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a b s t r a c t 

Cardinality estimation is of primary importance in many RFID systems and applications. To ensure the 

time efficiency of estimation, numerous probability-based approaches have been proposed, most of which 

aim at meeting arbitrary accuracy requirement and follow a similar way of only minimizing the number 

of required time slots from tags to reader. In this paper, we propose BFCE, a constant-time B loom F ilter 

based C ardinality E stimator, for particular scenarios where slightly low accuracy and high efficiency are 

pursued. Comparing with existing approaches, BFCE only needs constant number of bit-slots, and the 

overall communication overhead is also significantly cut down, as the reader only needs to broadcast a 

constant number of messages for parameter setting. Results from extensive simulations under various 

tagIDs distributions shows that BFCE is accurate and highly efficient. In terms of the overall execution 

time, BFCE is 30 times faster than ZOE and 2 times faster than SRC in average, the two state-of-the-arts 

estimation approaches. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Radio Frequency IDentification (RFID) systems have been be-

coming important platforms for a variety of applications, such as

access control [1–3] , object identification [4] , inventory manage-

ment [5] , transportation and logistics [6] , localization [7–9] , and

tracking [10–13] . Researches on RFID have received wide interests

from both industrial and academical communities. 

As mentioned in many literatures, the problem of cardinality

estimation is of primary importance in many RFID systems and ap-

plications. For example, there is usually a need of monitoring the

real-time inventory in inventory management systems. Because it

is infeasible to get the exact count of all tags in a very short time,

most existing works follow the way of probabilistic estimation,

such as Probabilistic Estimating Tree (PET) protocol [14] , Zero-One

Estimator (ZOE) [15] , Simple RFID Counting (SRC) protocol [16] and

Arbitrarily Accurate Approximation (A 

3 ) protocol [17] . Taking time
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fficiency as the first-place performance metric, the state-of-the-

rt approaches can make the estimation in 

 

(
log log n + 

1 

ε 2 

)
(1)

ime slots, where n denotes the actual cardinality of tags and ε
enotes the confidence interval of estimation requirement. 

Two important facts, however, are often neglected. First, most

xisting works aim at getting estimators which can meet arbitrary

ccuracy requirement. While for particular applications, such as

he entrance of a port, lorries loaded with various RFID-attached

ommodities pass the entrance one by one. To enhance the un-

oading efficiency inside the port, it is important to get the tags

ardinality as faster as possible, so that the manager can allocate

uitable manpower and equipments for the unloading quickly ac-

ording to the cardinality. Although both accuracy and efficiency

hould be guaranteed, the estimation efficiency rather than the ac-

uracy takes the first place in this scenarios. 

Second, most exiting works simply take the number of required

ime slots as the efficiency metric, while the number of slots for

stimation does not necessarily determine the total time of car-

inality estimation. The overall temporal overhead of every com-

unication between reader and tags, is usually a more impacting

actor of the estimation efficiency. Taking ZOE [15] as an example,

ach frame in ZOE only contains one slot, and ZOE totally requires
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.06.006&domain=pdf
mailto:ysulbb@gmail.com
mailto:he@greenorbs.com
mailto:wyliu@ysu.edu.cn
http://dx.doi.org/10.1016/j.comcom.2017.06.006


B. Li et al. / Computer Communications 110 (2017) 120–132 121 

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

6
n=200000,ε=0.05 and δ=0.05

Time from reader to tags (s)

T
im

e 
fr

o
m

 t
ag

s 
to

 r
ea

d
er

 (
s)

PET [11]
ZOE [12]
SRC [13]
A3 [14]
Expected

Fig. 1. The design space of RFID cardinality estimation. 
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t least m slots to get the final estimation result. Note that in ZOE,

he reader needs to broadcast a 32-bits random seed for each slot,

o that each tag can determine whether or not to participate in the

urrent slot. The temporal overhead of communication from reader

o tags (m ·32), rather than the overhead from tags to reader (m · 1),

s accounted as the major component in the overall execution time

f ZOE. 

Based on the above discussion, one may immediately raise a

rucial but open problem: For a large-scale RFID system and a

lightly low accuracy requirement, is there any way to estimate

ts cardinality in constant time and simultaneously achieve the de-

ired estimation accuracy? Fig. 1 presents the design space of RFID

ardinality estimation, comparing our expected result with the ex-

sting works. 

In this paper, we propose a constant-time B loom F ilter based

 ardinality E stimator (BFCE) to estimate the tag cardinality of

arge-scale RFID systems, when slightly low accuracy and high ef-

ciency estimation requirement are pursued. BFCE consists of two

hases, i.e. a rough estimation phase to get a lower bound of car-

inality and an accurate estimation phase to get the exact result.

n each phase, BFCE lets all the tags construct a w -bits Bloom Filter

ector B in a distributed manner, using k independent hash func-

ions and a persistence probability p . Intuitively, the number of 0s

r 1s in B must have relationship with the tag cardinality. By mod-

ling the relationship between the tag cardinality n and the ratio of

s or 1s in B , BFCE can estimate the tag cardinality with very low

ommunication overhead. Specifically, the first phase of BFCE uses

 specific persistence probability p s to get a rough lower bound es-

imation of n (denoted by ̂ n low 

), while in the second phase, BFCE

mploys the optimal persistence probability p o with 

̂ n low 

, so that

he final estimation result can meet the accuracy requirement. 

Our contributions can be summarized as follows: 

• We are the first which take the overall execution time rather

than the number of slots as the objective in the RFID cardi-

nality estimation problem. Aim at this objective, we propose a

constant-time estimation scheme BFCE for large-scale RFID sys-

tems when slightly low accuracy and high efficiency estimation

requirement are pursued. 

• BFCE only requires the reader to transmit constant number pa-

rameters twice in the whole estimation process, and can get

the final expected estimation result within constant 1024+8192

bit-slots in just one round, so that the overall execution time of

BFCE is constant. 

