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ith the recent advances in the Internet of Things (IoT), 
the significance of information technologies to modern 
industry is upgraded from purely providing surveillance-

centric functions to building a comprehensive information 
framework of the industrial processes. Innovative techniques 
and concepts emerge under such circumstances, e.g., digital 
twin, which essentially involves data acquisition, human–
machine-product interconnection, knowledge discovery and 
generation, and intelligent control, etc. Signal processing tech-
niques are crucial to the aforementioned procedures but face 
unprecedented challenges when they are applied in the complex 
industrial environments. In this article, we survey the promising 
industrial applications of IoT technologies and discuss the chal-
lenges and recent advances in this area. We also share our early 
experience with Pavatar, a real-world industrial IoT system that 
enables comprehensive surveillance and remote diagnosis for 
ultrahigh-voltage converter station (UHVCS). Potential research 
challenges in building such a system are also categorized and dis-
cussed to illuminate the future directions.

Introduction
With the prosperity of various embedded sensors, low-power 
wireless communications, and efficient signal processing tech-
niques, the IoT has achieved explosive development and prolif-
eration in recent years. The IoT offers opportunities to bridge the 
physical world and cyberspace, enabling fine-grained sensing 
of objects and environments, continuous data gathering, com-
prehensive information fusion, deep analysis, and real-time feed-
back or control over the connected targets. According to Gart-
ner’s report, there are approximately 8 billion connected things 
providing smart services in our daily life, for example, in assisted 
living, building surveillance, traffic control, and environment 
monitoring, etc [1].

The ever-developing IoT attracts the interest of both industry 
and academia. Technology giants have already taken their steps. 
Huawei, one of the world’s largest telecom equipment makers, 
has devoted itself to standardizing the narrow-band IoT (NB-
IoT) as the next generation of low-power wide-area networks to 

Digital Object Identifier 10.1109/MSP.2018.2842228 
Date of publication: 28 August 2018

From Surveillance to Digital Twin
Challenges and recent advances of signal processing  
for the industrial Internet of Things

Internet OF thIngs—IstOckphOtO.cOm/IaremenkO
cIrcuIts—Image lIcensed by Ingram publIshIng

W



121IEEE SIgnal ProcESSIng MagazInE   |   September 2018   |

fulfill its long-term strategy for building a better-connected world 
[2]. Practical IoT platforms have also been vigorously promoted 
recently, e.g., Android Things (Google), Predix [General Electric 
(GE)], Azure IoT Suite (Microsoft), etc. In the meantime, aca-
demia focuses on exploring cutting-edge techniques to boost the 
application and development of the IoT, such as wireless sensing, 
indoor localization, low-power networking, backscatter commu-
nication, visible light communication, mobile computing, edge 
computing, privacy and security, etc.

Among all of the promising scenarios, applying IoT technolo-
gies in modern industry has great potential and practical sig-
nificance. In 2011, Industry 4.0 is proposed to equip traditional 
manufacturing with cyberphysical systems to start a new indus-
trial revolution. GE formally put forward the concept of the 
Industrial Internet in 2012 [3]. GE then established the Industrial 
Internet Consortium with AT&T, Cisco, Intel, and IBM, bringing 
together the world’s leaders in the manufacturing, telecom, net-
working, semiconductor, and computer industries, respectively, 
to promote the industrial IoT systems. 

Due to the prosperity of IoT techniques in the past few years, 
digital twin has recently gained extensive attention. Digital twin 
represents a dynamic digital replica of physical assets, processes, 
and systems, which comprehensively monitors their whole life 
cycle. The backbone technology of digital twin is the IoT for real-
time and multisource data collection. In addition, it integrates 
artificial intelligence and software analytics to create digital 
simulation models that dynamically update and change along 
with their physical counterparts. Moreover, digital twin adopts 
modern data visualization schemes such as virtual reality (VR) 
and augmented reality that can provide more illustrative and user-
friendly views.

