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Abstract—Eccentricity detection is a crucial issue for high-
speed rotating machinery, which concerns the stability and
safety of the machinery. Conventional techniques in industry for
eccentricity detection are mainly based on measuring certain
physical indicators, which are costly and hard to deploy. In
this paper, we propose RED, a non-intrusive, low-cost, and real-
time RFID-based eccentricity detection approach. Differing from
the existing RFID-based sensing approaches, RED utilizes the
temporal and phase distributions of tag readings as effective
features for eccentricity detection. RED includes a Markov chain
based model called RUM, which only needs a few sample readings
from the tag to make a highly accurate and precise judgement.
We implement RED with commercial-of-the-shelf RFID reader
and tags, and evaluate its performance across various scenarios.
The overall accuracy is 93.59% and the detection latency is 0.68
seconds in average.

I. INTRODUCTION

Rotating machinery is a widely used part in industrial

equipments, ranging from small motor to massive generator

as shown in Fig. 1. Rotating machinery on those equipments

generally plays a key function and counts the major portion

of the manufactory cost. It’s therefore necessary and crucial

to ensure the mechanical health and normal operation of

the rotating machinery. When a rotor is rotating, it keeps

producing a centrifugal force. When the rotating speed goes

high, the resulting strong centrifugal force can make a rotor’s

center axis deviate from its initial position, as shown in

Fig. 2. This is so-called eccentricity. Eccentricity is generally

harmful to rotating machinery. Countless industrial accidents

and losses are caused by the eccentricity of rotating machin-

ery [1]. Eccentricity detection, namely to detect eccentricity

within specified time, becomes an indispensable component

of rotating machinery in modern industry.

Conventional techniques in industry for eccentricity detec-

tion [2] [3] [4] [5] [6] are mainly based on measuring certain

physical indicators, such as electrical current, sound, temper-

ature, vibration, etc. In order to obtain those information,

it requires embedding special sensors and data acquisition

instruments, which mean unaffordable costs in many cases. For

the small rotating machinery, it is even impossible to embed

extra hardware when they are manufactured. The above-

mentioned facts call for a low-cost non-intrusive technique

for eccentricity detection.

Fig. 1. Some applications of rotating machineries, which are power generator,
motor, car engine, and pump

Recent advances in Radio Frequency IDentification (RFID)

make it a promising technique for sensing physical phe-

nomenon. The existing works have explored RFID-based

sensing in varied cases, e.g. orientation detection [7] [8] [9]

[10], humidity sensing [11], vibration inspection [12] , motion

detection [13] and touch sensing [14]. Successes in those cases

demonstrate advantages of RFID-based sensing, especially the

low cost and ease of deployment. Then an open problem

naturally comes to our mind: Can RFID-based sensing detect

eccentricity? After careful thinking and all-sided analysis,

we find this problem is extremely challenging, due to the

following reasons.

• High-speed rotation produces discrete tag readings.
The rotation speed of rotating machinery is very high,

typically over thousands RPM (revolutions per minute).

The sampling frequency of commercial RFID tags is

around 40Hz. When we attach an RFID tag to the surface

of the rotor and let them rotate together, the RFID reader

can only get sub-Nyquist sampling. The tag readings are

essentially discrete and correspond to scattered positions

of the tag.

• High precision requirement. According to practice in

industry, the eccentricity cannot exceed a specified dis-

tance, which is generally several millimeters or even

shorter. Note that the readings from RFID tags are

dynamic and noisy, while the resolution of RSSI (received

signal strength indicator) readings is only 0.5 dB [15]. It

is therefore infeasible to identify eccentricity, solely based



Fig. 2. A sketch of eccentricity

on the RSSI and phase readings.

• Real-time requirement. Due to the high-speed rotation,

eccentricity that exceeds a predefined threshold must be

detected in real time. Otherwise, accidents are likely to

happen before one can take any countermeasure.

• High accuracy requirement. Not only false negative

but also false positive alarms should be avoided in ec-

centricity detection. Excessive false positives will cause

unnecessary downtime of the machinery, which is also a

kind of loss.