• We validate the proposed protocol through theoretical analy-

sis and conduct extensive simulations under different settings

and tagIDs distributions to verify the effectiveness and perfor-
mance of BFCE. The results demonstrate the advantages of BFCE

in terms of both time efficiency and estimation accuracy. 

A conference version of this work can be found in [18] . We

how much more details in this paper, such as the overview of

FCE, the details of Parameter Settings and the reason why set-

ing w = 8192 is sufficient etc. Besides, we also take the channel

rror into consideration, and propose an extended BFCE which

an achieve desired estimation accuracy under unreliable wireless

hannels. 

The rest of the paper is organized as follows. We discuss re-

ated works in Section 2 . In Section 3 , we present the system

odel and introduce basic concepts of tag cardinality estimation.

n Section 4 we elaborate on the design and analysis of BFCE. Then

e extend BFCE to robust with unreliable channel and give some

iscussions in Section 5 . Section 6 presents extensive simulations

o evaluate the performance of BFCE, and comparison results with

ecent related works. We conclude this work in Section 7 . 

. Related work 

As the number of tags may be up to hundreds of thousands

nd there are always collisions at the reader side, it is infeasible to

dentify all the tags one by one for the purpose of cardinality esti-

ation. A series of probabilistic approaches have been proposed to

chieve the approximate tag cardinality efficiently. 

M. Kodialam et al. propose the first cardinality estimation

cheme unified probabilistic estimator (UPE) in [19] , which needs

o distinguish the slots to empty, single or collision slots, and uti-

izes the number of empty or collision slots in the frame to get the

stimation. In [20] , M. Kodialam et al. propose another enhanced

ero-based estimator (EZB), which takes the average number of ze-

os in the frame as clues for estimation. In [21] , C. Qian et al. pro-

ose lottery frame estimation scheme (LOF), which employs the

eometric distribution hash functions to itemize all tags in or-

er, so as to make estimation quickly. H. Han et al. propose an-

ther tag estimation scheme called first non empty based estima-

or (FNEB) [22] , which is based on the size of the first run of 0s in

he frame. With the goal of minimizing power consumption of ac-

ive tags, T. Li et al. [23] propose an estimation scheme called max-

mum likelihood estimator (MLE) for active tags. In [24] , V. Shah-

ansouri et al. propose a multi-reader tag estimation scheme, but

t is based on an unrealistic assumption that any tag covered by

ultiple readers only replies to one among them. Shahzad et al.

25] propose average run based tag estimation (ART), which uses

he average run size of 1s to estimate the tag cardinality. 

On the basis of a probabilistic estimating tree (PET), Zheng

t al. [14] further improve the estimation efficiency to O (log log n )

ime slots. In [15] , Zheng et al. propose another efficient esti-

ate scheme zero-one estimator (ZOE), which also only needs

 (log log n ) time slots. B. Chen et al. , [16] establish strong lower

ounds for both the single-set and multiple-set problems. They

lso design new simple RFID counting (SRC) which is more time-

fficient than existing schemes. In [17] , W. Gong et al. propose a

ew mechanism, arbitrarily accurate approximation (A 

3 ) protocol,

o reliably estimate the number of tags with arbitrary accuracy re-

uirement. 

Besides, there are also several literatures whose essence are

imilar with cardinality estimation. W. Gong et al. [1,2] propose

wo fine-grained batch authentication protocols informative Count-

ng (INC) and wise Counting (WIC), which can authenticate a batch

f tags with accurate estimates of the number of counterfeits and

enuines. H. Liu et al. [26] first introduce the RFID composite

ounting problem, which aims at counting the tags in arbitrary set

xpression and propose a generic composite counting framework

CCF) that provides estimates for any set expression with desired
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Fig. 2. A simple example of BFCE. (a) The reader first broadcasts w, k, p and random seeds R . (b) Each tag responds in the k selected bit-slots with probability p . (c) The 

reader senses the physical channel in all the w bit-slots, so as to get a vector B and does the estimation with B . 
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accuracy. Q. Xiao et al. propose two joint RFID estimation proto-

col (JREP [27] and M-JREP [28] ) to estimate the joint property with

bounded error for distributed RFID systems. 

Limitations of the existing approaches mainly lie in the follow-

ing aspects. First and foremost, it does not guarantee to minimize

the overall time for estimation, when one simply takes the number

of required time slots as indicator of time efficiency. Second, some

existing works require prior knowledge of the rough magnitude of

cardinality, so that they can reasonably tune the parameter settings

for accurate estimation. Last but not least, the accuracy of existing

estimators largely depends on the number of repeated rounds, and

can not get the accurate estimation within a controllable length of

time. The above problems either hurt the efficiency and accuracy

of cardinality estimation, or limit the usability of those schemes in

practical scenarios. Such facts motivate our work in this paper. 

3. Preliminaries 

3.1. System model 

Consider a large-scale RFID systems which consists of a large

volume of tags, one or multiple readers and a back-end server.

And we only consider the cases of large-scale tags, e.g. there are

more than 10 0 0 tags in the RFID systems, as it is easy and fast to

get the exact count of tags by using traditional identification pro-

tocols [29,30] when the cardinality is small. Each tag is assigned

an unique identification (tagID), with capacity of simple computa-

tions and communications with reader through RF signal. We as-

sume that all the tags are within the interrogation zone [31–34] of

readers, and all the readers are connected to the back-end server

via Ethernet. So the communication overhead between the read-

ers and back-end server can be ignored. If more than one multi-

ple readers are deployed in the interrogation zone, the back-end

server can coordinate and synchronize all the readers, so that all

the readers can behave consistently, including simultaneously send

out command, receive tags’ response etc. In other words, we can

logically consider these readers as one reader [15] . 