Therefore, compared to traditional surveillance systems, digi-
tal twin provides more sensing modalities with stricter timeliness 
guarantees, and integrates more intelligent data analysis and 
friendlier display and interaction. With digital twin, we can not 
only better understand and predict the performance of machines 
and systems, but also optimize business operations for equip-
ment suppliers and consumers. However, it is a nontrivial task 
to achieve such comprehensive monitoring along with require-
ments such as timeliness, accuracy, scalability, and interoperabil-
ity in industrial IoT. We summarize potential research challenges 
as follows.

 ■ First, digital twin pushes the boundary of sensing capabili-
ties toward the physical world. Sensing methods that moni-
tor diverse physical metrics but rely on less resources are 
deemed to be more practical in industrial IoT. Wireless and 
battery-free sensing integrating efficient techniques of data 
cleaning and signal processing can support lightweight and 
robust monitoring. How to extend the sensing capabilities of 
wireless signals [4]–[7] and how to refine the sensing preci-
sion from vulnerable readings [8]–[10] have triggered numer-
ous research motivations over the past few years.

 ■ Second, visual sensing is extremely informative for the sur-
veillance of physical assets and their surroundings. In digital 
twin, intensive networked cameras are deployed at a high den-
sity to provide seamless monitoring. On one hand, processing 

intensive networked videos need the upgrade of comput-
ing architecture for timeliness requirements, e.g., collabora-
tive edge computing [11]–[13]. On the other hand, enabling 
a resource-constrained IoT device with modern analysis 
techniques, e.g., deep learning, can also release the pres-
sure of cloud infrastructure and save the network band-
width [14]–[17].

 ■ Third, new forms of communication and networking is antic-
ipated in digital twin for efficient data transmission. Recent 
advances in low-power wireless networking such as low-
power wide-area networks [2], parallel backscatter transmis-
sions [18], and software-defined low-power wireless [19] has 
drawn much attention. In this section, we emphasize the 
research challenges and opportunities on direct communica-
tion among heterogeneous wireless technologies that share 
the same frequency band [20]–[23], and their upper-layer pro-
tocols as well as applications [24]–[26].

 ■ Last but not least, comprehensive data analysis and system 
diagnosis need innovative and dedicated signal processing 
methods. For example, anomaly detection and repairing of 
time-series data [27], feature selection from heterogeneous 
stream data [28], and fault analysis based on incomplete data 
[29] should also be well designed.

Practical industrial IoT and signal processing
Signal processing algorithms are indispensable in almost every 
layer of industrial IoT. In this section, we survey the most recent 
research works and corresponding signal processing techniques, 
to provide an overview of the current progress from sensing, net-
working to data analysis in industrial IoT.

Wireless and battery-free sensing
In practical industrial scenarios, many physical metrics need to 
be closely monitored, such as temperature and humidity, vibra-
tion and noise, rotation speed, liquid leakage, etc. Although the 
advances of modern sensor technologies enable the sensibility of 
more metrics, a part of these metrics cannot be provided due to 
the complicated operational environments in real-world deploy-
ments that have the special characteristics that are given next.

 ■ Requirement of nonintrusive sensing: Adding dedicated 
sensors into the existing equipments costs too much because 
these intrusive sensors may trigger hardware updates or 
even redesigns. Hence, nonintrusive sensing methods are 
more preferred.

 ■ Large-scale sensing targets: The large number of targets to 
be monitored makes it unaffordable to deploy dedicated sen-
sors at all the monitoring points. Novel low-cost sensing 
solutions are desired.

 ■ Limited sensing capability: Physical metrics can be very fast 
changing, but most nonintrusive sensors can usually provide 
undersampled data. How to fill this gap remains a challenge.
Because traditional sensors are mostly intrusive, those ap -

proaches cannot be deployed with an operational machine that 
hasn’t been initially equipped with such a capability. Other high-
resolution approaches, e.g., cameras and lasers, suffer from the 
line-of-sight problem and are restricted in the application context. 
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Moreover, audio-based sensing is sensitive to environmental 
noises, which is therefore impractical for real-world industrial 
applications. Wireless and battery-free sensing, e.g., radio-fre-
quency identification (RFID), which leverages backscattered 
radio-frequency signals to carry information, has received plenty 
of attention in the past few years, due to its low-cost, nonintru-
sive, and easy-deployment properties. A typical RFID system, as 
shown in Figure 1, consists of RFID tags that store information 
in nonvolatile memories, and two-way radio transmitter–receiv-
ers called RFID readers that send signals to tags and receive 
their responses.