In this paper, we propose RED, an RFID-based approach

tailored for eccentricity detection in high-speed rotating ma-

chinery. The hardware requirement of RED is very sim-

ple: an RFID tag attached to the surface of the rotor and

an RFID reader deployed nearby. The tag rotates with the

rotor at the same speed, returning readings periodically to

the reader. The design of RED is based on the following

insight: Despite that every single reading is disorganized, the

distribution of readings is stable if there is no eccentricity.

When the rotor’s eccentricity increases, the distribution of

readings will also change. How much the distribution is varied

reflects the distance of eccentricity (i.e. shift). We address non-

trivial challenges in implementing the above idea and make

RED a universal, non-intrusive, and low-cost solution. The

contributions of this work are summarized as follows.

• In the context of high-speed rotation, we disclose the

relationship between eccentricity and the probabilistic

distribution of RFID readings. Instead of judging ac-

cording to the RSSI and phase values, we identify the

temporal and phase distributions of signals as effective

features for eccentricity detection.

• We propose a Markov chain based model called RUM

for eccentricity detection. With the RUM model, RED

only needs a few sample readings from the tag to make

a highly accurate and precise judgement.

• As a non-intrusive approach, RED is applicable to all

kinds of rotating machinery. We implement RED with

commercial-of-the-shelf RFID reader and tags, and eval-

uate its performance across various scenarios. The overall

accuracy is 93.59% and the detection latency is 0.68

seconds in average.

Fig. 3. Experiment setup

The rest of this paper is organized as follows. In Section II,

we describe our empirical studies. The design details of model

RUM and the overview of RED are presented in Section III.

Implementation and evaluation are described in Section IV.

Section V discusses related works. We conclude and discuss

future work in Section VI.

II. EMPIRICAL STUDY

Figure 2 shows an eccentricity sketch. When eccentricity

happens, the axis of the rotor has a shift Δd relative to the

initial position. At the same time, the rotation center of the

tag shifts Δd, too. In this section, we conduct a series of

empirical studies to observe how the received signals change

when eccentricity happens.

Figure 3 shows the devices that conduct the experiments.

We use a centrifuge and a turntable. Their rotation speeds

are 10000 RPM and 1 RPM, respectively. We simulate the

eccentricity by moving the whole device away from the

antenna. Alien UHF passive RFID tags [16] are attached onto

the surface of these two devices. An ImpinJ Speedway R420

RFID reader [15] and a Laird circular polarized antenna are

nearby, receiving the signals backscattered by the tags. From

each sampling, the reader gets a RSSI and a phase value.

A. The Change of RSSI and Phase

When the tag rotates at 1 RPM, the signal changes slowly

and periodically as Fig. 4(a) shows. In a period, RSSI fluc-

tuates within a stable interval, increasing from the minimum

to the maximum and then decreasing. At the same time, the

phase monotonically increases from 0 to 2π. We also find that

when the tag rotates for half a circle, the RSSI and phase

readings change accordingly for a period due to polarization

[17]. By comparing the signals before and after eccentricity,

both the waveform of RSSI and phase do not change. Only

the minimum and the maximum of RSSI change, because the

distance between the antenna and the tag changes.

B. The Received Signals in Case of High-speed Rotation

Fig. 4(b) shows the received signals when the tag rotates

at 10000 RPM. Different from Fig. 4(a), the signal is highly

dynamic and discrete because of the high rotation speed

and sub-Nyquist sampling. But we can still observe some
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(c) The maximums of RSSI and their correspond-
ing phase values before and after eccentricity

Fig. 4. Measured RSSI and phase before and after the eccentricity
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Fig. 5. The CDF of phase difference and time interval over four hours
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Fig. 6. The CDF of phase difference and time interval of two different tags

difference from the RSSI readings caused by the shift of

1 cm. When the distance between the tag and the antenna

increases, the maximum and the minimum values of the

RSSI become smaller. Unfortunately, the phase readings are

indistinguishable.

