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ABSTRACT
Parallel backscatter is a promising technique for high through-
put, low power communications. The existing approaches
of parallel backscatter are based on a common assumption,
i.e. the states of the collided signals are distinguishable from
each other in either the time domain or the IQ (the In-phase
and Quadrature) domain. We in this paper disclose the super-
clustering phenomenon, which invalidates that assumption
and seriously affects the decoding performance. Then we
propose an interstellar travelling model to capture the bursty
Gaussian process of a collided signal. Based on this model, we
design Hubble, a reliable signal processing approach to sup-
port parallel backscatter in thewild. Hubble addresses several
technical challenges: (i) a novel scheme based on Pearson’s
Chi-Square test to extract the collided signals’ combined
states, (ii) a Markov driven method to capture the law of
signal state transitions, and (iii) error correction schemes to
guarantee the reliability of parallel decoding. Theoretically,
Hubble is able to decode all the backscattered data, as long
as the signals are detectable by the receiver. The experiment
results demonstrate that the median throughput of Hubble
is 11.7× higher than that of the state-of-the-art approach.
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1 INTRODUCTION
Backscatter, as a battery-free communication technology,
enables Internet of Things (IoT) devices to sense and trans-
mit data at ultra-low cost, hence becoming attractive to a
broad range of applications [10, 12, 13, 16–20]. As the IoT
technology proliferates in areas like logistics, warehouses,
manufacture, retail, and supply chains, the deployment scope
and scale of backscatter devices (e.g. RFID and WISP tags)
have explosively grown in recent years. How to efficiently
gather data via backscatter becomes a crucial problem. Under
this circumstance, parallel backscatter is proposed. When
transmissions from multiple tags come in parallel, the aggre-
gate throughput is expected to be much higher than that of
the conventional approaches [4, 7, 21–23].
It is however a non-trivial task to parallelize backscatter

in practice. The parallel backscatter signals will generally
collide with each other at the receiver (e.g. the reader an-
tenna), making it hard to recover the data from each tag. If
taking the low-power communication and environmental
influence into account, the collided signals may be noisy and
variational, which further increases the difficulty of parallel
decoding.
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Backscatter generally adopts ON-OFF keying modulation
to encode data [7], which accordingly generates two signal
states. At the core of parallel backscatter is a process to
identify the state of every collided signal. The existing works
to tackle this problem [5, 6, 8, 11] mainly exploit the features
of signal states and state transitions in the time and IQ (the
In-phase and Quadrature) domains to accomplish parallel
decoding. A common assumption behind is that the state of
the collided signals are distinguishable.

Whenwe implement the existing approacheswith backscat-
ter tags in the wild, we observe a huge gap between the the-
ory and the practice. The reason lies in the follow aspects:
First, backscatter signals are noisy by nature. Viewed in

the IQ domain, the collided signals at the same state form a
cluster rather than fall at a single point. The radius of the
cluster is generally determined by the noise level. So the
signal clusters will expand in noisy environments.
Second, the distances among the cluster centers in the

IQ domain are generally determined by the received signal
strengths (RSS) at the reader. In reality, weak RSS will lead
to short inter-cluster distances. When expanded clusters get
closer to each other, they are likely to overlap, as is so-called
the Superclustering Phenomenon. Superclustering confuses
the collided signals as well as the clusters, which obstructs
parallel backscatter in practical scenarios.
Last but not least, the number of clusters exponentially

increases with the degree of parallelism. When more tags
join the parallel backscatter, the chance of superclustering
dramatically increases, which further decreases the decoding
rate (the percentage of packets successfully decoded).
In order to the address the above problem, we propose

Hubble, a reliable signal processing approach to support par-
allel backscatter in the wild. The design of Hubble stems from
the following key insight: the spatiotemporal distribution of
the collided signals follows a bursty Gaussian process, which
is the combination of the burstiness in the time domain and
the gaussian property in the IQ domain. Based on this insight,
we propose an interstellar travelling model, which accurately
characterizes the underlying but deterministic signal state
transitions with random noise. By exploiting the rich pro-
cessing capacity at the backscatter receiver, one can use this
model to extract the signal states as well as trace the state
transitions. Our contributions in this work are three-folded:

• Through extensive observations and experiments, we
disclose the superclustering phenomenon and its neg-
ative impact, which exists in almost all the parallel
backscatter scenarios. In the process of exploring the
root causes of superclustering, we find that the spa-
tiotemporal distribution of the collided signals follows
the bursty Gaussian process and propose the interstel-
lar travelling model to characterize this process.

• We propose the Hubble approach, which addresses
several unique technical challenges in parallel decod-
ing: (i) a novel scheme based on Pearson’s Chi-Square
test, which contrasts the signal’s temporal burstiness
to the noise’s randomness, helps to extract the collided
signals’ combined states. (ii) a Markov driven method
is designed to capture the law of signal state transi-
tions. Using this method, one can continuously trace
the underlying state of each signal. (iii) error correc-
tion schemes are designed to further guarantee the
reliability of parallel decoding.

• We implement Hubble and evaluate its performance
across different scenarios. Hubble significantly enhances
the practical usability of parallel backscatter. Theoret-
ically, Hubble is able to decode all the backscattered
data, as long as the signals are detectable by the re-
ceiver. The experiment results demonstrate that the
median throughput of Hubble is 11.7× higher than the
state-of-the-art approachs.

The rest of this paper is organized as follows. Section 2
discusses the relatedwork. Section 3 presents the background
knowledge and the motivation of this work. In Section 4 we
elaborate on the design of Hubble. After discussion on several
important issues in Section 5, we present the evaluation
results in Sections 6. Section 7 concludes this work.

2 RELATEDWORK
As we mentioned in the previous section, the central task
of parallel backscatter to identify the state of every collided
signal, so that the backscatter data can be decoded. Depend-
ing on the schemes to distinguish different signal states, the
existing works can be classified into three categories.

Decoding based on IQdomain information. Earlyworks
on parallel decoding [1, 2, 9, 14, 15] assume that channel co-
efficients of the tags are stable and add up linearly at the
receiver when collision occurs. Therefore, the collided signal
can be separated and decoded according to their locations
on the IQ domain. In practice, however, channel coefficients
keep changing due to the dynamic environment and tag
movement. Under such conditions, the above methods have
to re-estimate the channel coefficients frequently to deal with
channel dynamics, which means apparently high overhead.