Recent advances in RFID offer a promising technique for 
cross-modal sensing where many physical metrics are sampled 
with only battery-free devices and wireless signals [4]–[7]. In the 
meantime, the resolution of RFID sensing—especially battery-
free localization and tracking—has been well improved over the 
past few years [8]–[10].

Cross-modal sensing with RFID
Apart from parsing the information encoded in backscatter sig-
nals from tags, widely employed commercial RFID readers, e.g., 
ImpinJ Speedway R420, Alien ALR-9900, and Zebra FX9500, 
can interrogate the readings of received signal strength indica-
tor (RSSI) and phase values at the frequency of approximately 
40 Hz. The changes in RSSI and phase offer space for the cross-
modal sensing of other physical metrics, e.g., vibration [4] and 
eccentricity [6] of rotating machines, liquid category [5], and 
human–object interaction [7]. However, the relatively low inter-
rogating frequency offered by commercial readers brings in ad-
ditional research challenges in industrial scenarios.

A recent battery-free work, TagBeat, offers inexpensive and 
pervasive cross-modal sensing of mechanical vibration frequen-
cy with commercial RFID devices [4]. The phase shifts caused 
by micro vibration are too tiny to distinguish, and the high-fre-
quency vibration is hard to capture with the limited-frequency 
readings. Thus, TagBeat first magnifies weak vibration signals 

without losing their features and then leverages compressive 
sensing (CS) to recover the high-frequency signals with the low-
frequency samplings. To guarantee safety, another work, Tag-
Scan [5], utilizes the differences of RF signals when traversing 
different kinds of liquid to classify them. In this work, a feature 
that only relates to the liquid material is extracted from RSSI and 
phase values with a signal propagation and attenuation model.

High-precision RFID localization and tracking
In industrial automation, object localization and tracking is one 
of the most critical demands. Wireless and battery-free backscat-
tering offers a lightweight and low-cost solution for localization 
and tracking of the materials in warehouses and  products on pro-
duction lines. Early works achieving a median accuracy of tens of 
centimeters either rely on RSSI for distance estimation and fin-
gerprint map construction, or calculate the angle of arrival (AoA) 
for continuous localization. Recent proposals integrate reference 
tags or antenna arrays to calculate phase changes for centimeter-
scale precision. Here we survey the most recent works on RFID 
localization and tracking, which improve not only the task pre-
cision but also the robustness and the practicability of sensing 
systems [8]–[10].

A recent work, OmniTrack [8], solves the problem of the 
precision degradation caused by the phenomenon of the anten-
na polarization when the orientation of a RFID tag changes. 
To achieve centimeter-level localization and orientation of a 
mobile tag, OmniTrack models the linear relationship between 
the tag orientation and the phase change of the backscattered 
signal. To deal with high-noise and complicated multipath 
environments and to soften the deployment restricts of anten-
nas, Xiao et al. propose a double-tag system for accurate and 
robust object localization and tracking [9]. The work demon-
strates that the phase difference of closely deployed double tags 
can effectively exclude the impact of undesired signals such 
as device noises and multipath interferences. RFind [10] man-
ages to use time-of-flight (ToF) for RFID tag localization. To 
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achieve  subcentimeter  accuracy, a very large bandwidth of mul-
tiple gigahertz is often needed in ToF-based methods, which, 
however, is not compliant with Federal Communications 
Commission (FCC) regulation and RFID protocols. Thus, 
RFind generates a virtual ultrawide bandwidth by importing 
extremely low-power but efficient hopping localization fre-
quencies outside the industrial scientific medical (ISM) band 
while keeping the normal communication band for powering 
up commercial tags.