C. Signal Analysis and Feature Extraction

According to the above findings, an intuitive idea for

eccentricity detection is to detect whether the maximum of

RSSI has changed. Consider that the RSSI readings fluctuates

even if the tag is stable, we can hardly identify the maximum

value, unless a sufficiently large number of samples are

collected. What’s more, the resolution of RSSI is 0.5 dB due

to hardware limitation. When the shift is small, such as 1 mm,

the maximum of RSSI stays constant as Fig. 4(c) shows. So it

doesn’t work if we only focus on the RSSI value of maximum.

We can observe from Fig. 4(c) that when the distance

increases, the number of maximum increases during a certain

time period. That is, the expected time interval between two

maximum decreases. The corresponding phase values concen-

trate close to a certain value. The reason is that the periods of

RSSI and phase are same, so the corresponding phase value of

every RSSI is fixed if the environment remain the same. Then

we can extract two different features. Consider the dynamics

in the RSSI readings, we regard the RSSI readings that are

above a certain threshold as the maximum values, and define

the corresponding sample as E-points. We name them as E-
points. Every time we get an E-point, we compute the time

interval (denoted by Int) between this and the last E-point. We

also compute the phase difference (denoted by Diff ) between

this and the last E-point. If the distance between the antenna

and the tag increases, the expected Int increases while the

expected Diff decreases.

D. The Stability of The Two Features

We repeat the experiments several times, each for 1 minute,

in different conditions to observe the distribution of phase

difference and time interval of E-points. From Fig. 5 we can

see that these two features are stable. When the tag stays at a

fixed position. The CDFs of the two features are almost same

over four hours.

E. On Tag Diversity

We repeat the experiments with two different tag (Tag 1 and

Tag 2) that located at the same position. The results are shown

in Fig. 6. We can see that the distributions of phase difference

and time interval are almost same. Between Tag 1 and Tag 2,

hardware differences have almost no influence.

F. The Distinguishability of The Two Features

Finally we compare the distribution of the two features

before and after eccentricity. From Fig. 7 we can see that

the result is consistent with our analysis. When the tag
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Fig. 7. The CDF of phase difference and time interval before and after the
shift

approaches the antenna, the maximum and the minimum of

RSSI increases, and the number of E-points increases. As a

result, the range of phase difference increases and the range

of time interval decreases.

G. Findings

From the experiments, we found that in the context of high-

speed rotation, the received signals are discrete and highly

dynamic. When eccentricity happens, we can detect it by

observing the distribution of phase difference and time interval

of the E-points. These two features are distinguishable when

eccentricity happens. They are stable over time. Tag diversity

doesn’t bring significant influence on them. Based on these

findings, we can design an RFID-based eccentricity detection

system.

III. RED IN PRINCIPLE

To realize eccentricity detection, we propose RED. The first

problem is the real-time requirement. Our findings are based

on the statistical regularities of the accumulation of data, which

is difficult to get in very short time. Besides, we can’t get the

training data under the environment of eccentricity in a real

scenario, so we have no idea about how the distribution is after

eccentricity when we deploy the devices in a new environment.

In this section, we first describe an overview of the eccen-

tricity detection model, named RUM, used in this work, which

is used to meet the real-time requirement, followed by detailed

discussion of the main components of this model including

estimate the distribution after eccentricity. At last, we describe

how RED work as a whole system. The symbols used in this

paper are listed in Table I.

A. RUM: A Model for Eccentricity Detection

To meet the real-time requirement, we choose to design a

Markov chain based model, using Diff and Int as input. It

can compute the probabilities that every Diff and Int occur

and transmit, and make judgement in several samples.

Specifically, according to the findings in Section II, the

change in the distributions of the time interval and the phase
difference between two sequentially E-points can be used

as an indicator of eccentricity. Therefore, the problem of

eccentricity detection can be stated as: given a sequence of

Fig. 8. Illustration of the RUM model

E-point measurements, what is the probability that the center

of the rotating machinery has deviated from its initial position?

Given the length of the observation window w, we can get a

E-point sequence Ei = {(Ti, Phi)|n−w ≤ i ≤ n− 1}. Then

we can get the time interval sequence as Inti = {Ti+1 −
Ti|n − w ≤ i ≤ n − 2}, and the phase difference sequence

as Diffi = {Phi+1 − Phi|n − w ≤ i ≤ n − 2}. Now the

problem is how to instantly detect the change in the Int and

Diff sequences which indicates the eccentricity.

