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Abstract—Liquid leakage detection is a crucial issue in modern
industry, which concerns industrial safety. Traditional solutions,
which generally rely on specialized sensors, suffer from intrusive
deployment, high cost, and high power consumption. Such
problems prohibit applying those solutions for large-scale and
continuously industrial monitoring. In this work, we present a
RFID-based solution, TwinLeak, to detect liquid leakage using
COTS RFID devices. Detecting the leakage accurately with
coarse-grained RSSI and phase readings of tags has been a
daunting task, which is especially challenging when low detection
delay is required. Our system achieves these goals based on the
fact that the inductive coupling between two adjacent tags is
highly sensitive to the liquid leaked between them. Therefore,
instead of judging according to the signals of each individual tag,
TwinLeak utilizes the relationship between the signals of two tags
as an effective feature for leakage detection. Specifically, Twin-
Leak extracts discriminative signal features from short segments
of signals and instantly identifies leakage using a light-weight
classifier. A model-guided method for leakage progress tracking
is further devised to simultaneously estimate the leakage volume
and rate. We implement TwinLeak, evaluate its performance
across various scenarios, and deploy it in a real-world industrial
IoT system. In average, TwinLeak achieves a TPR higher than
97.2%, a FPR lower than 0.5%, and a relative property estimation
error around 10%, while triggering early alarms after only about
4.6mL liquid leaks.

I. INTRODUCTION

In modern industry, auxiliary machines used for water
cooling, lubricant looping, and liquid purification are indis-
pensable. Fig. 1 shows a real industrial scenario, where a
number of flanges connect pumps and tanks. The flanges are
often not welded for convenient maintenance and replacement,
potentially leading to the liquid leakage problem. Liquid
leakage is indeed a frequent accident that threatens the safety
(e.g. fire disasters caused by leakage of combustibles) and
incurs countless economic loss (e.g. machine damage caused
by leakage of cooling water or lubricant). Liquid leakage
detection is therefore an extremely significant task in the
operations of modern industry.

Conventional leakage detection still relies on the labor-
intensive, high-delay, and inaccurate manual checking. Many
efforts have been taken to achieve automatic leakage detection,
but the existing solutions remain inapplicable in complex and
large-scale industrial scenarios. For instances, vision-based
approaches fail to work in dark environments or the none-line-
of-sight (NLOS) scenarios, which are common in industrial
environments. Detection with specialized sensors seems an
effective alternative, but most sensors suffer high cost of
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Fig. 1. Liquid Leakage Detection with Twin-Tag.

deployment and maintenance, high power consumption, and
difficulty of deployment into many machines.

Motivated by the recent research advances in RFID-based
sensing ( [1] [2] [3] [4] [5] [6]), in this work we study the
problem of RFID-based liquid leakage detection in industrial
environments. Recent related works (e.g., exploiting RF signal
for liquid identification [5] [7] and humidity sensing [8] [9])
have shown that the existence of liquid may change the
characteristics of the RF signals, which might be exploited
as indicators for liquid leakage. But the liquid leakage de-
tection problem in industrial environments differs from the
existing works, due to the following critical requirements and
challenges:

e Timeliness requirement. To minimum the damage
caused by liquid leakage, we must detect the the leakage
event in a timely manner, i.e. once a few drops of
liquid leak out. The corresponding signal variation in
this case, however, is too slight to be detected by COTS
RFID devices. Therefore, existing methods which identify
liquid based on the obvious signal variations caused by
more than 100 mL of liquid [5] [7] is not applicable in
the leakage detection scenario.

« High accuracy requirement. Our goal is to detect the
leakage events that occur exactly at the potential leakage
points (e.g., the flanges). However, many other confound-



ing events (such as the change in the indoor humidity, or
the dynamics in the surrounding environment) affect the
signal propagation between the tags and the reader. Those
events also change the characteristics of the signals,
leading to false alarms. Excessive false alarms are an
equally serious problem, because they will incur extra
labor cost to deal with the alarms, cause unnecessary
downtime of the machinery, or even lead to inappropriate
operations.

o High precision requirement. Besides accurate detection,
quantified properties of the leakage process (such as the
leakage rate and volume) also act as important decision-
making basis when leakage occurs. It is difficult to obtain
such fine-grained information from the coarse-grained
RSSI and phase readings.