To summarize, battery-free RFID sensing offers a new 
paradigm that not only can measures specific physical metrics 
with just wireless signals, but also can provide high-precision 
results. Except extending physical modalities, improving 
resolution, timeliness, and reliability of battery-free RFID 
sensing offers prime candidates for further studies. Besides, new 
nonintrusive wireless tag systems are increasingly gaining more 
attention recently, e.g., LiveTag [7] designs multiple metallic 
structures of a Wi-Fi tag to disturb ambient Wi-Fi channels for 
information expression. Further, it leverages customized mul-
tiantenna beamforming algorithms to sense the human–object 
interaction. Moreover, we will show our preliminary explorations 
of designing RFID systems for real-world industrial IoT in the 
section “Case Study: Pavatar.”

Visual sensing from intensive networked videos
Surveillance cameras are one of the most commonly used IoT 
devices in industrial IoT because the visual sensing provides 
numerous informative clues. In modern industries, cameras are 
deployed with a high density to seamlessly monitor the status of 
machines and the activities of workers. The characteristics of vi-
sual sensing in industrial IoT is as follows.

 ■ Timeliness requirement: Video analysis usually has a strict 
requirement of timeliness in modern industries. How to fulfill 
the real-time processing on resource-limited devices while 
reducing the transmission latency remains a challenge.

 ■ Information sparsity: Camera surveillance systems generate 
intensive video data, but the spatiotemporal sparsity of signif-
icant information needs efficient processing.

 ■ Seamless cooperation: Visual clues 
provided by one single camera is 
partial and limited, thus seamless 
cooperation among the networked 
cameras is desired to perform com-
plicated sensing tasks.
Visual sensing applications on a 

large-scale camera network need not 
only the optimized allocation of the 
computation resources but also the ef -
ficiency and the accuracy of the vision 
tasks. In this section, we first intro-
duce a rising computation paradigm, 
edge computing for multimedia IoT 
data processing [11]–[13] and then dis-
cuss efficient and accurate video analy-
sis algorithms of resource-constrained 
embedded devices [14]–[17]. 

Edge computing for large-scale networked video processing
The networked cameras are expected to cooperate for a com-
prehensive understanding of the monitoring targets. How-
ever, uploading all of the multimedia data stream to the cloud 
is infeasible due to its limited processing capacity of the cloud, 
the unpredictable latency induced by the network transmis-
sion, and the unaffordable cost of the network bandwidth. Edge 
computing, a new computation paradigm between embedded 
computing and cloud computing, performs data processing and 
analyzing at the edge of networks. Large-scale networked video 
analytics is considered the killer app of edge computing [11].

Recent practical video analytics systems start adopting edge 
computing to deal with large-scale networked video, although 
there has not yet been a universally standard architecture. 
In [11], a practical system rocket for traffic monitoring in Bel-
levue, Washington, is proposed to discuss potential prospects 
of edge computing for the surveillance video processing. Model 
predictive control is used to allocate limited computation and 
network resources between the edge servers and the cloud 
server. A recent edge-computing architecture [12] introduces 
another offloading mode, where multiple edge servers coopera-
tively serve one camera and build a performance model with 
the compression ratio as the input. Then it separates the NP-
hard problems of the edge server selection and the compres-
sion ratio selection, and solves them with heuristic algorithms. 
Besides offloading and scheduling, information sparsity can be 
leveraged to reduce computation costs among resource-con-
strained edge servers. The recent work ViTrack [13] proposes 
a spatiotemporal CS algorithm to recover the camera-level tra-
jectories for the monitored vehicles by processing just 1/50 of 
the raw frames.  

Practical video analytics with embedded deep learning 
Recent advances in deep learning, especially convolutional neu-
ral networks (CNNs), have pushed the boundaries of computer 
vision. Basically, existing CNN applications purely rely on cloud 
infrastructures. However, problems such as network transmission 
delay, expensive but limited bandwidth, user privacy and costs 
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Figure 2. Edge computing for large-scale networked video processing.
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of high-performance cloud servers make cloud-based solutions 
infeasible for large-scale video analysis in industrial scenarios. 
One potential trend to solve this dilemma is to enable real-time 
deep learning directly on end devices.