Decoding based on time and IQdomain information.
Recent works propose to decode the collided signals by si-
multaneously exploiting the time and IQ domain informa-
tion [5, 6, 11]. The underlying assumption is that different
tags start their transmissions with different delays and flip
their states with predictable intervals during transmissions.
Therefore, signal transition caused by different tags can be
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Figure 1: Signals from backscatter tags: (a) time do-
main signals from a single tag (top) and two concur-
rent tags (bottom). (b) IQ domain signals.

identified and separated based on their timings. By further in-
troducing the IQ domain information, the signal transmitted
by each individual tag is decoded.
The advantage of those works is that they don’t rely

on knowledge of channel coefficients or linear dependency
among collision states. The limitation is that they require
precise timing, i.e. low drifting rate (less than 200 ppm is
tolerable [6]) of the built-in clock of tags, to ensure flipping
of different tags occur at predictable time points. The real-
ity is that the COTS (Commercial off the shelf) tags exhibit
high drift rates, which are between 40,000 ppm and 68,000
ppm [6, 8]. The intrinsic clock drifts cause degradation of
decoding rate in practice.

Decoding based on the law of state transitions. A re-
cent work FlipTracer [8] propose to identify states of signal
with a so-called one-flip-graph. FlipTracer is designed based
on the finding that transitions between signals’ combined
states follow identical and stable probabilities. By tracing
the computed one-flip-graph, Fliptrace is able to identify all
the signal states in the IQ domain, while doesn’t rely on sig-
nal’s stability in either the time or the IQ domain. However,
Fliptracer still implicitly relies on the same assumption as
the other existing works. That is, the state of the collided
signals are distinguishable from each other in either the time
domain or the IQ domain.

According to the above discussion, we now better under-
stand how the existingworks improved the practical usability
of parallel backscatter. At the same time, we observe that
in addition to the limited degree of parallelism, another fac-
tor that limits the applicability of parallel decoding is the
requirement on signal quality. Specifically, due to the super-
clustering phenomenon, the existing proposals only work in
the ideal conditions, where the backscatter signals are rela-
tively strong. That means the tags have to be located very
close to the reader without obstacles. Imagine the real IoT
applications with backscatter devices, the aforementioned
superclusering phenomenon is likely to happen in almost all
the scenarios. This fact is however ignored by the existing
approaches. How to achieve reliable decoding of parallel

backscatter in the wild? This is a problem with great signifi-
cance in both research and application fields.

3 BACKGROUND AND MOTIVATION
This section starts with brief introduction to the background
knowledge. Then we exemplify and discuss the challenges
of parallel backscatter in the wild. In the third subsection,
we present important observations on the signals’ burstiness
vs. randomness, which motivate the design of Hubble.

3.1 Primer
A backscatter tag transmits its data through ON-OFF keying
modulation. The signal, which has two states, i.e., high (H)
and low (L), can be decoded using a magnitude threshold,
as shown in Figure 1(a-top). In parallel transmission cases,
signals from N tags collide at the reader side, creating 2N
energy levels, each representing a specific combination of
the tags’ states (denoted by S = [s1, s2, ..., sN ], where si = H
or L indicates the state of tag i). As an example, Figure 1(a-
bottom) shows a collided signal of two tags. We can see
that the gap between different energy levels is not stable.
Decoding solely based on the energy profile is infeasible.
A typical scheme to address the above problem is to ac-

quire richer information of the collided signals from the IQ
domain [5, 6, 8, 11]. As shown in Figure 1(b), due to different
phases and signal strengths, the collided signals form four
clusters in the IQ domain. If the signal clusters are clearly
separated from each other, we can associate each cluster
to a specific combined state using the existing approaches
[5, 6, 8, 11]. Then, tracing signals’ state transitions among
the clusters tells the transmitted bits of each tag. The above
is the basic mechanism of parallel decoding.

3.2 Challenges
The above mentioned parallel decoding method is however
brittle in practice. The fundamental problem is that signal
clusters in the IQ domain are not always distinguishable from
each other. As we have explained in the previous section, the
noise level in the environment determines the radius of a
cluster, while the RSS of the signals determines inter-cluster
distances. In practical deployments of backscatter systems,
the noise level is often comparable with the signal strength.
Consequently, the signals’ clustering results may be far from
the desired state.

As an example, Figure 2(a) shows the collided signals from
three tags that are located only 1 feet away from the reader.
We can observe 8 clearly separated clusters in this case.When
we move one of the tags to 3 feet away from the reader, the
decrease in the tag’s RSS leads to the occurrence of over-
lapped clusters, as shown in Figure 2(b). In this case, multi-
ple clusters overlap with each other, forming a supercluster.
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Figure 2: Examples of the collided signals on IQ do-
main: (a) three strong tags; (b) coexistence of strong
and weak tags. (c) three weak tags; (d) coincidental
overlapping; (e) four strong tags; (f) six strong tags.

The receiver even cannot figure out how many signal states
should be associated with a supercluster, not to mention
tracing state transitions. Figure 2(c) shows that when all the
three tags are located 3 feet away from the reader, almost
every cluster is merged into a supercluster. None of signal’s
combined states can be easily extracted from the IQ domain.
It is worth noticing that weak signals are not the only

cause of superclustering. Evenwhen the signals are all strong,
superclusters also exist with a certain chance. As shown in
Figure 2(d)), the colliding signals may coincidentally generate
overlapping clusters. This phenomenon becomes much more
serious when more tags transmit concurrently, as shown in
Figures 2(e) and (f), where the degree of parallelism is 4 and
6, respectively.
With regard to the superclustering phenomenon, we ob-

serve a huge gap between the theory and the practice, based
on our implementation of two existing approaches FlipTracer
[8] and BiGroup [11] with backscatter tags in the wild. Specif-
ically, we carry out a group of experiments under different
settings of the tag-reader distance and the degree of paral-
lelism. All the tags are positioned at the same distance from
the reader. We use SNR (signal-to-noise ratio) rather than the
real distance as the X-axis because SNR is a general metric
across different contexts. Clearly, the reader-perceived SNR
decreases as the tag-reader distance increases. Figures 3(a)
and (b) respectively show the decoding rates (the percentage
of packets successfully decoded) of the two approaches. We
can see that the theoretical results claimed by the existing
approaches are achievable only when the tags are very close
to the reader and the degree of parallelism is small. The de-
coding rates seriously degrade when either the distance or
the degree of parallelism increases.
Based on this finding and the signal attenuation model,

we calculate the distribution of FlipTracer’s decoding rate
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Figure 3: (a)-(b) Performance of FlipTracer and Bi-
Group under different SNRs; (c)-(d) Distribution of
FlipTracer’s decoding rate when 2 and 5 tags transmit
in parallel.

when 2 and 5 tags transmit in parallel (the result of BiGroup
is similar and omitted here to save space). Figures 3(c) and
(d) conceptually plot the results in a 40×40 2D area. Sup-
pose the reader is at the center, tags deployed anywhere in
the area should be within the communication range of the
reader. Surprisingly and reluctantly, we find that the existing
approaches achieve decent performance only in a very small
portion of the entire area. That means the practical usability
of the existing approaches is far restricted in terms of space
and degree of parallelism.