Here we choose to use a Markov chain based model (named

RUM) which can trace the change in Int and Diff , and detect

eccentricity instantly once abnormal Int and Diff occur.

In this model, we mainly focus on two probabilities.

The probability that every observation (Inti, Diffi) oc-

cur is one indicator of eccentricity we use, denoted by

PUnecc
out (Inti, Diffi), because it change as the distributions

change caused by eccentricity. In addition to the probabilities

of occurrence, the transition probabilities between two obser-

vation is another key indicator.

To compute the transition probabilities conveniently, in the

RUM model, we define four states, i.e., States SISD, SISD,

SISD, and SISD (as shown in Fig. 8), to describe how

likely the observed (Inti, Diffi) implies a non-eccentricity.

Specifically, given the distributions of Int and Diff when

eccentricity has not occurred, if both the observed Inti and

Diffi locate within the pre-defined confidence intervals of

Int and Diff (denoted by ThI and ThD), we identify that

(Inti, Diffi) ∈ SISD. State SI (or SD) means that the

observed Inti (or Diffi) falls outside the confidence interval

ThI (or ThD).

Now the sequence of (Inti, Diffi) can be translated to a

sequence of states Sn = {Sn−1, ..., Sn−w}. Theoretically, if

the eccentricity has not occurred, the observed (Inti, Diffi)
are likely to stay on State SISD. However, due to the noises

and interferences, the observed (Inti, Diffi) may occasion-

ally transfer to States SISD, SISD, or even SISD, but the

transition probabilities are low. If eccentricity happens, the

transition probabilities may increase. As a result, we can

compute how likely the transitions happen in every observation

window as a indicator of eccentricity.
Specifically, the probability that we can observe a transition

chain {Sn−1, ..., Sn−w} under the non-eccentricity scenario



TABLE I
SOME TYPICAL SYMBOLS IN RED

Symbol Meaning
Ti Arriving time of the E-point Ei

Phi Phase of the E-point Ei

w The length of the observation window
Punecc
trans (Si|Si−1) The transition probability between two sequential states in the non-eccentricity scenario

P ecc
trans(Si|Si−1) The transition probability between two sequential states in the eccentricity scenario

PUnecc
out (Inti, Diffi) The probability that we can get a observation (Inti, Diffi) when the eccentricity has not occurred

PEcc
out (Inti, Diffi) The probability that we can get a observation (Inti, Diffi) when the eccentricity occurred

P (ecc) The prior probability which captures the occurrence frequency of eccentricity
P (Inti, Diffi) The probability of the observation (Inti, Diffi)

λ The mean value of Int
Sa The mean value of the sampling interval
RE The RSSI range of the E-points

RRSSI The value range of all the observed RSSIs
PUnecc The probability that the eccentricity has not occurred
Pecc The probability that the eccentricity has occurred

is:

PUnecc
chain =

n∏
i=n-w

Punecc
trans (Si|Si−1). (1)

Then we can evaluate how likely we observe a state sequence
Sn under the non-eccentricity scenario using a normalized
metric PoC as follow:

PoCUnecc(Sn) = max

⎧⎨
⎩

PUnecc
chain −min

s∈S
(Ps)

max
s∈S

(Ps)−min
s∈S

(Ps)
, 1− rank(PUnecc

chain )− 1

|S|

⎫⎬
⎭

(2)

where S is the set of all the possible state sequences that

include n motions. rank(PUnecc
chain ) is the ranking of PUnecc

chain

among all the Ps (s ∈ S).

Based on the PUnecc
out of each observed (Inti, Diffi) and

the estimated PoCUnecc(Sn) for the state sequence Sn, we
can give a normalized metric PUnecc(Sn) to describe how
likely that the eccentricity does not occur:

PUnecc(Sn) = PoCUnecc(Sn) ·min{PUnecc
out (Intn−1, Diffn−1),

..., PUnecc
out (Intn−w, Diffn−w)}

(3)

Similarly, we can also get a normalized metric Pecc(Sn)
to describe how likely the state sequence Sn implies an

eccentricity scenario. Once RED detects a state sequence

which results in Pecc(Sn) > PUnecc(Sn), it considers that

an eccentricity occurs.