In this paper, we present TwinLeak, a ready-for-use solution
to accurately and timely detect liquid leakage and quantify the
leakage rate and volume using COTS RFID. Our idea is based
on the inductive coupling effect between two adjacent tags. We
find through extensive experiments that even slight amount
of liquid may change the dielectric between two adjacent
tags, which leads to significant variation in the strength of
inductive coupling. Hence, observing the relationship between
the signals of two tags offers rich information to detect
and quantify the liquid leakage process. We address non-
trivial challenges in implementing the above idea and make
TwinLeak a practical solution. The contributions of this work
are summarized as follows:

o We disclose and model the relationship between liquid
leakage and the inductive coupling effect between tags.
Instead of judging according to the signals of each
individual tag, we identify the relationship between the
signals of two tags as an effective feature for leakage
detection.

e« We propose the TwinLeak approach, which addresses
several unique technical challenges in leakage detection.
(i) We extract discriminative signal features and design a
decision tree based classification method for instant leak-
age detection; (ii) We provide a change point detection
algorithm to accurately localize the starting points of the
leakage; (iii) We design a model-guided method for leak-
age progress tracking, which simultaneously estimates the
leakage properties e.g. volume and rate.

o We implement TwinLeak on COTS RFID, deploy it in a
real-world industrial monitoring system (as shown in Fig.
1), and evaluate its performance across various scenarios.
TwinLeak achieves a TPR higher than 97.2%, a FPR
lower than 0.5% and a relative property estimation error
about 10%, with the early alarms after only about 4.6m L
liquid leaks.

The rest of this paper is organized as follows. We discuss
the related works of TwinLeak in Sect. II. Sect. III introduces
the Twin-Tag sensor design and its intuition. The overview and
design details of TwinLeak are described in Sect. IV and Sect.
V&VI respectively. Sect. VII presents the implementation

and evaluation of the system. Finally, Sect. VIII summarizes
TwinLeak and discusses potential research extensions.

II. RELATED WORKS

In this section, we give a brief review of the related works
of TwinLeak. They are mainly categorized into three groups.

A. Liquid leakage detection

Many efforts have been made to detect liquid leakage in
both research and application fields. Various sensors based
on acoustic/vibration [10], pressure [11] and electrode [12]
are proposed to achieve the high accuracy and sensitivity.
However, most of them suffer from the issue of intrusive-
deployment and the high maintenance cost. Although acoustic
sensors provide a promising coverage, they are not suitable
for extremely noisy environment in most of the industrial
environments. TwinLeak outperforms these methods for its
non-intrusive, battery-free, low-cost and easy-to-deploy char-
acteristics as well as a relatively large wireless sensing range.

B. RF-based liquid detection and identification

Wireless signals are proved susceptible to the materials of
the medium that along the propagation path [5] [7] and near
Tx/Rx antennas [8] [9] [13], which provides an opportunity
for sensing the characters of the liquid. By modeling the rela-
tionship between the signal attenuation and the permittivity of
the propagation medium, TagScan [5] and LiquID [7] achieve
liquid identification / classification with CTOS RFID devices
and UWB devices respectively. However, a large amount of
liquid (usually > 100mL) is required to block the propagation
path, which greatly restricts the practical deployment. Recent
humidity sensing approaches have demonstrated that the near-
field coupling of the liquid and the antenna offers much better
sensitivity. However, existing approaches need either high-
overhead operations, e.g. the power-on measurement under
different frequencies [8], or specially-designed tags to magnify
corresponding signals [9] [13]. Compared with the above
mentioned methods, TwinLeak is able to detect just small
amount of leaked liquid at specific points by just analyzing
the RSSI and phase readings of COTS RFID tags.