Given the above observation and analysis, it is not hard to
understand that superclusering is a critical problem which
seriously affects the performance of parallel backscatter. One
may conjecture that a density-based clustering algorithm
(e.g. the one adopted by FlipTracer [8]) may help to resolve
the superclustering problem. But that is not true in the case
of parallel backscatter. Figures 4(a)-(c) plot the density distri-
butions of signals of three difference cases. We can see that
when cluster overlapwith each other, the overlapped area has
a comparable density with that of the central cluster areas,
because the overlapped area gathers signals from multiple
clusters. In fact, only utilizing the IQ domain information is
no longer effective in identifying different clusters.

Overlapping area Overlapping area Overlapping area

(a) One cluster (b) Two clusters (c) Four clusters

Figure 4: Density distribution of collided signal.
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Figure 5: (a) The bursty Gaussian behavior of signal;
(b) temporal characteristic of signals that confined in
overlapping area and central area.

3.3 Randomness v.s. Burstiness
How to distinguish the overlapping area from the central
cluster area? Observing the signal’s temporal characteristics
in the IQ domain provides a new angle to tackle this problem.

Specifically, since the reader can oversample the received
signals, one state of the collided signal generally correspond
to many samples at the reader side. Embodied in the sample
sequence, the collided signal will always continuously dwell
on a state for a certain period of time, before transiting to
another state. That is called the temporal burstiness of a col-
lided signal. Due to such burstiness, during any short period
of time, the spatial distribution of signals in the IQ domain
tends to be concentrated in the corresponding cluster. At
the same time, the noise, which is generally supposed to be
a Gaussian factor, will make the signals randomly deviate
from the cluster. Figure 5 plots this interesting process in a
3D space, where the Z-axis denotes time (measured by the
index of signal samples).

We have two important findings from the above observa-
tions and analysis:

• Although the central cluster area and the overlapped
area have similar signal densities, the arrival of the
signal samples in these two kinds of areas exhibit ap-
parently different levels of randomness/burstiness (as
shown in Figures 5 (b)). In other words, the signals
falling into the central cluster area is a deterministic
bursty event, while the signals falling into the over-
lapping area is a random event. This key finding illu-
minates a way to effectively find the centers of all the
clusters, even when they overlap with each other.

• Due to the predefined data rate of communication
and oversampling, the spatiotemporal distribution of
collided signals follows a probabilistic pattern. Such a
traceable pattern (like the expected dwell time at a state
and the transition probability between different states),
combined with locations of the signal samples in the

Center 

identification

Error Correction

Signal TracingReceived signal
Separated signal

Figure 6: Workflow of Hubble.

IQ domain, provide fine-grained basis for accurately
tracing the underlying state transitions.

4 HUBBLE DESIGN
Hubble is designed to accurately extract the underlying sig-
nal state sequence from the seriously jumbled collision signal
based on the bursty Gaussian behavior of the signal. Figure
6 summarizes the sketch of Hubble, which is composed of
three components. Specifically, Hubble first identifies the
locations of the cluster centers (which represents different
signal states) in the IQ domain, using the center identification
component. After that, Hubble begins to trace signal’s state
transitions, during which the signal tracing and error cor-
rection components are alternated periodically to guarantee
high reliability.
In the following of this section, we first propose the in-

terstellar travelling model to capture the bursty Gaussian
behavior of the signal, followed by the design details of the
three main components of Hubble.

4.1 The interstellar travelling model
In this section, we propose our interstellar travelling model
to capture the bursty Gaussian behavior of the signal. We
start by briefly introducing the standardized coding (FM0 or
Miller) used in backscatter transmission. Here we take FM0
coding for example (Miller coding exhibits similar character-
istic with FM0). FM0 flips signal state at every bit boundary,
and the bit 0 has an additional mid-bit state flipping. Consid-
ering that the reader oversamples the received signal, signal
will dwell on a state before transiting to the other state,
showing strong burstiness. Suppose the sampling rate of the
reader isMR , and the bitrate of the tag is BT , then signal will
dwell on one state for either MR

BT
(when transmitting bit 0)

or MR
2·BT (when transmitting bit 1) samples’ length.
Then let’s look at the scenario when NT tags transmit in

parallel. In this scenario, the collided signal has K = 2NT
states, denoted by S1, ..., SK . The dwell time of signal on a
state indeed follows the exponential distribution.
Specifically, the exponential distribution describes the

time interval between events in a Poisson point process,
i.e., a process in which events occur continuously and in-
dependently at a stable average rate. There are two main



properties of the collided signal that make the dwell time fol-
low the exponential distribution: First, the average interval
between successive signal flipping (i.e., the dwell time of the
signal) is solely determined by the number of concurrent tags
and the bitrate of each tag, which are relatively stable over
time. Second, different tags have different response delays
(which is caused by the differences in tags’ power charging
rate and strength of incident radio power), and the bit du-
ration of the tags is neither identical among tags nor stable
over time (due to the high drifting rate of the clock). This
makes the dwell time of the collided signal highly random
and unpredictable. In conclusion, the dwell time is random
but averaged at a stable value, which makes it follow the
exponential distribution.

Based on the above discussion, the probability that a signal
will dwell on a state for td samples can be estimated by

Pd (td ) = 1
Td

· e
− 1
Td

·td (1)

where Td is the average dwell time of the signal on a certain
state. If a packet contains similar numbers of 0 and 1 bits, we
have Td = 2MR

3NT ·Bave
. Here, Bave is the average bitrate of the

colliding tags.
We further conduct a set of experiments to verify our

assumption assumption on the exponential distribution. In
the experiment, we let 5 tags transmit concurrently, and
the reader samples the signal at 25MHz. Bitrates of the 5
tags change from 50 Kbps to 250 Kbps. Figure 7 shows the
observed distribution of td and the fitted exponential distri-
bution under different Bave . We find that the dwell time of
the signal properly fits the exponential distribution.