The communication model between the reader and tags is

reader-talks-first and time-slotted, which follows the EPCglobal

C1G2 standard [35] To enhance the efficiency of RFID systems, a

number of parallel protocols [30,36] have been proposed in recent

years. In those parallel protocols, tags are allowed to transmit short

information (such as 1bit) in the same slot, the reader only needs

to sense the physical channel and distinguish the slots to busy or

idle. If there is a busy channel, the reader gets one bit ’1’. Other-

wise, it gets one bit ’0’. For presentation clarity, we call such a slot

as bit-slot. 

We also adopt the bit-slot mode in BFCE. As described in Fig. 2 ,

the reader initializes the communication by sending out a request

message (e.g., estimate), together with a series of parameters, in-

cluding the length of Bloom Filter w , the number of hash functions

k, k random seeds R and a persistence probability p . Once receiv-

ing the estimation request, each tag uses k independent hash func-

tions to randomly pick k bit-slots, and responds with probability p
n each selected bit-slot. The reader then only needs to sense the

hysical channel and does the estimation with B , which represents

he status of all the w bit-slots. The clocks of tags are synchronized

y the reader’s signal. 

.2. Problem description 

Consistent with existing approaches, we use two parameters

s accuracy requirements of the estimation result: relative error

, and error probability δ. As we take the time efficiency as the

rst performance metric, and allow the accuracy requirement to be

lightly low, so we assume that both ε and δ are large than 0.05,

.e. ε ≥ 0.05 and δ ≥ 0.05. Let n be the actual number of tags, we

xpect an estimation result ˆ n , which satisfies 

 r{| ̂  n − n | ≤ εn } ≥ 1 − δ. (2)

or instance, if there are actually 10,0 0 0 tags in the whole system,

ith ( ε = 10%, δ = 10%) approximation, an accurate estimation ap-

roach is expected to output the result within the interval [90 0 0,

10 0 0] with a probability of 90% or above. 

The goal of cardinality estimation is obtain the approximate

umber of distinct tags in the region in a fast and accurate manner.

irst of all, the estimation accuracy must be guaranteed. Second,

ince the interrogation zone of a reader can be up to 30 feet. The

umber of tags in the system may easily exceed tens of thousands.

ence the estimation scheme should be time-efficient and scal-

ble as much as possible. Third, different from most existing ap-

roaches, which simply abstract the time efficiency with the num-

er of total time slots, we take the stringent time-efficiency, i.e. the

verall temporal overhead between reader and tags, as the goal.

o the temporal overhead should be minimized. Moreover, passive

ags are instantly energized by the reader to carry out extremely

imited computations. The estimator should be lightweight enough,

o as to support a variety of applications using passive tags. 

. Bloom filter based cardinality estimation 

In this section, we introduce the detail of BFCE. Table 1 sum-

arizes the symbols used across this paper. 

.1. Overview 

To get an accurate estimation of tag cardinality in the reader’s

nterrogation zone, the reader first tries to construct a bitmap

hich can well reflect the actual cardinality, and then does the es-

imation with this bitmap. Specifically, the reader first constructs a

 -bit Bloom Filter vector B . All the bits in B are initialized to be

s. Then the reader sends out the estimation command, together

ith several parameters, such as the length of bloom filter vector

, k random seeds R ( k = | R | ), and a persistence probability p . The

eader then waits for the response from tags in the following w

it-slots. 

Once receiving the estimation command, each tag randomly se-

ects k different bit-slots with k independent hash functions, whose
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Table 1 

Symbols used in the paper. 

Symbols Descriptions 

n Actual number of tags 

ˆ n Final estimated number of tags ̂ n r A rough estimation of n ̂ n low A rough lower bound of n 

ε Confidence interval 

δ Error probability 

H ( · ) Uniform hash functions 

R Random seeds set and ‖ R ‖ = k 

B Bloom Filter vector at reader side 

w Length of vector B 

k Number of hash functions 

p Persistence probability 

p s Specific persistence probability 

p o Optimal persistence probability 

X A bernoulli random variable 

X i The observation of i th slot in B 

ρ The ratio of 1s in B 

c A constant coefficient used for rough estimation 

d A constant determined by δ

q Channel error rate 

Fig. 3. The feasibility of BFCE. 
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Fig. 4. The overview of BFCE. 
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alue ranges in [1, w ] and follows an uniform distribution. Then the

ag transmits a short signal (e.g. 1 bit) with a probability p in each

elected bit-slot. 

For the arbitrary i th slot, the reader only needs to sense the

hysical channel. If the channel is idle, it means there is no tag

articipating in this bit-slot. Correspondingly B (i ) is set to 1. And if

he channel is busy, which indicates that at least one tag transmits

n this bit-slot, so B (i ) is set to 0. After w bit-slots, the reader can

et a w -bits vector B , which is filled with 0s and 1s. 

Intuitively, the number of 0s or 1s in B is associated with all

he parameters as aforementioned. Without distinguishing the dif-

erence of hash functions and the random seeds, the number of 0s

r 1s is only associated with the number of tags n , the length of

loom filter vector w , the number of hash functions k , and the re-

ponse probability p . Fig. 3 shows the interrelation between n and

he numbers of 0s and 1s in B , when we fix w = 8192, k = 3 and set

 = 0.1, p = 0.2, respectively. From the figure, we can see that there

s linear relationship between the number of tags and the number

f 0s or 1s in the vector B . Intuitively it is feasible to accurately

stimate the number of tags ˆ n according to the w -bits bitmap B ,

 and p . However, there is still an important problem we have to

onfront. To get a estimation which can meet the accuracy require-

ent, we should tune all the parameters including w, k , and p to

e optimal. Aiming at a constant-time estimator, we can empiri-

ally set w and k to be constant (see our analysis later), how to

uning the parameter p will still be a great challenge because we

o not have any prior knowledge about the actual tag cardinal-
ty. Similar with previous approaches like SRC [16] , A 

3 [17] , we also

mploy the two-phase approach in BFCE as shown in Fig. 4 . The

rst phase, namely the rough lower bound estimation phase, BFCE

ries to get a rough lower bound of the cardinality with a specific

ersistence probability p s . With this rough lower bound, BFCE then

ets the approximate optimal persistence probability p o in the final

ccurate estimation phase, so as to guarantee the final estimation

esult ˆ n be an ( ε, δ) estimation of n . The concrete design will be

ntroduced in the rest of this section. 