In a typical CNN model, convolutional layers that extract fea-
tures consume much of the executing time because of the win-
dow-by-window convolutional operations, while fully connected 
layers that conduct the classification tasks take up much of the 
model weights because of the dense connections among neurons. 

Thus, to satisfy the requirement of the low-latency performance, 
we can adopt different strategies to optimize different modules, 
e.g., the structure pruning for the deep models [14], [15] and the 
runtime optimization of the inference frameworks [16], [17]. 
Model structure pruning methods such as DyNS [14] and Deep-
IoT [15] try to eliminate the redundancy in the model parameters 
through a three-step procedure: importance estimation, param-
eter pruning, and model retraining. Unimportant parameters are 
pruned to speed up computation and save storage space. Runtime 
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optimization utilizes computation parallelization and pipeline 
scheduling [16], intermediate-result caching [17], etc. to optimize 
the computation procedures of deep-learning inference frame-
works on IoT devices.

In summary, edge computing is deemed as a promising archi-
tecture for practical visual sensing on ubiquitous surveillance 
cameras, and deep-learning algorithms with amazing analy-
sis capabilities can be tailored to edge devices. In industrial IoT, 
effectiveness and timeliness are two dispensable, but mutually 
exclusive, performance indicators. Therefore, to maximize both 
of them, we believe enabling deep learning at the edge of net-
works is a promising direction.

Cross-technology heterogeneous wireless communication
In digital twin for smart factories, embedded sensors with vari-
ous sensing capabilities are networked together to monitor the 
same area. These sensors might adopt heterogeneous wireless 
communication technologies, such as Wi-Fi, Bluetooth, Zig-
Bee, and long-term evolution (LTE). The characteristics of het-
erogeneous networking environment are as follows.

 ■ Heterogeneous interference: The majority of popular wire-
less technologies share the same frequency band, e.g., 
2.4-GHz ISM band. Therefore, heterogeneous interfer-
ences and collisions are very likely to occur.

 ■ High-density deployment: In many cases, networked sen-
sors are densely deployed, which induces nontrivial chal-
lenges in collecting data in real time.

 ■ Interconnecting heterogeneous devices: Due to the com-
plicated operating states of industrial machinery, multiple 
devices need to exchange information in suit for a real-time 
understanding of current states.
Today, how to organize, manage, and cooperate heteroge-

neous IoT devices is increasingly drawing attention. A simple 
solution is to deploy a gateway with various radio interfaces for 
access control and information exchange among heterogeneous 
devices. Possible communication bottleneck and extra hard-
ware cost drive researchers to explore the direct communication 
ability among different technologies, thus cross-technology 
communication (CTC) is proposed. With CTC, heterogeneous 
devices can directly exchange information for fast and effective 
control and cooperation, which perfectly satisfies the timeli-
ness and interconnection requirements in industrial IoT.

The basic idea of CTC is that, although heterogeneous 
wireless technologies can’t directly decode the packets from 
another technology, side-channel information of wireless trans-
missions, e.g., transmission time, beacon shifting [20], RSSI 
amplitude [21] etc., can be leveraged to encode bits. These corre-
sponding methods are called packet-level modulation because 
one or more original packets should be transmitted to modu-
late one bit. Although recent CTC works manage to improve 
the throughput by deeply exploiting the coexistence environ-
ment to encode more bits simultaneously, packet-level modula-
tion still offers a relatively low throughput, compared to the 
original wireless technologies.

Therefore, a new trend of CTC called physical-level emu-
lation tries to emulate the heterogeneous signals directly in 

the physical layer to achieve a throughput comparable to the 
original wireless technology, e.g., up to 250 kilobits/s for Zig-
Bee. WEBee [22] is the most representative work that meticu-
lously fills the payload of a transmitted Wi-Fi frame to directly 
emulate ZigBee frames. The feasibility of the bit emulation is 
ensured by a redundancy coding technology of ZigBee called 
direct sequence spread spectrum (DSSS). The inevitable dif-
ferences of the emulated chip sequences and the predefined 
chip sequences can be tolerated by the DSSS symbol matching.