Due to the time-domain burstiness of the collision signal
described above, we can estimate the probability that the
i-th signal sample is on state Sk based on Pd (td ) and the state
of the previous sample:

PT (i, Sk |td ) =
{
Pd (td ), si−1 = Sk
(1 − Pd (td ))Ptrans (Sq , Sk ), si−1 = Sq

(2)
Here Ptrans (Sq , Sk ) is the transition probability between states
Sq and Sk (Sq ̸= Sk ), and si denotes the state of sample i .
Equation (2) indicates that for the i-th signal sample, the
probability that it is on a certain state Sk depends on: i) the
state of the (i −1)-th signal sample (i.e., whether the (i −1)-th
sample is on state Sk ); ii) the probability that the signal will
stay on a certain state given that it has stayed for td samples;
and iii) the transition probabilities among different states.
Equation (2) captures signal’s burstiness in time domain.

Nowwe explore signal’s Gaussian property in the IQ domain.
Specifically, due to the noise, received signal samples on the
same state Sk are dispersed and scattered around a centroid
position (denoted by (Ik ,Qk )) in the IQ domain. Assume
that the noise follows the Gaussian distribution, then the
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Figure 7: Distribution of signal’s dwell time.

probability that a signal sample on state Sk is located at a
location (I ,Q) can be estimated by:

PIQ ((I ,Q)|Sk ) = π (I ,Q, Ik ,Qk ,Σ) (3)

where π (•) is the probability density of the Gaussian distri-
bution. Σ is the covariance matrix, which is related to the
noise level.

Combining PT and PIQ provides an estimation of the prob-
ability that the i − th signal sample is located at (I ,Q):

PBG ((I ,Q)|i) =
K∑
k=1

PIQ ((I ,Q)|Sk ) · PT (k |i, td ) (4)

PBG captures the bursty Gaussian behavior of the signal,
which is observed in Figure 5. In the following, we exploit
this model to extract the signal states and trace the state
transitions of the signal.

4.2 Extraction of combined states
As discussed in Section 3.2, signal clusters in the IQ domain
are not always distinguishable from each other. Therefore,
to trace signal’s transitions among different states, the first
challenge we meet is to find the signal clusters, which repre-
sent different signal states. We divide this process into two
phases. Specifically, Hubble first coarsely clusters the sam-
ples using the density-based clusteringmethod, i.e., DBSCAN
[3]. Very likely, some overlapped clusters may be grouped
into a supercluster in this phase. Then, in the second step,
Hubble decomposes those superclusters one by one in the
descending order of their cardinality (the number of samples
assigned into the cluster), until a cluster contains only one
center is detected.
In this section, we focus on the second phase, exploring

how to reliably identify signal centers in a supercluster by
leveraging the temporal characteristics of the signal samples.

4.2.1 Temporal distribution of the signal. For identifying
the centers in a supercluster, the most thorny problem we
meet is how to distinguish between the central area of a
cluster and an overlapping area. Experimental results in
Section 3.3 tell that although these two areas exhibit similar
IQ domain representation (i.e., density), the occurrence of the
signal samples in these two areas exhibit different levels of
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burstiness/randomness. As we have discussed in Section 4.1
(in Equation (4)), for a collided signal, the probability that the
i-th sample occurs at a location (I ,Q), namely PBG ((I ,Q)|i),
is determined by two factors: i) the state of sample i (which
is captured by PT ); and ii) the signal’s IQ domain distribution
(i.e., the noise level, which is captured by PIQ ).

On one hand, for a location (I ,Q) which is close to a cluster
center that represents a state Sk , PIQ ((I ,Q)|Sk ) is high only
when the signal is at state Sk (i.e., si = Sk ), and is particu-
larly low otherwise. That’s to say, the sample’s occurrence
probability at (I ,Q) is highly determined by PT (i,k), which
captures the probability that sample i is at state Sk . The ex-
pression of PT shown in Equation (2) tells that a signal’s state
exhibits strong burstiness in time domain. This indicates that
PBG ((I ,Q)|i) exhibits strong burstiness if (I ,Q) is close to a
cluster center.
On the other hand, if (I ,Q) is in an overlapping area,

PIQ ((I ,Q)|Sk ) exhibits no significant skewness for different
Sk . Therefore, in this case, PBG ((I ,Q)|i) is not so sensitive to
the state of the sample i (i.e., PT (i,k)), exhibiting less bursti-
ness and higher randomness.

We use the supercluster shown in Figure 4(c) as an example
to verify the above assumption. Specifically, we extract the
signal samples in a central area and an overlapped area of
the supercluster (as shown in Figure 8(a)), and denote these
two groups of samples by Sc and So, respectively. Then we
calculate the occurrence interval of samples in these two
areas (denoted as Intc and Into). Figure 8(b) compares the
distribution of Intc and Into.

Central areas

Neighbors of 

central areas

Overlapping 

areas

B

Figure 9: Center identification based on D(д) and B(д).

We can see that, although the average values of Intc and
Into are similar (which indicates similar densities of the two
areas), their distributions are quite different. Specifically, the
distribution of Into properly fits the exponential distribution,
as shown in Figure 8(c). This is caused by the signal’s random
occurrence in the overlapping area. However, distribution
of Into deviates seriously from the exponential distribution,
as shown in Figure 8(d). This is due to the signal’s bursty
occurrence in the central area.

4.2.2 Identification in principle. The above observation
motivates us to combine the distribution characteristics of
the signal in both time and IQ domains as a metric to assess
which areas are central areas. Specifically, we search in the
supercluster with a moving grid (as shown in Figure 8(a)),
where the size of the grid isW and the moving step is W

2 .W
can be adapted according to the noise level. For each location
д, we denote the samples in the grid by Sg, and the occurrence
intervals between those samples by Intg. We calculate two
metrics of each location д: i) the number of samples in д (i.e.,
the sampling density, denoted by D(д)); and ii) burstiness of
samples’ occurrence in д (denoted by B(д)).