.2. Generic algorithm 

Assuming that all hash functions follow uniform distribution,

he probability of the arbitrary i th bit in B being 0 or 1 can be

alculated using Theorem 1 . 

heorem 1. Let n be the actual tag cardinality, w be the length of

loom Filter vector, k be the number of hash functions and p be the

ersistence probability (i.e., the probability for a tag participates in

ach selected bit-slot), then, 

 r{ B (i ) = 1 | i ∈ [1 , w ] } = e −λ, (3)

 r{ B (i ) = 0 | i ∈ [1 , w ] } = 1 − e −λ, (4)

here λ = 

kpn 
w 

. 

roof. Because all hash functions follow uniform distribution in

he range [1, w ], the probability that a hash function of arbitrary

ag being the i th bit-slot in B is 

 r{ H(·) = i | i ∈ [1 , w ] } = 

1 

w 

. (5)

With the persistence probability p , the probability for the tag

esponds in the i th bit-slot is p 
w 

, and the probability for the tag

oes not respond in i th slot is 1 − p 
w 

. 

In B , the probability of the arbitrary bit i (where i ∈ [1, w ])

eing 1 is 

 r{ B (i ) = 1 } = 

(
1 − p 

w 

)kn 

, (6)

hich means all the kn hash functions of n tags have not selected

he i th bit-slot. 

Using the approximation of 

lim 

 →∞ 

(
1 − 1 

x 

)x 

= e −1 , (7) 

he above equation can be simplified as 

 r{ B (i ) = 1 } = 

(
1 − p 

w 

)kn 

≈ e −
kpn 
w = e −λ, (8)

here λ = 

kpn 
w 

. 

Correspondingly, the probability of B (i ) being 0, which means

ore than one tag respond in the i th bit-slot, can be calculated by
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Fig. 5. The variation of γ = − ln ρ
3 p 

, when both persistence probability p and the ra- 

tio of 1s in B ρ are varied in the range (0,1). 
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Fig. 6. The error probability of ρ with different p and n after 8192 trials. 
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P r{ B (i ) = 0 } = 1 − P r{ B (i ) = 1 } ≈ 1 − e −λ. (9)

�

We define a random variable X which takes value 1 with

probability P r{ B (i ) = 1 } ≈ e −λ and takes value 0 with probability

P r{ B (i ) = 0 } ≈ 1 − e −λ. Then we have 

P r{ X = 1 } = e −λ, P r{ X = 0 } = 1 − e −λ. (10)

It is not hard to get that the random variable X follows the

Bernoulli distribution. Therefore, the expectation and the standard

deviation of X are as follows: 

E(X ) = e −λ, σ (X ) = 

√ 

V ar(X ) = 

√ 

e −λ(1 − e −λ) . (11)

Theorem 2. Let ρ = 

1 
w 

∑ w 

1 X(i ) be the average of w independent ob-

servations, where X ( i ) denotes the ith observation of random variable

X. Then the tag cardinality can be calculated by 

ˆ n = −w ln ρ

kp 
. (12)

Proof. Assuming that all the trials of X i (1 ≤ i ≤ w ) are indepen-

dent as [15] does, we have E( ρ) = E(X ) and σ ( ρ) = 

σ (X ) √ 

w 

. 

According to the law of large numbers, when w is large enough

we have 

ρ = E( ρ) = E(X ) = e −λ. (13)

So we can estimate λ as follows: 

ˆ λ = − ln ρ. (14)

The observation of ρ can be used to estimate the tag cardinality

as follows: 

ˆ n = −w ln ρ

kp 
. (15)

�

From Eq. (12) , we can get that w, k, p and ρ all influence the

estimation accuracy of ˆ n . Particularly, the estimator will not work

when ρ = 0 or ρ = 1 , which means that all bits in vector B are

identical (0s or 1s). They are the two exceptions we should avoid. 

4.3. Parameter settings 

The parameter k in Eq. (12) whose value denotes the number of

hash functions is introduced to cope with the various distributions

of tagIDs. It can not be too small. A small k will lead to a great

variance of ˆ n because of the pseudo-random of hash functions. On

the other hand, it is also time-consuming for tags to get k ran-

dom numbers if k is too large. The communication overhead be-

tween reader and tags will also be increased, as the reader needs

to broadcast more random seeds to all the tags. Taking all these

factors into consideration, we empirically set k = 3 in BFCE for a

reasonable tradeoff between cost and accuracy. 

When it comes to w , similar situations occur. A large w will

cause both the exception of all 1s in B and high temporal overhead

for BFCE, while a small w will also cause another exception of all

0s in B . Besides, we should also take the scalability of BFCE into

account when determining the value of w . We define γ = − ln ρ
kp 

,

where k is set to 3. As both p and ρ vary in the range (0,1), we

can get the variation of γ with different p and ρ, as depicted

in Fig. 5 . Then we can find 0.0 0 0326 ≤ γ ≤ 2365.9. According to

Eq. (12) , we get 0.0 0 0326 ·w ≤ ˆ n ≤ 2365 . 9 · w . That is to say, the

value of w actually bounds the scalability of the estimator. In our

work, to achieve a constant-time estimator, we set w = 8192, which

is scalable enough for most RFID systems. Under this setting, the
aximum cardinality that the estimator can estimate exceeds 19

illions, which is sufficient for almost all kinds of application sce-

arios. 

The reasons why w is set at 8192 is two fold. First, the cardinal-

ty of tags in a practical scenario is not infinitely large. Setting w

o an appropriate value enables one to simultaneously obtain good

calability of the estimator and sufficient capacity to accommodate

ll the tags in a reader’s interrogation zone. Second, the computa-

ion overhead of hash functions should also be considered. Setting

 = 8192 will also greatly reduce this overhead as we show in next

ection. 