In the following subsections, we will discuss how to esti-

mate Pout and PoC in detail.

B. Pout Estimation

The Pout estimation component aims to calculate the

PUnecc
out and P ecc

out for each observed (Inti, Diffi) as an

indicator of eccentricity. According to the Bayes’ theorem, we

can calculate these two probabilities using the corresponding

postetior probability of each observation (Inti, Diffi), given

the eccentricity has occurred or not, i.e., P (Inti, Diffi|ecc)

and P (Inti, Diffi|Unecc). The PUnecc
out and P ecc

out can be

formulated as:

PUnecc
out =

(1− P (ecc)) · P (Inti, Diffi|Unecc)

P (Inti, Diffi)

P ecc
out =

P (ecc) · P (Inti, Diffi|ecc)
P (Inti, Diffi)

(4)

Since P (Inti, Diffi) is the same for both eccentricity and

non-eccentricity scenarios, we are only interested in calculat-

ing P (Inti, Diffi|ecc), P (Inti, Diffi|Unecc), and P (ecc):

PUnecc
out = (1− P (ecc)) · P (Inti|Unecc) · P (Diffi|Unecc)

P ecc
out = P (ecc) · P (Inti|ecc) · P (Diffi|ecc)

(5)

P (ecc) can be obtained from the statistic data. There-

fore, the key goal translates to obtaining P (Inti|Unecc),
P (Diffi|Unecc), P (Inti|ecc), and P (Diffi|ecc). It seems

that we can obtain these posterior probabilities just based on

training samples of Int and Diff . However, in real world

deployment of RED, Int and Diff samples are all from

the non-eccentricity scenario, making it difficult to obtain the

empirical values of P (Inti|ecc) and P (Diffi|ecc).
Fortunately, we find that the distribution of Int and Diff

are indeed highly related to the factors like and the value

range of the measured RSSIs and phases. These factors are

proved measurable (or estimable) in both the eccentricity and

non-eccentricity scenarios (as shown in this section later).

Therefore, if we can find a accurate model to describe the

relationship between these factors and the distribution of Int
and Diff , then we can estimate the posterior probabilities

without relying on the training phase. In the following, we fo-

cus on how to estimate P (Inti|Unecc) and P (Diffi|Unecc),
which can be generalized to the estimation of P (Inti|ecc) and

P (Diffi|ecc).
Estimation of P(Inti|Unecc). Consider that the sampling

interval is random in RFID systems, P (Inti|Unecc) is mainly

determined by the occurrence probability of E-points PUnecc
E



and PEcc
E . Int follows the exponential distribution1 as Int ∼

E(λ). Thus we have:

P (Inti|Unecc) = λe−λInti (6)

where λ = Sa
PUnecc

E

, and Sa can be obtained from the

specification of the RFID system. We will introduce how to

estimate PUnecc
E and P ecc

E in Section III-C.

Estimation of P(Diffi|Unecc). The distribution of Diff
is highly determined by the phase range of the E-points [α, β].
Therefore, considering that the sampling interval is random (as

discussed earlier), Diff (ranges from 0 to β−α) will follow

the uniform distribution as Diff ∼ U(β−α
2 , (β−α)2

12 ). That is

to say, theoretically we have:

P (Diffi|Unecc) =
1

β − α
(7)

In practice, the value of α and β can be estimated based on

the RSSI range of the E-points, which we will show in Section

III-C.

C. Estimation of PUnecc
E and P ecc

E

As PUnecc
E = RE

RRSSI
, we should estimate the range of the

RSSIs and the phases of the E-points.

RSSI range. As discussed in Section III-B, P (Inti|Unecc)
is highly related to the proportion of the E-points (i.e., PE =

RE

RRSSI
), which is further determined by the RSSI range of the

E-Points (RE) and the value range of all the sampled RSSIs

(RRSSI ). Here, RE is determined by the predefined threshold

Thp. Therefore, to estimate PE , we have to estimate RRSSI .