Here, burstiness is quantified through Pearson’s Chi-Square
statistical test, by computing the deviation of the observed
distribution of Intg from the exponential distribution. A
higher deviation level indicates a higher probability that
д is a central area. Specifically, suppose there are n possible
values in Intg, and the observed occurrence probability of a
certain value Intj (1 ≤ j ≤ n) is denote by O j . If we denote
the mean of the values in Intg by Intave , then the value

B(д) = χ 2 =
n−1∑
j=0

(O j − f (Intj ))2

Ej
. (5)

is a measurement of the deviation level, which further quan-
tifies the burstiness of samples in д. Here, f (•) is the proba-
bility density function of the exponential distribution.
Figure 9 shows the normalized density and burstiness of

each grid д. We can see that only the central areas exhibit
both high density and high burstiness, which makes them
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Figure 10: Results of the probing process: (a) the result
observed at the IQ domain; (b) proportion of the train-
ing samples that assigned to different candidates.

distinct from others. Then we propose a metric to quantify
how likely a grid д is a central area:

Pc (д) = β · B(д) · D(д). (6)
where β serves as a normalization constant.

4.2.3 Identification in practice. A challenge we meet in
practice is that the reader doesn’t know the number of clus-
ters. A naive method for center identification is to use a
threshold: the grids whose Pc exceed the threshold will be
identified as cluster centers. However, this is not a general
solution because we cannot find a fixed threshold for all the
collision cases. In the design of Hubble, instead of judging
directly based on Pc , we propose to recognize the cluster
centers through a probing process. Specifically, considering
that central areas usually exhibit both higher density and
higher burstiness than other areas, we consider the centroids
of the grids, whose (D(д),B(д)) is at the top right corner of
Figure 9 (e.g., D(д) > 0.5 and B(д) > 0.5 in our implementa-
tion), as the candidates of cluster centers. Then we treat the
first 5% samples as training samples and assign them to the
candidates using the method proposed in Section 4.3 (where
Pc serves as the weight of each candidate). The result of the
probing process can indeed help to recognize the cluster
centers.

Here, we explain why most samples are assigned correctly
to the real cluster centers in the probing process. We divides
the candidate points that are not the cluster centers to two
groups, denoted as halo points (which locates adjacent to
the cluster centers), and overlapping points (which locates
on the overlapping area). For a halo point, since its location
is similar to the corresponding cluster center, its PIQ will be
very similar with that of the cluster center for each sample
i . Consider that Pc of a halo point is lower than that of a
cluster center, more samples will be assigned to the cluster
center. For a mid point, since they are typically located on the
overlapping area, where the samples exhibit poor temporal
consistency. This leads to low PT for assigning a sample to
the the mid points.

Td=25 Td=20

Start point

ba s

a: td=6

b: td=28

A

B

A
B

C

Higher PTrans

(a) (b)

Figure 11: Assigning a sample that located in the over-
lapped area: (a) two-cluster-overlapping case; (b) four-
cluster-overlapped case.

As an example, Figure 10(a) shows the probing result of
the case in Figure 8. We find that most samples are assigned
correctly. Therefore, if we denote the number of training
samples that are assigned into д as |д |. A hint for selecting
the cluster centers is provided by sorting |д | in the decreas-
ing order, as shown in Figure 10(b). Here, the anomalously
decrease in the 5-th rank helps us to identify the top 4 candi-
dates as the cluster centers.

4.3 Tracing of state transition
Now we have K cluster centers, each representing a signal
state. The next task is to identify the underlying state of
each sample i . Indeed, the state of sample i can be inferred
based on two clues: i) the location of sample i; and ii) the
signal’s underlying transition pattern. We use two examples
(as shown in Figures 11(a) and (b)) to illustrate why this
would work.

In Figure 11(a), two clusters (A and B) overlap with each
other, and we cannot identify the states of the samples lo-
cated in the overlapping area (e.g., a and b). However, if we
find that the average dwell timeTd is 25 samples in this case,
and the signal has stayed at A for only 6 samples when a
arrives, and for 28 samples when b arrives. Then we can eas-
ily infer that the signal signal is likely to flip when sample
b arrives, and thus sample a probably belongs to cluster A,
while sample b probably belongs to cluster B.

In some rare cases, assigning only based on the dwell time
is not enough. As shown in Figure 11(b) where four clusters
overlap with each other. Sample s is located in the overlap-
ping area of B and C . Although we know that the signal is
leaving cluster A based on the dwell time, but we cannot
determine where the signal is transiting to. Fortunately, as
discussed in [8], signal has distinct transition probability be-
tween different pairs of states. Therefore, we can solve this
dilemma by comparing the transition probabilities between
states A and B and states A and C .
Based on the above discussion, instead of assigning the

samples in isolation, we should treat each sample in the
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Figure 12: The markov model used for signal tracing.

context of its predecessors in the time series, and identify
the state of each sample based on a joint consideration of
sample’s location, probable dwell time at a state, and the tran-
sition probabilities between states. We propose a Markov-
based model to solve the above problem, as shown in Figure
12. Specifically, we treat the combined state of the samples as
hidden states of themarkovmodel. Then PIQ , which captures
signal’s gaussian property in the IQ domain, acts as the emis-
sion probability of markov model, and PT , which captures the
temporal burstiness of the signal acts as the transition proba-
bility of the markov model. Then the likehood for assigning
sample i to state Sk is given by:

P (i, Sk ) = Pw (Sk ) · PIQ ((I ,Q)|Sk ) · PT (i,k |td ), (7)

Here, Pw (k) is theweight of each cluster, given by Pc (k )∑K
k=1 Pc (k ) .

Given P (i, Sk ), solving the following optimization problem
assigns the N received samples to the K states in a way that
maximizes the likelihood of the assignments.

arg max
C

N∑
i=1

P (i,k). (8)

This problem can be solved by using Dynamic Programming
in O(KN ) operations.