Since Bloom Filter is a compact storage of information, one may

ave doubt on whether w = 8192 is enough to get the desired esti-

ation accuracy. According to Chebyshev’s inequality 

 r{| ρ − E(X ) | ≥ ϕ} ≤ D (X ) 

ϕ 

2 
, (16)

ig. 6 plots the error probability of ρ with different p and n after

192 trials when ϕ is set at 0.01. We find that regardless of the

alue of n , there are always optimal p o that guarantees the error

robability is close to 0. The existing schemes like SRC [16] guar-

ntees the accuracy by fixing the persistence probability and tun-

ng the frame size. Different from this manner, we try to tune the

ersistence probability of BFCE, so that w = 8192 trials are sufficient

o guarantee the equation ρ = E(X ) holds. 

Algorithm 1 regulates the behavior of the RFID reader. Depend-

ng on which phase the estimator is in, the reader either gets a

pecific persistence probability for rough estimation of the lower

ound of cardinality, or calculates the approximate optimal persis-

ence probability p for accurate estimation (line 4). The reader ini-

iates the estimation process by sending out w, R and p (line 5).

fter that, the reader senses the channel and records the status

nto the vector B (line 6–12). The ratio of 1s ρ in B is calculated

fter all the w bit-slots end (line 13). Finally, the estimation of tag

ardinality is calculated using Eq. (12) (line 14). 

Each tag performs simple tasks as regulated in Algorithm 2 . In

ach estimation phase, when receiving an estimation command,
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Algorithm 1 BFCE algorithm for reader. 

1: B = 0 //8192bits 

2: w ← 8192 

3: k = 3 

4: Get p for rough or accurate estimation 

5: Initiate the estimation, broadcast w , k , R and p

6: for i ← 1 to w do 

7: if there is no response in the slot then 

8: B (i ) ← 1 

9: else 

10: B (i ) ← 0 

11: end if 

12: end for 

13: ρ ← 

1 
w 

∑ w 

1 B (i ) 

14: return ˆ n ← − w ln ρ
kp 

Algorithm 2 BFCE algorithm for RFID tag. 

1: Receive w , k , R , p

2: S ← H j (tagID, R j , w ) , j = 1 · · · k 

3: for i ← 1 to w do 

4: S ← S − 1 

5: if any s in S equals 0 then 

6: Respond with a probability of p immediately 

7: else 

8: Keep silent 

10: end if 

11: end for 
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Fig. 7. The monotonicity of f 1 and f 2 when the persistence probability p is small. 
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he tag computes the selected S bit-slots with k different hash

unctions (line 2). If any s in S equals 0, the tag sends a response

ith a probability of p . Otherwise, it keeps silent (line 3–11). 

.4. Rough lower bound estimation phase 

Before performing the final ( ε, δ) estimation, we first try to

et a rough lower bound of tag cardinality (denoted by ̂ n low 

and̂ 

 low 

≤ n ), see the reason in the next section. Nevertheless, since

e do not have any prior knowledge, we turn to get a rough esti-

ation (denoted by ̂ n r ) of n firstly. According to Eq. (12) , as long as

he ratio ρ � = 0 and ρ � = 1 , we can get an estimation of n . We set a

pecific persistence probability, e.g. p s = 

2 3 

2 10 , and observe the re-

eived X s in the coming 32 bit-slots. If all the 32 slots are idle slots,

hich means there are no response in all slots, we adjust the re-

ponse probability p s to p s + 

2 
2 10 . On the contrary, if all the 32 bit-

lots are busy slots, which indicates the probability p s is too large

or the current cardinality, we reduce it to p s − 1 
2 10 . This procedure

s immediately terminated once both idle and busy slots appear in

he 32 bit-slots. 

Through several tests, we can get a valid persistence probability

 s quickly. With this p s , BFCE starts a new round to get ̂ n r accord-

ng to Algorithm 1 . As we only expect a rough lower bound of n ,

ather than the actual n , we can terminate the estimation at any

ime (e.g. after 1024 bit-slots). The feasibility of using only 1024

rials of X s to get the rough estimation is that we assume all the

ash functions follow uniform distribution, So the E( ρ) of 1024

rials theoretically equals to the E( ρ) of 8192 trials. That is to say,

he ρ of 1024 bit-slots could approximately represents the ρ of

192 slots. However, there may be difference between 

̂ n r and n . So

e take c ∗ ̂ n r as the rough lower bound 

̂ n low 

, where the value of c

anges in (0, 1) and we will validate the influence of different c in

ection 4 . 
.5. Final accurate estimation phase 

Different from previous literatures, which require numerous

ounds to get an approximate ρ, we tune the value of p to get

n accurate estimation of ρ in just one round, and then get the

ardinality estimation result that meets the accuracy requirement

 r{| ̂  n − n | ≤ εn } ≥ 1 − δ. Next, We will show how to get the ap-

roximate optimal p o with the rough lower bound estimation 

̂ n low 

,

hich we have got in the last section. 

heorem 3. Given the accuracy requirement of ( ε, δ), ˆ n is an ( ε, δ)

stimation of n if 

f 1 ≤ −d and f 2 ≥ d (17)

old, where f 1 = 

e −λ(1+ ε) −e −λ

σ (X ) √ 
w 

, f 2 = 

e −λ(1 −ε) −e −λ

σ (X ) √ 
w 

, and d =
 

2 er f in v (1 − δ) . 

roof. Because λ = 

kpn 
w 

, according to Eq. (12) , the estimation accu-

acy requirement can be represented by 

 r{ e −λ(1+ ε) ≤ ρ ≤ e −λ(1 −ε) } ≥ 1 − δ. (18)

