-Drip and Contiki-Polite to represent these
flooding protocols, respectively.

In the experiments of office testbed, we use the same
settings with Section V-D1. The experiment results of office
testbed are shown in Figure 18. In Figure 18(a), we can see
Chase is the fastest flooding method. The average completion
time of Chase is about 1355.74ms, which is about 29.3% faster
than LPL-Delu, which is the second fastest flood method.
The average completion time of LPL-Drip, AMAC-Drip and
Contiki-Polite is much slower. In LPL-Delu, the constant con-
tention backoff and packet retransmission make the completion
time longer. However, the quick forward strategy and carrier
sense of LPL-Delu make most of nodes quickly receive the
flooding packet in dense network. For LPL-Drip and AMAC-
Drip, the trickle timer increases the waiting time of flooding
packet forwarding. In the worst case, only one node does not
receive the flooding packet. It has to wait for a long interval.
Contiki-Polite will take exponential backoff once channel
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TABLE IV

THE COMPARISON OF COMPLETION TIME AND RADIO DUTY CYCLE BETWEEN CHASE AND FLOODING
WITH DIFFERENT TRANSMISSION POWER ON INDRIYA TESTBED

Fig. 18. The comparison of completion time and radio duty cycle among
several protocols on office testbed. (a) Completion Time (b) Radio Duty Cycle.

contention is detected. Hence severe contention backoff and
flooding packet retransmission of dense network flooding lead
large completion time of LPL-Drip, AMAC-Drip and Contiki-
Polite.

In Figure 18(b), the average duty cycle of Chase is 7.59%,
which is about 100% higher than other flooding method.
However, the maximum duty cycle of LPL-Drip, AMAC-Drip
and LPL-Delu is much higher than Chase. In Chase, all nodes
forward the received flooding packet. In such way and dense
network, the tail is easily extended when node wakes up every
time. Thus, the duty cycle of different nodes is close and
large. For LPL-Drip and AMAC-Drip, trickle timer controls
the number of flooding packet transmission of each node. For
LPL-Delu and Contiki-Polite, duplicate suppression scheme
can only make several nodes to forward flood packet several
times and others to keep silent. In Contiki-Polite, the radio
is close during channel backoff. Thus, the average energy
consumption of these protocols is low.

We further compare Chase with LPL-Delu on Indriya
testbed, which can be denser than office testbed. To achieve
different network density, we change the transmission power as
31, 19 and 7, respectively. The results are shown in Table IV.
We can see the average completion time of LPL-Delu is about
3 times that of Chase. This indicates Chase can capture the
earliest wake-up opportunities of all nodes and make them
reliably receive a preamble packet in such dense concurrent
broadcast. The contention backoff and packet retransmission
slow down the completion time of LPL-Delu. The average
radio duty cycle of Chase is larger than LPL-Delu, but the
gap becomes small with the network density gets low. With the
decreasing of the number of concurrent transmission, the fre-
quency of tail extension of Chase is reduced. Thus, the average
radio duty cycle of Chase reduces from 10.3% to 8.9% with
the transmission power reduces from 31 to 7. However, when
network density gets low, duplicate suppression mechanism is
getting inefficient. More nodes need to forward the received

Fig. 19. The comparison of the results on office testbed experiments.
(a) Distribution of the network completion time. (b) Distribution of average
duty cycle.

flood packet. Thus, the duty cycle of LPL-Delu increases
26.3% with the transmission power reduces from 31 to 7.

Overall, Chase is the fastest method, but not the most
energy efficient due to the frequent tail extension. To achieve
better energy efficiency of Chase, one way is to control
the network density. Thus, how to reduce the number of
concurrent forwarder, but keep the time efficiency is an open
problem.

4) Long Hop Flooding: In contrast with dense network,
we further evaluate Chase in long hop flooding scenario on
office testbed. We set the radio output power to 3. The packet
length is 77 bytes corresponding to on-air time 2623μs. Other
parameters follow the settings in Section IV. To achieve more
hops, we manually set the neighbors for each node. Thus,
a node can only receive the packets from its assigned neighbors
and drops the packets from other nodes. For example, node 49
(the right top node in Figure 16) can only receives the flood
packet from the 3 around closest nodes. Thus, the network
density is set as about 4 neighbors per node on average.
The network diameter is about 10 hops. In this settings,
a node’s transmission may interference a multi-hop away
node’s transmission with transmission power 3. Hopefully,
different hop nodes may broadcast in different time. Thus,
the number of concurrent broadcast nodes gets lower.

Different with fixed period of radio duty cycle calculation,
the radio duty cycle is measured during the period of each
packet flooding completion time. For each protocol, Node 0
(left bottom node in Figure 16) floods 100 packets with
interval 30 s to collect performance data of each flood packet.
The experiment results are shown in Figure 19.

As shown in Figure 19(a), the network completion time of
Chase is smaller than the others three protocols. The median
network completion time of Chase is about 6723ms. The
median network completion time of LPL-Delu is 8523ms and
LPL-Drip is 9157ms. The improvement is 21.1% and 26.6%
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with Chase. The network completion time of AMAC-Drip is
smaller than LPL-Drip due to more efficient channel access.
Compared with the AMAC-Drip whose median network com-
pletion time is about 7723ms, the improvement of Chase is
12.9%. The reason is the probe collision of AMAC reduces the
reliability and increases the completion time. The completion
time of LPL-Drip is more dynamic due to the exponentially
increased interval between adjacent broadcast so that severe
packet loss incurs more delay.