Model initialize. Initially, PIQ and PT are unknown, and
we roughly initialize these two parameters as follows:

Initializing PIQ : Equation (3) tells that PIQ is related to
two parameters: i) the location of cluster k , which is given in
the cluster identification component; and ii) the covariance
matrix Σ, which is considered highly related to the noise
level. Assume that the background noise is relatively stable,
Σk can bemeasured based on the clustering result of previous
transmission tasks.
Initializing PT : As shown in Equation (2), PT is related to

two parameters: Pd and Ptrans . Specifically, Pd is initialized
based on Equation (1), where Td = 2MR

3NT ·Bave
. Here, Bave can

be estimated based on the available bitrate configuration of
the backscatter system, and NT can be estimated based on
the total number of tags (denoted by Nall ), and the data rate
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Figure 13: Error detection: (a) distribution of P (i,k); (b)
distribution of recovery time.

of each tag (denoted by Psend ):

N =
N∑
n=1

(
Nall

n

)
· Pnsend · (1 − Psend )Nall−n . (9)

Initializing Ptrans : Ptrans is initialized as equal for all the
cluster pairs.

Model update. Pd and Ptrans are also updated at run-
time. It sounds simple: we just count the average dwell time
of the signal and the number of transitions between differ-
ent clusters periodically, based on the previously identified
samples. However, an underlying problem is: errors in the
previous assignments, even rarely occurs, may lead to inac-
curate estimation results of Pd and Ptrans . Fortunately, we
find that most of the errors can be detected and corrected,
which will be explained in Section 4.4.

4.4 Error Handling
Error detection. Hubble detects errors leveraging the re-
liability of each assignment i (i.e., P (i, Sk )). Specifically, we
find that most incorrectly assigned samples are located in
the overlapping area. This leads to a relatively low PIQ , and
therefore a low P (i, Sk ). To verify this assumption, we con-
sider the case in Figure 4(c) again. Figure 13(a) shows the
distribution of P (i, Sk ) for correct and incorrect assignments.
As shown, P (i, Sk ) is actually a indicator of error.

Can we just identify an assignment with low P (i, Sk ) as
an incorrect assignment1? The answer is no because a cor-
rect assignment may also have low P (i, Sk ). Fortunately, we
find that compared with the incorrect assignments, correct
assignments typically lead to short recovery time (i.e., the
number of successive assignments that with low P (i, Sk )).
Figure 13(b) shows the distribution of recovery time for cor-
rect and incorrect assignments. We can see that more than
90% of the correct assignments lead to a recovery time less
than 2 samples. For the false assignments, about 92% of them
lead to a recovery time that fall between 2 and 4 samples.

1we use a threshold, which is empirically set at P (i, k ) = 0.7, to find the
low reliable assignments
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We use an example shown in Figure 14 to explain the rea-
son behind. Assume sample a is a correctly assigned sample
(belongs to Cluster A) which exhibits low P (a,A) since it is
located in the overlapping area. As discussed in Section 4.2.1,
signal samples that in the overlapping area usually exhibit
low continuity. Therefore, it will probably leave the over-
lapping area soon, which leads to a high P (•) for the next
assignment. For an incorrectly assigned sample b (which is
assigned to Cluster B but indeed belongs to A), however, the
assignment of the next sample c (which may also belong to
A) will exhibit either a low PIQ (if it is incorrectly assigned
to B) or a low PT (if it is correctly assigned A), both of which
inevitably lead to a low P (•).

Based on the above discussion, we can identify an assign-
ment sequence, which exhibits successive low P (i, Sk ), as a
suspicious segment, and correct the errors using the method
introduced as below.

Error correction. For error correction, we directly merge
the samples in a suspicious segment to the cluster that the
predecessor is assigned to (as shown in Figure 15(a)). In some
rare cases, the suspicious segment accidently covers a bit
boundary (as shown in Figures 15(b) and (c)). Therefore, the
predecessor and the successor of the suspicious segment
belong to different clusters (denoted as Clusters Cpre and
Csuc respectively). In this case, we just merge the first 1

2
samples in the suspicious segment to Cpre and the rest to
Csuc . This may lead to some errors, but an incorrect merging
in a cross-boundary case only leads to slight displacement of
the bit boundary, which has little impact on the parameter
estimation and decoding process.
There is still a problem: correct assignments can also oc-

casionally lead to a long recovery time and therefore be
incorrectly identified as a suspicious segment, as shown in
Figure 13(b). This is caused by either the interference (which
leads to successive low Ploc ) or a too long dwell time of the
signal (which leads to successive low PoF ). Fortunately, as
shown in Figures 15(d) and (e), the correction method will
not lead to error for the normal case, and leads to only slight
error in the cross-boundary case.

Suspicious segment

Correct assignment

False assignment

Low P(i,Sk)

(a) (b) (c)

(d) (e)

Ground truth

Cpre

Csuc

Figure 15: Error correction method.

5 DISCUSSION
Reducing the computation overhead. To reduce the com-
putation overhead, instead of directly assigning each sample
using Hubble, we may first divide the samples into grids2
(which is much less than the samples) and cluster those
grids using DBSCAN [3] (in the coarse clustering phase).
Therefore, the computation overhead of this process is only
O(kд · loдkд), where kд is the number of grids. Then Hub-
ble separates the superclusters using the method introduced
in Sections 4.2 and 4.3. The computation overhead of this
process is O(G + M · (K +w)), whereM is the number of the
samples in the superclusters.

Enabling partial decoding. In the cases where multiple
clusters almost completely coincide with each other (which
is caused by a particularly low signal SNR, like the case
shown in Figure 2(b)), Hubble is unable to correctly find all
the cluster centers. In such a scenario, Hubble tries to extract
the strong signals (if exist) from the collision, and consider
the weak signals as noise, achieving partial decoding. Take
the collision signal depicted in Figure 2(b) as an example.
The signal from Tag 3 is too weak, leading to overlapping
between cluster HHL and HHH , and LLL and LLH . In this
case, if Hubble is unable to separate the overlapped signal, it
will ignore the signal from Tag 3 bymerging ClusterHLL and
HLH , and LHL and LHH , leaving only four clusters, which
represent the combined states (i.e, LL, LH , HL, and HH ) of
tags 1 and 2. This ensures the collision signal of these two
tags is correctly decoded.

After the center identification process, Hubble first check
whether the identified number of centers is a power of 2. If
not, Hubble will merge the cluster pairs one by one in the
descending order of the distance of each cluster pair, until
the number of clusters reaches the power of 2.

6 EVALUATION
6.1 Experiment Setting
We implement Hubble on the USRP N210. The state tran-
sition sequence identified by Hubble is further decoded by

2The grids used in this phase is different from that used in the center
identification component.
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Figure 16: Overall performance.

FlipTracer in our implementation. The SDR reader is connect
with two UBX RF daughterboards. The sampling rate of the
reader is set at 20MHz.