Based on the fact that the variance of ρ is reduced if the ex-

eriment is repeated for many times (e.g. w = 8192 times), we de-

ne a random variable Y = 

ρ−μ
σ , where μ = E( ρ) = e −λ, and σ =

( ρ) = 

σ (X ) √ 

w 

. Thus, Eq. (18) becomes 

 r{ f 1 ≤ Y ≤ f 2 } ≥ 1 − δ. (19)

By the central limit theorem , we know Y is approximately a stan-

ard normal random variable. Given a particular error probability

, we can find a constant d that satisfies 

 r{−d ≤ Y ≤ d} = 1 − δ. (20)

Combining Eqs. (19) and ( 20 ), one can guarantee the accuracy

equirement P r{| ̂  n − n | ≤ εn } ≥ 1 − δ if the following conditions are

atisfied: 

f 1 ≤ −d and f 2 ≥ d. (21)

�

As a large p will cause the exception of all 0s in B , especially

hen the cardinality is large, BFCE takes the minimal p that sat-

sfies Eq. (17) as the optimal p o , so we can guarantee that ˆ n is an

 ε, δ) estimation of n . Therefore, the optimal p o is usually small

e.g. p = 

3 
2 10 ), especially when n is large. This can also be verified

y Fig. 6 . However, it is impossible to get the optimal p o by solv-

ng Eq. (17) , as the actual value of n is unknown. To get the op-

imal value for p o , we first take both f 1 and f 2 as functions of n ,

nd then analyse their monotonicity. As shown in Fig. 7 , when p is

mall, given w = 8192 , k = 3 and the confidence interval ε = 0 . 05 ,
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f 1 and f 2 are monotonically decreasing and increasing functions of

n , respectively. So we can approximately take f 1 as a monotoni-

cally decreasing function of n , and f 2 as a monotonically increasing

function of n . Hence, we have the following Theorem. 

Theorem 4. Let ̂ n low 

be a rough lower bound estimation of n, which

has been obtained in the previous rough estimation phase, i.e., ̂ n low 

≤
n . let p o be the minimal probability that satisfies 

f 1 ( ̂  n low 

) ≤ −d and f 2 ( ̂  n low 

) ≥ d, (22)

Eq. (17) holds when using this p o . 

Proof. Because f 1 , f 2 are monotonically decreasing and increasing

functions of n , respectively, we have 

f 1 (n ) ≤ f 1 ( ̂  n low 

) and f 2 (n ) ≥ f 2 ( ̂  n low 

) . (23)

Combining Eqs. (22) and ( 23 ), Eq. (17) holds. �

Based on the above analysis, we get the approximate optimal

p o according to Eq. (22) , via brute-force calculation (e.g. from 

1 
2 10 

to 2 10 −1 
2 10 ) with priori knowledge of ̂ n low 

, which has been obtained

in the first rough estimation phase. One may have the doubt that

is there must be one or more p o . In fact, through our previous ex-

periments, we find that there is always such p o , as long as the ac-

curacy requirement is not higher than our assumption. A higher

accuracy requirement (both ε and δ are close to 0) will cause the

failure of getting p o . Without this p o , BFCE has to using a specified

probability, so that the estimation accuracy requirement cannot be

guaranteed. Taken together, we take the minimal p o that satisfies

Eq. (22) as the approximate optimal persistence probability, since

p o is usually small. With this p o , we can guarantee the estimation

result calculated with Eq. (12) is an ( ε, δ) estimation. 

4.6. Overhead analysis 

As we mention in the previous sections, BFCE finishes estima-

tion in just one round, which consists of two phases, namely a

rough lower bound estimation phase and an accurate estimation

phase. In each phase, the reader only needs to transmit constant

number of parameters, and then senses the physical channel to get

a bloom vector B within 8192 bit-slots. In the rough estimation

phase, as we only expect a rough lower bound of the tag cardinal-

ity, we may deliberately terminate the phase in just 1024 bit-slots.

Hence the temporal overhead of this phase, denoted by t 1 , can be

calculated by 

 1 = (l w 

+ l k + k · l R + l p ) · t r→ t + t int + 1024 ∗ t t→ r , (24)

where l w 

, l k , l R , and l p are the length of w, k , random seeds, and

p , respectively t r → t is the time for the reader to transmit 1-bit in-

formation, t int is the time interval between two consecutive trans-

missions from the reader to tags or vice versa, and t t → r is the

time for the tags to transmit 1-bit information. Since both w = 8192

and k = 3 are constant, we can preload them to tags and need not

transmit them at runtime. Therefore, t 1 can be simplified as 

 1 = (3 · l R + l p ) · t r→ t + t int + 1024 · t t→ r . (25)

Similarly, the temporal overhead of the accurate estimation

phase, denoted by t 2 , is calculated by 

 2 = t int + (3 · l R + l p ) · t r→ t + t int + 8192 · t t→ r . (26)

Based on the above analysis, the overall temporal overhead of

BFCE (denoted by t ) is the summation of t 1 and t 2 , which is 

 = (6 ∗ l R + 2 ∗ l p ) · t r→ t + 3 · t int + 9216 · t t→ r . (27)

According to the EPCglobal C1G2 standard [35] , the time for a

reader to transmit one-bit information is 37.76 μ s. The time inter-

val is 302 μs. The time for tags to transmit one-bit information
s 18.88 μs, namely t r → t = 37.76 μs, t int = 302 μs and t t → r = 18.88

s. If we restrict the lengths of both the random seeds l R and the

ersistence probability l p to be 32 bits, the overall temporal over-

ead of BFCE is 0.1847 s. It means that BFCE can rapidly get the

nal accurate estimation within constant time less than 0.19 s. 