As shown in Figure 19(b), the average radio duty cycle of
Chase is smaller than LPL-Drip and LPL-Delu. The median
average radio duty cycle of Chase is about 16.32%. The
median average duty cycle of LPL-Delu is 19.72% and
LPL-Drip is 19.56%, leading to an improvement of 17.2% and
16.6% by Chase. With faster network completion time, Chase
further provides higher energy efficiency than LPL-based
flooding. We observe that the average radio duty cycle of
AMAC-Drip is better than Chase. Compared with the AMAC-
Drip whose median average radio duty cycle is about 14.12%,
the degradation is about 13.5%. The reason is the long
preamble and extra extension of tail makes high average radio
duty cycle of Chase, but the idle waiting and tail of AMAC [9]
is much smaller. However, as the network completion time of
Chase is faster than AMAC-Drip, the overall energy consump-
tion of Chase and AMAC-Drip is fair.

VI. RELATED WORK

Always-on Radio: Many approaches focus on full-coverage
dissemination problem in always-on radio mode. Drip [31]
and Deluge [16] are structureless with pure broadcast trans-
mission hop by hop. They utilize the trickle timer [20] to
control the dissemination flow for reducing the contention
and transmission. ECD [5] further considers the influence
of link quality on sender selection. CFlood [37] consid-
ers the influence of link correlation on sender selection.
Cord [15] and Sprinkler [27] are structure based. An approx-
imate minimum dominating set of nodes are selected as core
nodes. Chase is based on LPL asynchronous duty cycle radio
mode and enables reliable concurrent broadcast to accelerate
flooding.

Synchronous Duty Cycle Radio: Synchornization is required
in synchronous duty cycle protocols. Glossy [11] exploits the
constructive interference to fast flooding the data in network
wide. Splash [4] adopts the reverse data forwarding structure
to increase reliability. Pando [6] further explores the fountain
code to reduce the number of retransmission. With local syn-
chronization, each node knows the sleep schedule of its neigh-
bors. The sender just begins transmission after the receiver
turns on the radio. Based on the energy-optimal tree, Guo et al.
[14] exploit opportunistic chance over unreliable links, which
can reduce the expected end-to-end delay, as relay. In contrast,
Chase works in an asynchronous way. Both synchronous and
asynchronous duty cycle models are widely adopted and used
in different scenarios. Chase is proposed to mainly address the
inefficiency of flooding in asynchronous duty cycle protocols.

Asynchronous Duty Cycle Radio: With receiver-initiated
asynchronous duty cycle radio mode, the broadcaster transmits
the packet to the receivers after successfully receives the

receivers’ probes. ADB [28] utilizes the progress information
of local neighbors to select broadcaster to increase the delivery
reliability and reduce the energy consumption. Zippy [29] uses
an extra always-on low-complexity transmitter and receiver
hardware to quickly wake up the duty cycle radio. Chase
enables reliable concurrent broadcast in the sender-initiated
asynchronous duty cycle flooding without extra hardware.

VII. DISCUSSION

Phase-Lock Mechanism: Phase-Lock indicates that nodes
keep track of the wake-up time of their neighbors, allowing
them to start the preamble just before a neighbor wakes up.
With phase lock, the period of channel occupation is much
shortened so that the channel contention is much alleviated.
However, the potential collision cannot be reduced since it
is possible multiple neighbors simultaneously send flooding
packet to a node after it wakes up. Moreover, node cannot
precisely know all the deliverable neighbors at the beginning.
Missing any delivery opportunity may increase the network
completion time. This is another kind of mishearing. In con-
trast, Chase can avoid any packet collision and mishearing to
guarantee the fastest completion of network flooding.

Synchronous Flooding Service in Asynchronous Duty Cycle
Network: pTunes [38] and CRYSTAL [17] adopts synchronous
flooding service and periodically interrupt asynchronous duty
cycling to do flooding. Synchronous flooding protocols [4],
[6], [11] can achieve faster network completion time (tens
ofms per packet) than Chase, due to no waiting time (hundreds
ofms per packet) incurred by asynchronous sleep schedule.
Thus, for periodical flooding, synchronous flooding protocols
are definitely better than Chase. However, if some applications
initiate flooding irregularly, periodical flooding might incur
larger delay than Chase.

VIII. CONCLUSION

We present Chase, an efficient and fully distributed con-
current broadcast layer for flooding in asynchronous duty-
cycle networks. In Chase, we propose a distributed random
inter-preamble packet interval adjustment approach to meet
the strict time and signal strength requirements for concur-
rent broadcast. In case that the time and signal requirement
cannot be satisfied (e.g., the signal strength difference is less
than a 3db) due to physical constraint, we propose a light-
weight signal pattern recognition based approach to identify
such a circumstance and extend radio-on time to resolve the
collision. We implement Chase in TinyOS and TelosB node.
The implementation can be used as a building block for upper
layer protocols. The evaluation results show the effectiveness
of Chase in asynchronous duty cycle networks.
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