The implementation of Hubble on WISP requires a slight
modification to the EPCglobal C1G2 protocol. Specifically, we
just remove the elements for Slot Aloha operation and thus
the tags can respond concurrently. The default bitrate and
packet length are set at 100 Kbps and 200 bits, respectively.

In the experiment, we compare the performance of Hubble
with two schemes, both of which cluster the received signal
using density-based clustering algorithm.

• FlipTracer. FlipTracer [8] assumes that signal’s transi-
tions among different combined states follows different
probabilities. It therefore identifies the combined state
of the cluster by counting the numbers of transitions
among clusters.

• BiGroup. BiGroup [11] assumes signal transitions of
each tag arrive with predictable interval. It extracts
the sequence of each tag’s signal transitions in the
time domain, and connects the signal clusters in the
IQ domain for parallel decoding.

Methodology: Our goal is to evaluate the performance
of Hubble for supporting different number of concurrent
tags, under different SNRs. The SNR is adjusted by changing
the distance between the tag and the reader. Specifically,
in the experiment, we change the number of concurrent
tags from 2 to 6. For the case where n tags (2 ≤ n ≤ 6)
transmit concurrently, we conduct n experiments. In the
i-th (1 ≤ i ≤ n) experiment, we fix the locations of n − i
tags within a 0.5ft transmission range (the corresponding
average SNR is 20dB), and move the other i tags (termed as
weak tags) further and further away from the reader, until
reaching the boundary for signal detection. For each location,
the tags transmit packet concurrently for 100 rounds, and
the reader separates and decodes the collided signal using
different approaches.

6.2 Overall performance
First we discuss the aggregated results of the experiments de-
scribed above. Figure 16 shows the CDF of the the throughput

efficiency (defined as the ratio of throughput to aggregated
PHY bit-rate) of Hubble, FlipTracer, and BiGroup. As shown
in the figure, since FlipTracer and BiGroup work only when
the signal strength is high, the median throughput efficiency
of these two approaches are only 0.07 and 0.11, respectively.
BiGroup performs slightly better than FlipTracer due to its
ability to partially decode the received signal. This makes
BiGroup more robust to low SNR scenarios, compared with
FlipTracer. Hubble has a median throughput efficiency of
0.82, outperforming FlipTracer and BiGroup by 11.7× and
7.4×, respectively.

More detailed experiment results are given in Figure 17,
which shows the throughput efficiency of Hubble, FlipTracer
and BiGroup v.s. the SNR of the weak tags, under different
numbers of concurrent tags and different proportions of
weak tags. We can observe that all the above three factors
seriously affect the performance of FlipTracer and BiGroup.
In comparison, Hubble is not so sensitive to those factors.
In the following sections, we access the performance of the
three schemes under different influencing factors.

6.3 Impact of the signal SNR
As shown in Figure 17, the throughput efficiency of both
FlipTracer and BiGroup decreases rapidly with SNR, espe-
cially when the SNR falls below 8dB. Such a trend becomes
more significant when the number of tags increases from 2
to 6. In comparison, Hubble is much more robust to the low
SNR. The throughput efficiency of Hubble keeps higher than
FlipTracer and BiGroup no matter how many tags transmit
concurrently. For example, when two tags transmit concur-
rently, Hubble achieves a 85% throughput efficiency even
when the SNR of both the two tags is only about 4dB, while
that for FlipTracer and BiGroup is only 0.01 and 0.03, respec-
tively. Even when 6 tags transmit concurrently and some of
the tags exhibit low SNR (where many signal clusters are
completely overlapped), Hubble can still decode 15% packets.

A interesting observation is that for all the three approaches,
the throughput does not strictly decrease with SNR. Some-
times the throughput slightly increases when the SNRs of
the weak tags are particularly low. The reason is that in these
scenarios, signals from the weak tags are too weak and can
be considered as noises. This helps the receiver to extract the
strong signals more accurately, enabling partial decoding.

6.4 Impact of the number of concurrent
tags

Figure 18 shows the averaged throughput efficiency un-
der different numbers of tags. As shown in the figure, the
throughput of FlipTracer and BiGroup decreases significantly
with the number of concurrent tags. The impact of the tag
number is more apparent than that of the SNR because the
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Figure 17: Performance of different approaches under different SNR and different numbers of colliding tags.
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Figure 18: Averaged throughput efficiency under dif-
ferent numbers of tags.

exponentially increased number of clusters (from 2 to 64)
steeply increases the probability of cluster overlapping. Com-
pared to FlipTracer and BiGroup, the performance of Hubble
is not so sensitive to the increase in the number of tags.
Specifically, consider the scenario where 6 tags transmit
concurrently (as shown in Figure 17), the throughput of Flip-
Tracer and BiGroup reach to 0 even when the SNRs of all
the tags are particularly high. In comparison, Hubble still
achieves a 75% maximum throughput efficiency in this case.
Another observation from Figure 17 is that the performance
of Hubble becomes more sensitive to the SNR when there
are more tags transmit concurrently.

Here we have to emphasize that the decoding capacity of
Hubble is sufficient for most applications. Consider a sce-
nario where 500 tags3 co-exist in the communication range of
the reader, which follow the EPC C1G2 standard. The on-air
transmission time of a packet is short, usually a few millisec-
onds. Assume that the on-air time of one packet is 2ms (e.g.,
when the packet length is 200 bit and the bitrate is 100Kbps)
and the tags transmit packets at a rate of 1 packet per sec-
ond, the probability that more than 6 tags transmit packet
concurrently is 1−∑6

k=0C
k
500 · (

1
200 )

k
· (1− 1

200 )
500−k = 0.0328.

6.5 Impact of the proportion of weak tags
The number of weak tags is also an important influencing
factor. Consider the scenario where 5 tags transmit concur-
rently, and there is only one weak tag, Hubble ensures more
than 80% throughput efficiency even when the SNR of the
weak tag is 6.6dB. When all the five tags are moved far away
from the reader, the throughput efficiency steeply decreases
to only 15%. Another important observation is, compared
with FlipTracer, performance of BiGroup is more sensitive
to the number of weak tags. The reason is that BiGroup’s
ability to partially decode the collided signal is weaken when
more weak tags coexist.