. Discussion 

.1. Estimation with unreliable channel 

All the above design and analysis of BFCE is based on the as-

umption of a reliable and perfect communication channel be-

ween reader and tags. However, there are always interference

rom various wireless source, it is irrational . Most existing pro-

ocols can not get the final estimation which satisfies the accu-

acy requirement over an unreliable channel, the estimation accu-

acy may decrease dramatically even with a small error rate of the

hannel. We assume that the error rate of communication channel

s time-invariant during the whole short estimation process, and

e also assume the false negative rate and false positive rate are

oth q for simplicity. The value of q can be obtained after a sim-

le test, namely let all the tags respond a specific vector simul-

aneously, the reader then examines the received vector. Then we

xtend BFCE to eBFCE, so that it is fault tolerance with unreliable

hannel. 

We denote by ˆ ρerror the average of w independent observations

ith error rate of q . Then we have 

( ̂  ρerror ) = E( ρ − q ρ + q (1 − ρ)) = E( ρ − q (2 ρ − 1)) . (28)

According to Eq. (28) , we can compute E( ρ) as 

 ( ρ) = 

E ( ̂  ρerror ) − q 

1 − 2 q 
. (29)

So we can extend Eq. (12) and estimate the cardinality as fol-

ows: 

ˆ 
 error = − w 

kp 
ln 

E( ̂  ρerror ) − q 

1 − 2 q 
. (30)

From Eq. (30) , we can get that the reliable channel condition is

he special case when q = 0. 

.2. Implementation of the hash functions 

In BFCE, all the tags are required to select k = 3 bit-slots us-

ng hash functions and respond in the selected slots with a prob-

bility of p . Instead of storing many hash functions on resource-

onstrained tags, a 32-bits random number (denoted by RN in the

inary form) is prestored on each tag, prior to the RFID system de-

loyment. To implement the hash functions, the reader generates

hree uniformly distributed random seeds (denoted by RS [ i ] in the

inary form, where i ∈ 1, 2, 3) at the very start of each phase and

roadcasts them to all the tags. When receiving the random seeds,

ach tag computes the three hash values by 

(id) = bit get (RN � RS(i ) , 13 : 1) , (31)

here � denotes the bitwise XOR operation and bitget is a func-

ion to get the lowest 13 bits of the XOR results. Such a simple

ethod only requires the tags to perform lightweight bitwise XOR

omputation and bitget operations to get the hash values. 

.3. Setting the persistence probability 

Then, most existing works implement the persistence probabil-

ty p by virtually extending frame size for 1 
p times, i.e., the reader

nnounces a frame size of w / p and terminates the frame after the

rst w slots. This scheme seems not usable in BFCE, because the
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Fig. 8. Three tagIDs sets used in the simulation under different distributions. 
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alue of p is usually small. The size of virtual vector after being

xtended will be large and slows down the hash function related

omputations. Instead, we let the reader broadcast the numerator

f p (denoted by p n ) rather than the actual p . On receiving p n , each

ag randomly selects several bits (e.g. 10 bits) from the pre-stored

andom number. If the selected value (in the decimal form) turns

ut to be smaller than p n -1, the tag will respond in current bit-

lot. Otherwise, the tag will keep silent. In this way, we also get a

ightweight p -persistence. All the conclusions and theorems proved

efore still hold under this setting. 

. Performance evaluation 

We conduct extensive simulations under various tagID distribu-

ions to evaluate the performance of BFCE. First, we assess the esti-

ation accuracy of BFCE with varied cardinalities of tags under dif-

erent settings. We then compare BFCE with two state-of-the-arts

pproaches, ZOE [15] and SRC [16] , in terms of estimate accuracy

nd time efficiency. 

.1. Setup and metrics 

We generate three tag ID sets following different distributions

s the input data for experiments. As shown in Fig. 8 , the first set

denoted by T1) follows uniform distribution between 1 and 10 15 .

he second tag sets(denoted by T2) follows an approximate nor-

al distribution. The third tag sets (denoted by T3) follows normal

istribution. 

Instead of repeating many rounds of estimation and taking the

verage as the final outputs, we just take the result of one round

stimation as the final result. We adopt a relative metric to evalu-

te the accuracy, namely 

ccuracy = 

| ̂  n − n | 
n 

, (32) 

here ˆ n denotes the estimation result and n refers to the actual

umber of tags. A good estimator is expected to return an estima-

ion result close to the actual value. The closer it is to 0, the higher

he estimation accuracy is. 

To evaluate the time efficiency of different estimators, we take

he overall execution time of estimators as the second metric, the

xecution time of BFCE is the overall time of every communication

etween reader and tags. According to EPCglobal C1G2 standard

35] , any two consecutive transmission from the reader to tags or

ice versa are separated by a waiting time of 302 μs. The trans-

ission rate from the reader to tags is 26.5 kb/s. It takes 37.76

s to transmit 1 bit. Assuming that the length of a random seed

s 32 bits, it totally takes 1510 μs for the reader to broadcast a 32-

its random seed. The rate from a tag to the reader is 53 kb/s, it

akes 18.88 μs for a tag to transmit 1 bit. So the time for tags to

ransmit l bits signal is approximately 18.88 ˙ l +302 μs. 

.2. Performance under different settings 

We first examine the accuracy of BFCE with different param-

ters settings under all the three tag ID distributions. Fig. 9 (a)

resents the different estimation accuracy to get (0.05,0.05) esti-

ation. The results with different actual cardinality n under all the

hree distributions are shown together. Recall that c is the constant

oefficient used in the rough estimation phase. From this figure,

e can see that the accuracies are very close to 0 even the actual

ag cardinality goes up to 1 million, and always can meet the de-

ired accuracy requirement in all cases. This group of experiments

eveal that different tagID distributions have little impact on the

stimation accuracy. 

Then we fix the actual tag cardinality n = 50 0,0 0 0, and evaluate

he estimation accuracy with different ε and δ. Fig. 9 (b) plots the
ccuracy when ε is varied from 0.05 to 0.3 and other parameters

re fixed. Whatever ε is, BFCE always achieves estimation accuracy

elow 0.04, which is far better than the required ε. We see similar

esults when δ is varied from 0.05 to 0.3 under all the T1, T2 and

3 distributions as shown in Fig. 9 (c). 