The aforementioned CTC works have successfully estab-
lished direct communication among heterogeneous wireless 
technologies in the physical layer. Protocols and applications 
can be further built upon these infrastructures. A basic scenario 
is to use CTC packets as a medium access control protocol for 
the channel coordination in coexisting environments, which 
is one of the primary intuitions of this emerging technique. 
ECC [24] introduces a cross-technology clear-to-send signal to 
negotiate an aggregated white space for better ZigBee commu-
nication. Moreover, Crocs [25] leverages CTC to directly syn-
chronize Wi-Fi and ZigBee devices. To achieve a more robust 
and accurate time synchronization, Crocs first incorporates a 
short CTC beacon based on Barker code for a more accurate 
time alignment and then sends tim stamps via CTC transmis-
sions. StripComm [26] applies CTC to a more densely coex-
isting environment and faces severe challenges with dynamic 
wireless interferences. To make the energy-encoding CTC more 
robust against unavoidable wireless interferences, StripComm 
encodes bits with Manchester coding, and decodes bits after the 
interference cancellation based on specific signal similarities.

In a nutshell, recent advances in CTC have experienced two 
stages, from packet-level modulation to physical-layer emula-
tion. The validity and practicability of these approaches have 
been verified by the throughput comparable to the original 
wireless in [22]. Enhancing more modern wireless technolo-
gies, e.g., LTE and NB-IoT with the ability of CTC, as one 
of the future directions of CTC, faces the new challenges of 
the bandwidth asymmetry and the mismatch of the transmis-
sion rates. Moreover, facilitating the upper-layer standards and 
protocols to build cross-technology networks is also a very fas-
cinating topic.

Data analytics
The data analytics layer plays a vital role in industrial IoT to 
provide smart services. The sensing layer samples raw data of 
physical metrics, the networking layer conveys data and, fi-
nally, the data analytics layer identifies patterns or mines the 
principles behind. The data analytics in industrial IoT have the 
following characteristics.

 ■ Low quality of raw data: Due to the hardware imperfec-
tion or the unreliable wireless transmissions, the raw data 
generated by IoT devices are usually of low quality, which 
brings challenges for the accurate analytics.

 ■ Multisource data: The data from multiple sensors may be 
redundant and even contradictory. Obtaining the truth 
from multisource data desires more advanced signal pro-
cessing methods.



126 IEEE SIgnal ProcESSIng MagazInE   |   September 2018   |

 ■ Partially labeled data: In industrial scenarios, the high-fre-
quency and continuous stream data is very difficult and 
impractical for manual labeling. Dealing with partially 
labeled data is also very challenging.
Analyzing IoT stream data with these characteristics is 

deep  ly associated with advanced signal processing algorithms, 
including data cleaning [27], feature selection [28], and event 
classification and system diagnosis [29].

Anomaly correction of time series data
Anomaly detection (or further anomaly correction of time 
series data) is an indispensable preprocessing step for upper-
layer applications, such as event detection and fault diagnosis. 
In [27], Zhang, et al. suggest that simply filtering out anoma-
lies will damage the continuity of time-series data, and the 
intermittent and incomplete time series would possibly affect 
subsequent classifiers. Different from existing rule-based re-
pairing, e.g., the speed-constraint model and the autoregres-
sion model, an iterative minimum repairing (IMR) algorithm 
based on sparse-labeled ground truth is proposed. The sparse-
labeled truth points, which can be obtained by a reliable sensor 
with a relatively long sampling period or manual labeling, can 
better fix continuous errors. Rather than sequentially repairing 
one error point for just one time, an IMR algorithm iteratively 
adjusts error points until the global convergence. 