In real world deployment of RED, the RSSI range in the

non-eccentricity scenario can be estimated based on the RSSI

samples. The RSSI range in the eccentricity scenario, however,

needs to be estimated based on i) the RSSI range that in

the non-eccentricity scenario (RUnecc
RSSI ); and ii) the expected

detection precision of RED (namely Δd mentioned in Section

II). Specifically, assume that the effect of the polarization is

negligible (since that the displacement of the tag is only in

mm level), the RSSI range in the eccentricity scenario will

change linearly compared with that in the non-eccentricity

scenario. Therefore, if the rotating machinery shifts Δd, the

corresponding variation in RSSI (denoted by ΔR) can be

estimated by the Friis transmission formula [18].

Phase range. Phase range of the E-points (i.e., [α, β]) is

an important information which can be used to estimate the

distribution of Diff in both eccentricity and non-eccentricity

scenarios. In practice, the phase range can be estimated based

on the proportion of the E-points PE . Specifically, the exper-

imental results in Section II shows that the relation between

the RSSI and the corresponding phase can be regarded as a

sine function. Thus given the proportion of the E-points under

1Exponential distribution is the probability distribution that describes the
time between events in a Poisson process, i.e. a process in which events occur
continuously and independently at a constant average rate.

Fig. 9. Estimating of the transition probabilities

the non-eccentricity scenario (i.e., PUnecc
E ), the value of α and

β can be estimated by:

α =
π

2
− arcsin

[
1− 2 ·

(
Δ

RE
+ PUnecc

E

)]

β =
π

2
+ arcsin

[
1− 2 ·

(
Δ

RE
+ PUnecc

E

)] (8)

Note that we can get the phase range in the non-eccentricity

scenario by setting Δ = 0, while get the range in the

eccentricity scenario by setting Δ = ΔR.

D. PoC Estimation

The main target of the PoC estimation component is to

calculate the transition probability between each two states.

Similar to the estimation of Pout, we have to estimate the

transition probabilities without relying on the training phase.

In the following, we use the transition probabilities from State

SISD to other states as a vehicle to explain the method to

estimate the transition probabilities.

Assume that the transition between SI and SI and that

between SD and SD are independent of one another. Based

on this assumption, the transition probabilities between these

“single states” (i.e., States SI , SI , SD, and SD) is solely

determined by the confidence interval of the distributions of

Int or Diff . For example, the probability of the transition

from SI to SI can be simply calculated as 1− ThI and that

of the transition from SI to SI is ThI .

Then let’s look at the transition probabilities between “com-

bined states” ((i.e., States SISD, SISD, SISD, and SISD).

For example, the transition between SISD and SISD can

be considered as the result of two concurrent event: i) the

transition between SI and SI ; and ii) the transition between

SD and SD. Thus we have:

P (SISD|SISD) = P (SI |SI) ·P (SD|SD) = (1−ThI) ·ThD

(9)

Similarly, we can estimate the transition probabilities between

SISD and States SISD, SISD, SISD as shown in Fig. 9.

E. Put it together

Fig. 10 illustrates the key workflow of RED, which com-

prises a training phase and a eccentricity model (RUM).

Before RED start working, we have a short training phase.

Through collecting the signals when the tag rotating with the

machinery at original position for about 1 minute, we can get
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Fig. 10. The overview of RED

the original distribution of Int and Diff . These data are used

in RUM not only as original probability, but also for estimating

the distribution after eccentricity.

Then we can begin the process of eccentricity detection.

First of all, the sampled raw signals from the tag are processed

to extract the time interval between two peak RSSIs and the

phase difference between their corresponding phases, i.e. Int
and Diff . Then the data (Int,Diff) acts as a input of RUM.

According to the above content, RUM is able to continuously

track the variation of Int and Diff , and instantly estimate the

probabilities that the eccentricity has occurred or not, based

on the distributions of Int and Diff and how Int and Diff
change. At last, by comparing PUnecc and Pecc, RED outputs

the detection result.