3Since the communication range of the reader is only a few meters in
practice [10], 500 tags indicates an extremely dense deployment.
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6.6 Transmission across obstacle
In this section, we evaluate the performance of Hubble in a
more challenging condition - the NLOS (non-line-of-sight)
scenario - to further investigate the reliability of Hubble. In
the experiment, a human stands 1ft away from the reader.
We have two test positions: a LOS (line-of-sight) position and
a NLOS position, both are located 2ft away from the reader.
We change the number of concurrent tags from 2 to 44. For
the case where n tags transmit concurrently, we conduct n+1
experiments. Specifically, in the i-th experiment (0 ≤ i ≤ n),
i tags are located at the NLOS position and the other n − i
tags are located at the LOS position. The tag located at the
NLOS position is termed as a NLOS tag.
The results are shown in Figures 19. As shown, the pres-

ence of an obstacle decreases the throughput of all the three
approaches. The influence is more obvious when there are
more tags transmit concurrently. For Hubble, when there
are only two tags transmit concurrently, the performance
degradation caused by the presence of the obstacle is only
5% ∼ 9%. When 5 tags transmit concurrently, the perfor-
mance degradation becomes much more obvious, reaching
to 75% when all the tags are located at the NLOS location.

FlipTracer and BiGroup are much more vulnerable to the
NLOS scenario, compared with Hubble. As shown in Figure
19(a), even when there are only two concurrent tags, the
presence of an obstacle can lead to 51% and 65% performance
degradation for BiGroup and FlipTracer, respectively. That
is to say, the existing parallel decoding approaches do not
work in highly cluttered environments such as warehouses,
stores, and factories.

6.7 Impacts of practical factors
We now evaluate the impact of other practical factors.

Bitrate. One of the underlying assumption of Hubble is
that the signal will dwell on a certain state before transit to
another state. However, when tags transmit with a particu-
larly high bitrate, signal transitions are stacked back to back,
leading to short dwell time at each signal state, which may af-
fect the performance of Hubble. So we conduct experiments

4This is because FlipTracer and BiGroup cannot support more than 4 tags
in practical scenarios

(a) Throughput v.s. overlapping level (b) Throughput v.s. bitrate

(b) Performance under dynamic environment
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Figure 20: Impacts of practical factors: (a) bitrate; (b)
dynamic environment.

to test the performance of Hubble under different bitrates. In
the experiment, we use three tags. We vary the bitrate of the
tags (from 100Kbps to 256Kbps) and the distance between
the tag and the reader (which makes the SNR decreases from
20dB to 10dB). Note that a 256Kbps bitrate is the maximum
bitrate that the WISP platforms can support. The result is
shown in Figure 20(a). We can see that, compared with SNR,
bitrate is not a key influencing factor of Hubble. Hubble can
still achieves a decent performance at 256Kbps.

Dynamic environment.We further investigate the im-
pact of dynamic working conditions. Three cases are com-
pared: i) the location of the tags are fixed, but orientations of
the tags keep changing; ii) the tags are moved towards and
away from the reader (horizontal movement); and iii) the
tags are moved in parallel to the reader (vertical movement).
The experimental result is shown in Figure 20(b).

In case i, the performance of Hubble is very close to the sta-
tionary case, indicating that the impact of orientation chang-
ing is negligible. In comparison, the impact of the actual
moving is more promise, especially in the case of horizontal
moving, due to the changes in the SNR. This impact becomes
more obvious when more tags transmit concurrently.

6.8 Real-world experiment
To better demonstrate the efficacy and efficiency of Hubble,
we conduct real-world experiments to evaluate its perfor-
mance in the wild. In the experiments, 8 tags are located
within the communication range of the reader but at differ-
ent distances to the reader. They transmit packets periodi-
cally, and the collision occurs randomly due to the different
transmission schedules of the tags. Specifically, the packet
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interval is set at 20 ∼ 30 ms in this experiment to make
the collision occur randomly, different tags transmit packets
with different packet intervals.

Figure 21 shows the throughout efficiency of different
approaches under different degrees of parallelism. We can
observe slight performance degradation compared with that
achieved in the controlled experiment. The degradation is
caused by partial collision between two (or more) packets.
Specifically, since the tags transmit packets blindly, the re-
sponse offset among tags are totally random and uncon-
trolled. When the overlapped segment between two colliding
packets is too short, the collected samples of the collided
segment is insufficient for successful parallel decoding. For-
tunately, this problem will not occur in the EPC protocol
where the reader’s QUERY synchronizes the tags’ responses.
Another important observation is that the in-the-wild per-
formance of Hubble is still much better than FlipTracer and
BiGroup, especially when the degree of parallelism increases.

6.9 Trace-driven Simulation
We perform the trace-driven simulations to investigate the
performance gain of Hubble with a larger number of tags. In
the simulation, N tags are randomly deployed in a 2R × 2R
area, where the reader is located at the center of the area. The
reader queries the tags and the tags respond to the reader
following the EPC standard. The number of slots (denoted
as Ns ) is adjusted by a parameter Q (i.e., Ns = 2Q ). In an
arbitrary collision slot, the reader decodes the received signal
using Hubble, FlipTracer and BiGroup.

Figure 22 shows the performance gain of Hubble compared
with FlipTracer and BiGroup, under different N and R. A
lighter color means a higher performance gain. Here, R is
normalized as the factor of the signal detection range.Q is set
at ⌊loдN2 ⌋, which makes the number of slots approximately
equal to the number of tags.
The result tells that i) the performance gain increases

significantly with R; ii) the number of tags has no obvious
influence on the performance gain; iii) the maximum gains
that Hubble achieves, comparedwith FlipTracer and BiGroup,
is 3.9× and 3.7×, respectively.
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Figure 22: Performance gain when Ns = N .
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Figure 23: Performance gain when Ns = N /3.

We further evaluate the performance gain of Hubble un-
der higher degree of parallelism, by decreasing Q to ⌊loд

N
3

2 ⌋

(whichmeans smaller number of slots). The results are shown
in Figure 23. By comparing Figures 22 and 23, we find that
the performance gain is much higher than that achieved
when Q = ⌊loдN2 ⌋. Specifically, the maximum gains com-
pared with FlipTracer and BiGroup, increases to 19× and
21×, respectively.

7 CONCLUSIONS
This paper presents Hubble, a signal processing approach
to reliably trace signal state transitions, based on the bursty
Gaussian behavior of the signal. With Hubble, the poten-
tial of parallel backscatter [8] is realised, achieving a 11.7×
improvement in the median throughput.
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