Data-driven feature selection
The multisource data can be redundant for upper-layer appli-
cations. Apart from the guidance of the physical models, data-
driven feature selection can improve the final performance. In 
[28], Li et al. point out that traditional feature selection methods 
either consider only the informativeness of features regardless of 
sample labels, or are optimized for some particular classifiers. 
Hence, they leverage the sample labels and propose a novel infor-
mation greedy feature filter (IGFF) method that is independent 
from the classifiers. With rigorous mathematical proofs, IGFF 
selects the optimal subset of features by maximizing mutual in-
formation between the candidate variables and the fault labels. 
The experiments on the real-world data set about air-handling 
units of a smart building shows that, regardless of back-end clas-
sifiers, IGFF can achieve a much higher improvement in the clas-
sification accuracy than the traditional methods and the empiri-
cal selection.

Event classification with partial labeled data
Fault detection is an event classification problem that classifies 
a short time series data from multiple sources into normality 
or particular faults. Current methods are mainly based on su-
pervised learning. In industrial scenarios, however, the high-
frequency and continuous stream data are almost unlabeled. 
Manual labeling by domain experts means considerable labor 
costs, which is impractical for real-world systems. In [29], a hid-
den structure semisupervised machine (HS3M) is proposed to 
deal with sparsely labeled industrial IoT data. HS3M incorporates 
fully labeled data, partially labeled data, and unlabeled data with 
a unified-format loss function, thus it can fully utilize all avail-

able data sets to learn a more generic model. Tested on an indus-
trial IoT data set of a practical power distribution system, HS3M 
can achieve at least 9% gain of accuracy and 10% gain of false 
positive in comparison to the runner-up method.

In summary, advanced signal processing technologies are 
indispensable to deal with fallible, multisource, and partially 
labeled industrial IoT data. Moreover, we believe practical data 
analytics is deeply associated with the characteristics of the target 
systems, which will be addressed in the next section.

Case study: Pavatar
In this section, we introduce our early experience with a real-
world industrial IoT system, Pavatar [30]. Pavatar is an IoT sys-
tem for UHVCS management. The UHVCS, built at the hub 
points of the ultrahigh-voltage power grid, efficiently performs 
dc/ac transformation of clean energy, e.g., wind, solar, water, 
and nuclear power. Globally connected UHVCSs are expected 
to construct the backbone of the Global Energy Internet (GEI), 
which is deemed to alleviate energy problems such as the exhaus-
tion of fossil fuel, environmental pollution, and supply–demand 
imbalance. A large rotating machine called a synchronous com-
pensator is the core component of an UHVCS. Its critical func-
tion is to stabilize the outgoing current by generating or absorbing 
reactive power, in response to unpredictable voltage fluctuations, 
and thus ensuring GEI’s stability, safety, and reliability. Clearly, 
proper operation of synchronous compensators is of vital impor-
tance to GEI. There have been various conventional solutions for 
power plant monitoring, e.g., manual checking and video surveil-
lance. However, those solutions are generally inefficient, inaccu-
rate, and costly.

Our team collaborates with the State Grid Corporation of 
China to launch the Pavatar project in one UHVCS located in 
Hunan, China. Aiming to build a digital twin of this UHVCS, 
Pavatar monitors the entire operation process in real time and 
provides decisions and support for UHVCS administrators. 
The functionality of Pavatar generally includes the following 
key aspects:

 ■ Comprehensive sensing of synchronous compensators and 
their cooling systems, operation environments, and surround-
ing human activities.

 ■ Heterogeneous data visualization in the form of VR.
 ■ System error prediction, anomaly detection, and root-cause 

diagnosis.
Figure 4 shows the architecture of Pavatar. Pavatar col-

lects data from both built-in and ambient sensors in UHVCSs. 
Typical internal sensor readings include temperature, pressure, 
vibration, rotation, etc., which provide the key metrics for deci-
sion making. In the surrounding environment, low-power and 
battery-free sensors are deployed to sense temperature, humid-
ity, noise, air quality, and liquid leakage, etc., as supplementary 
information. In addition, networked cameras are deployed to 
cover walkable areas. The maximum density of sensor deploy-
ment is about 50/m2, the highest sampling frequency of internal 
sensors is around 10 KHz, and the total data volume size per day 
is over 1 TB. The high-frequency and big-volume stream data 
are collected and transmitted through heterogeneous networks to 
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fulfill upper-level applications such as data visualization, event 
detection, and system diagnosis. Moreover, a three-layer edge-
computing architecture is proposed to process massive video 
data. In the following, we present some of our recent works re  -
garding Pavatar, which leverage advanced signal processing 
methods to deal with the problems of industrial IoT.