IV. EVALUATION

A. Implementation

The devices we use are shown in Fig. 3. The RFID system

operates at 920-926 MHz band. The tags adopt LLRP protocol

[19] [20] to communicate with the reader. The mean sampling

rate is 40 Hz [12]. To simulate the high speed rotating

machinery, the centrifuge rotates at 10000 RPM.

B. Methodology

We mainly use three metrics to evaluate the performance

of RED: True Positive Rate (TPR), False Positive Rate (FPR),
and Latency. TPR represents the percentage that RED correctly

detects eccentricity. FPR represents the percentage that RED

detects falsely when there is no eccentricity. Latency repre-

sents how long it takes for RED to detect the eccentricity.

We mainly adjust following settings:

• Precision (Δd). Precision represents the smallest shift we

should detect. Every time we move the centrifuge by the

same distance, and then evaluate the performance.

• Initial distance (d). Initial distance means the distance

between the tag and the antenna when we deploy RED.

• Noise (n). We conduct experiments in noisy environ-

ments, and try to evaluate the effect of the noise pro-

cessing module.

In the training phase, we collect data for 1 minute at the

initial position. In the testing phase, we move the tag in two

directions, approaching and deviating the antenna. At each

position, we collect data for 5 seconds and repeat 10 times.

C. Accuracy of RED

To evaluate accuracy of RED, we place the centrifuge 6

cm away from the antenna, and change Δd from 1 to 7 mm.

The results are shown in Fig. 11. The overall TPR is 93.59%,

while the FPR is 4.88%.

For the approaching case, The overall TPR can reach

90.76%, while FPR is 9.76%. When Δd is set to 1 mm, the

average of TPR is 85.01% and the FPR is 16.14%. As Δd
decreases, the TPR rises and the FPR falls. That’s because the

difference between the RSSI and phase readings before and

after eccentricity is more obvious when Δd is larger. When

the tag deviates from the antenna, the performance of RED is

better than the approaching case. The reason is that there is

less or even no E-point, which is easy to judge.

D. Impact of different initial distance

We choose three different initial distances, while Δd is

7 mm. The results are shown in Fig. 12. Whether the tag

is approaching or deviating from the antenna, the results

are similar. As d increases, the TPR decreases and the FPR

increases. The reason is that the farther from the antenna, the

signal strength is weaker, and the difference caused by same

shift is smaller.

E. Impact of observation number

The observation number of RED is a key metric. It not only

affect the accuracy, but also is related to the latency of RED.

The more samples we observe, the delay is longer. The impact

of changing the observation number is shown in Fig. 13. As we

observe more samples, the performance getting better in both

cases. So there is a trade off between latency and accuracy.

We will discuss about this in a later subsection.

F. Impact of E-point Threshold

We conduct experiments to examine the impact of choosing

E-points. Fig. 14 shows the result. We can see that when the

threshold of E-point is higher, the TPR and the FPR are better.

The reason is that the difference is more significant around

the maximum. The farther from the maximum, the expected

Diff is larger and the expected Int is smaller. The influence

of eccentricity is less. So we choose 5% as the threshold of

E-point.

G. Detection Latency

Last but not least, we talk about latency, which is another

important metric for RED. We set d at 6 cm, and adjust

the precision and the observation number. Fig. 15(a) shows

the distribution of latency over different observation numbers,
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Fig. 11. The average and variance of TPR and FPR with different precision
when d = 6cm
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Fig. 12. The TPR and FPR over different initial distances when Δd = 7mm
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Fig. 13. The average and variance of TPR and FPR over different observation
numbers when d = 6cm, Δd = 7mm
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Fig. 14. The overall TPR and FPR over different thresholds of E-point
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Fig. 15. The latency when d = 6cm

while Δd ranges from 1 to 7 mm. We can see that when the

observation number is small, although the accuracy is low,

the latency is low. It can reach 0.1615s when observation

number is 1. The time cost of error judgment is less than the

time interval of one more observation point. But low accuracy

means more unnecessary downtime of the machinery. The

economic loss brings by low accuracy is unacceptable. So we

think observing 4 samples is proper.