To further validate the stability of BFCE, we run the BFCE for

00 rounds when n = 500,000, ε= 0.05 and δ= 0.05. Fig. 10 presents

he cumulative distributions of the estimation results in T1, T2

nd T3, respectively. According to the simulation results, we find
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Fig. 9. Estimation accuracy with different n , ε and δ under different tagIDs distri- 

butions. 

 

 

 

 

 

 

 

 

Fig. 10. Cumulative distributions of BFCE under different tagIDs distributions. 

Fig. 11. Estimation accuracy with different c under different tagID distributions. 
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that the estimation results of BFCE are tightly concentrated around

the actual cardinality under all the three tagID distributions. It

means that BFCE offers more accurate estimation after multiple

runs. Compared with previous approaches which need to be ex-

ecuted hundreds of repeated rounds, we can achieve an extremely

accurate estimation in no more than 100 rounds. 

Then, we validate the impact of the coefficient c (used

in the rough estimation phase) on the estimation accuracy.

Fig. 11 presents the simulation results when c is varied from 0.1
o 0.9. We can see that there are no large oscillations under all the

hree distributions whatever c is. Actually, the rough estimation 

̂ n r 
n the first phase of BFCE is already close to the actual cardinal-

ty, so there is a high probability that we can guarantee the condi-

ion of ̂ n low 

≤ n even when c is large. According to Theorem 4 , as

ong as ̂ n low 

≤ n, the approximate optimal persistence probability

 o calculated by Eq. (22) is close to the expected value, and results

n very small variation of the final accurate estimation. Finally, we

lso verify the robustness of extended BFCE (eBFCE) when the es-

imation encounters unreliable channel. Fig. 12 plots the accuracy

omparison between basic BFCE and eBFCE when the channel er-

or rate q is set to be 10% (both the false negative rate and false

ositive rate are 10% as aforementioned) under different tagID dis-

ributions. The figure suggests that the estimation accuracy of basic

FCE degrades greatly under noisy and unreliable channel, and can

ot meet the accuracy requirement in most time. While in eBFCE,

hich takes the channel error into consideration, the estimation

ccuracy remains reliable in most case, even with 10% channel er-

or. 

.3. Comparison 

We then compare the performance of BFCE with two typical

tate-of-the-art schemes, ZOE [15] and SRC [16] . Note that ZOE re-

uires a rough estimation of n as input to get the final accurate

stimation, we slightly modify ZOE, and add a rough estimation

hase to ZOE. For simplicity, we invoke LOF [21] and run it for 10

ounds. We then use LOFs output as the rough estimation input of

OE. To achieve an ( ε, δ) estimation with SRC where δ is smaller

han 0.2, we repeat the second phase of SRC for m rounds, where
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Fig. 12. Estimation accuracy of eBFCE and BFCE with channel error rate 10% under 

different tagIDs distributions. 
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Fig. 13. The comparison of accuracy with different n , ε and δ in one of tagIDs set 

T2. 
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 is the smallest integer that satisfies 

m ∑ 

 =(m +1) / 2 

( m i ) · 0 . 8 

i · 0 . 2 

m −i ≥ 1 − δ. (33)

e conduct performance comparison with all the three tagID dis-

ributions. Due to the page limit, Fig. 13 and Fig. 14 present the ac-

uracy and execution time in only one distribution (T2). As shown

n Fig. 13 , both ZOE and SRC can achieve the desired estimation
n almost all the case except several exceptions. Specifically, when

 = 50,0 0 0, the accuracy requirement is set to ε= 0.05 and δ= 0.05,

RC gets a final estimation 53,430, and the accuracy is about 0.68.

iven n = 50 0,0 0 0, ε= 0.05 and δ= 0.3, ZOE outputs an estimation

esult 537,656, which also exceeds the desired confidence interval.

he reason for the exceptions of ZOE and SRC is as follows. The es-

imation results of ZOE and SRC largely depends on the accuracy of
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Fig. 14. The comparison of overall execution time with different n , ε and δ in one 

of tagIDs set T2. 
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rough estimation, namely the output results of the first estimation

phase in ZOE and SRC. In contrast, BFCE always can achieve the

desired accuracy in all the cases in only one round, because BFCE’s

final estimation is only concerned with the rough lower bound of

cardinality, rather than an exact value of roughly estimated cardi-

nality. 
In Fig. 14 , we examine the overall execution time of BFCE, com-

ared with that of ZOE and SRC with different parameters settings

n the distribution T2. We can see from the figures that the execu-

ion time of ZOE is usually large, about several seconds in all the

ases, and even goes up to 18 s in the worst case. There are two

easons for the poor performance of ZOE. First, ZOE needs to con-

inually broadcast 32-bits random seeds for each slot, so the com-

unication time from the reader to tags accounts for the major

ortion of execution time. Second, the number of required slots of

OE has great relationship with the output of the rough estimation

hase. An estimation that fairly deviates from the actual cardinal-

ty will lead to a sharp growth of the required time slots. Although

he overall execution time of SRC is much shorter than ZOE’s, there

re still apparent variance because the execution time of SRC also

as relationship with the accuracy of rough estimation. In compar-

son, BFCE always gets the desired estimation in a constant time,

ithin just 0.19 s, which is 30 times faster than ZOE, and 2 times

aster than SRC in average. 

. Conclusion 

In this paper, we propose a Bloom Filter based Cardinality Es-

imation (BFCE) scheme for tag cardinality estimation in RFID sys-

ems, when slightly low accuracy and high efficiency estimation

equirement are pursued. BFCE achieves guaranteed estimation ac-

uracy in constant time. Moreover, implementing BFCE only re-

uires slight updates to the EPCglobal C1G2 standard [35] and fits

 wide variety of application purposes. We conduct extensive sim-

lations to evaluate the performance of BFCE under different set-

ings. The experiment results demonstrate that BFCE outperforms

tate-of-the-arts schemes in terms of time efficiency and estima-

ion accuracy. 
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