Battery-free sensing for eccentricity detection
Eccentricity, which stands for the displacement of rotating cen-
ter, is essential for rotating machines, e.g., synchronous com-
pensators in Pavatar. Traditional techniques based on special 
embedded sensors are either hard to deploy or not practical. Our 
recent work, RFID-based eccentricity detection (RED), pro-
poses a battery-free RFID sensing system tailored to the clas-

sification of the eccentricity status [6]. As shown in Figure 5, 
RED first extracts features of statistic characteristics e.g., the 
cumulative distribution functions of the phase difference and the 
time interval between measured signal peaks, then constructs 
a Markov model to process stream data without training for a 
specific environment.

Parallel backscatter transmissions
RFID tags are deployed in Pavatar with the density up to 40/m2  
for liquid leakage detection. The dense deployments in indus-
trial IoT require new networking techniques for efficient data 
collection. Thus, we recently proposed a practical system  
called FlipTracer that decodes collided signals to achieve reli-
able parallel backscatter transmissions [18]. We found that the 
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transition of tag states is usually caused by the discrete signal 
flip of a single tag. Thus, instead of the direct classification, the 
states can be inferred by modeling the transition probabilities. 
As shown in Figure 6, FlipTracer constructs a one-flip graph 
(OFG) in the in-phase and quadrature (IQ) domain to model 
the transition patterns and then tracks the OFG to resolve the 
collided signals. FlipTracer is able to achieve an aggregated 

throughput of 2 megabits/s, which is six times higher than the 
existing methods.

Harnessing channel state information for CTC
Compared to Wi-Fi, ZigBee has an orders-of-magnitude small-
er maximum transmission power, and a much thinner channel 
bandwidth. These asymmetries of different communication 

standards make direct transmissions 
from ZigBee to Wi-Fi challenging. Our 
recent work ZigFi leverages chan-
nel state information (CSI), an indica-
tor of Wi-Fi channel quality, to enable 
Wi-Fi to hear low-power ZigBee trans-
missions [23]. Figure 7 shows, when 
ZigBee transmissions interfere with 
Wi-Fi preambles, the changes of CSI 
amplitude offer a promising encoding 
space. In ZigFi, a Wi-Fi device decodes 
bytes by detecting the appearance and 
the absence of ZigBee signals at spe-
cific channels. By dedicatedly training 
time-series data classifiers, ZigFi can 
achieve a throughput of 215.9 bits/s, 
which is 18 times faster than the state 
of the art.

Ongoing works
As mentioned previously, deep learning 
can provide effectiveness while edge 
computing can offer efficiency. A uni-
versal edge-computing architecture for 
real-time large-scale video analytics is 
desperately needed in Pavatar. Moreover, 
data sampling in Pavatar faces a severe 
problem of the category imbalance, since 
the anomaly states of synchronous com-
pensators are very scarce. Therefore, 
modern learning techniques such as on-
line imbalanced and hard sample mining 
for multisource time-series data can be 
further tailored to this problem.

Summary and conclusions
In this article, we surveyed and discussed 
the challenges and recent works toward 
digital twin, from sensing, networking, to 
analytics layer. We also presented Pava-
tar, a real-world IoT system for UHVCSs. 
We introduced our experience with Pava-
tar, and discussed the research issues as 
well as the future directions of industrial 
IoT. Industrial IoT is of great significance 
to the innovation of traditional industry. 
It envisions that we could automatically 
monitors and comprehensively simulates 
the factory throughout the entire life 
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cycle, from production and manufacturing, operation to main-
tenance, to liberate the workforce and provide credible deci-
sion supports for industrial operations.
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