The distance between the tag and antenna also affects

the latency. As Fig. 15(b) shows, as the tag approaches the

antenna, the latency decreases. The reason is that the number

of E-points reduces, so the expected Int increases.

V. RELATED WORKS

In this section, we briefly review the related works, by

classifying them into two main categories.

Eccentricity detection of rotating machinery. Different

methods have been developed for rotating machinery’s ec-

centricity detection. Various fault symptoms are used in the

detection method, including vibration signals [3], thermal

features [4], acoustic signals [5], oil debris [6], and so on.

These symptoms can reflect the state of machinery, but they

have their own limitations. To measure vibration signals and

thermal signals, special sensors should be embedded into the

machinery. That means we must deploy them at the beginning,

or stop the machinery and deploy them, which is inconvenient.

Measuring acoustic signals and oil debris are via the non-

intrusive method. However, it requires a complete system to

measure oil debris, which is complex and expensive. Acoustic

signals should be measured in a quiet environment. RFID-

based system is non-intrusive and low-cost. It’s easy to deploy

in various environment.

RFID-based sensing. RFID-based sensing has been de-

veloped for several years. The researches are aimed at mea-

suring different physical properties, and the common ground

of them is to find how these properties affect the RSSI

signal, then extract information from the received signals.

Bhattacharyya et. al [21] leverage RFID infrastructures design

an wireless temperature sensor. They use the changes in tag

power characteristics to determine whether the temperature is



above threshold. Manzari et. al [11] explore the possibility to

integrate chemical species into an RFID tag, and then improve

the sensing ability of tag. Tagbeat [12] quantifies the change in

phase corresponding to the track of rotation. By recovering the

periodic changes in phase, it can measure the vibration period

of the device. RIO [14] is based on the impedance changing

when a human finger touches a tag. The impedance change

influence the phase readings, which makes RFID-based touch

sensing possible. Twins [13] leverages the interference among

passive tags to do motion detection and achieve high precision.

Regarding the rotation of tags and the resulting tag readings,

a tag’s orientation is also an interesting factor to study. RF-

Compass [7] navigates the robot by using the RFID signals to

partition the space based on the robot’s consecutive moves.

Griffin et al. [17] quantify the basic relationship between

multiple factors and the RSSI value, including the polarization

factor. Tagyro [8] is an 3D orientation tracking system. They

find that polarization leads to the inaccurate readings, so they

design a series of recovery algorithm to make the measure-

ment reliable. PolarDraw [9] also observes the phenomenon

of polarization. They leverage the relationship between the

RSSI readings and the angle of the tag, and determine the

rotation angle and displacement of the tag. They can track the

handwriting on the board.

As our understanding of the signals deepens, the phe-

nomenon like polarization gives us more opportunities to

acquire rich information. The researches above can all provide

a high precision result in the case of stationary tags or tags

moving at a low speed. In our scenario, however, the tag is

rotating at a high speed and the readings are highly dynamic

and discrete. Our goal is to offer further insight into the

signal change regularities in the high-speed rotation scenario,

and leverage them to achieve high precision and low latency

detection.

VI. CONCLUSION

RFID-based sensing, namely to sense physical phenomenon

according to the RFID signals, is deemed as a promising

technique in the area of cyber-physical systems. In this paper,

we advance the state of the arts, by tackling the problem

of RFID-based eccentricity detection for high-speed rotating

machinery. This problem has great significance in industry,

while producing non-trivial challenges in applying RFID-

based sensing techniques. Our proposal called RED, utilizes

the temporal and phase distributions of tag readings as effec-

tive features for eccentricity detection. Implementation of RED

offers a non-intrusive, low-cost, and real-time solution, which

is applicable to all kinds of rotating machinery. In the future,

we plan to further improve the accuracy and the timeliness

of eccentricity detection. Potential solutions include to use a

combination of multiple tags and to deploy the tags at different

positions on the rotor. The Doppler effect induced by the

rotation is also an interesting issue, when we try to refine

the precision of detection.
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