C. Exploration of coupling effect

Although the coupling effect between tags has been con-
sidered as detrimental in many existing RF-based sensing
methods, many works exploit such phenomenon for more
accurate sensing. For instance, Twins [14] tracks an object
by observing the variation of the coupling effect between two
adjacent tags attached on its surface. HuFu [15] proposes that
the coupling effect indeed creates a distinct fingerprint for the
signal from two adjacent tags, which offers an opportunity to
resist the replay attacks. RIO [4] exploits the coupling effect to
sense and track human’s touch on a multi-tag array. Our work
leverages the coupling effect for liquid leakage detection. We
observe that the coupling effect can not only enlarge the signal
variation that caused by the liquid leakage, but also filter out
the variation that caused by other multipath interferences. This
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provides an opportunity to achieve accurate and timely leakage
detection.

IIT. L1QUID LEAKAGE PRIMITIVE

In this section, we start with a introduction about the design
of our Twin-Tag sensor, followed by the empirical observation
and theoretical explanation about Twin-Tag’s distinct signal for
the leakage detection.

A. Twin-Tag sensor

Fig. 1 shows the structure of the Twin-Tag sensor, which
consists of a pair of parallel and proximate COTS RFID tags,
a piece of absorbent cotton and a plastic wrapper. The twin
tags are attached to the cotton, which acts as a container
to collect the leaked liquid. Moreover, it separates the twin
tags from the monitored target (e.g., the flanges, which are
generally metal) to avoid the electromagnetic shielding. A
piece of plastic film wraps the twin tag and the cotton, which
excludes the disturbances from external environmental factors,
e.g. humidity. Twin-Tag can be easily pasted or tied to the
leakage points (Fig. 1). When the liquid starts to leak out,
the cotton absorbs the liquid, which influences the RSSI and
phase of the sensor’s signal.

The core intuition of Twin-Tag’s design is the integration
of two parallel and proximate tags. The reasons we use a pair
of tags instead of a single tag are:

1) Signal variation of a single tag is too slight to be
stably detected in the early stage. The mutual inductive
coupling of the twin tags can amplify such variation.

2) Inductive coupling effect between two adjacent tag can
also filter out the variation that cased by other confound-
ing events.

B. How does leakage change the signal of Twin-Tag?

Figure 2 demonstrates the backscatter signal of Twin-Tag
that collected during leakage processes in various scenarios.

(1) Signal of a single tag. We first explore how the leaked
liquid affects the signal of a single tag. Specifically, Fig. 2(a)
shows the RSSI and phase measurements obtained when a
single tag is located at different positions (termed as Position
A and B shown in Fig. 1). We observe that (i) the signals
collected at different locations are almost identical, indicating
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that tag’s signal is almost irrelevant to its location in the
sensor. (ii) The RSSI and phase measurements remain stable
before the leakage. (iii) After the leakage starts, the RSSI rises
slightly at the beginning (termed as Stage I), then drops with
the increased amount of the liquid (termed as Stage II), and
finally becomes stable again (termed as Stage III) when the
cotton is saturated (~ 20mL). Meanwhile, the phase value
decreases monotonously.

(2) Signal of Twin-Tag. Now we show that Twin-Tag offers
a distinct evidence for the early-stage leakage detection due to
the the interplay between the two tags (Fig. 2(b)). Specifically,
we find that (i) before the leakage, there is a gap between the
RSSI measurements of the two tags, although they suffer from
similar reader-tag path loss. (ii)) When the leakage starts, the
RSSI of Tag 1 rises sharply, and hence the RSSI gap gets
narrowed rapidly in Stage I.

The above observation brings dual benefits to the early-stage
leakage detection: (i) Compared to the single-tag design, the
Twin-Tag offers the distinguishable pattern in Stage I. (ii) And
such pattern can remarkably reduce the false alarms caused
by other confounding events, since the closely-deployed twin
tags experience similar interferences from other confounding
events.

Fig. 3(a) shows signal of the Twin-Tag collected when
obstacles (metal objects and human bodies) move around the
reader-tag LOS path. We can see that the RSSI gap stays
almost unchanged even during rapid fluctuations while the
phase readings of the two tags are almost identical. Therefore,
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we can define a robust gap feature to recognize Stage I during
leakage:

d(re —m) dr
==& dt )
where 71, 7o stands for the RSSI readings of Tag 1 and Tag
2 respectively. Fig. 3(b-Top) shows the CDF of the gap feature
in various conditions, where we can conclude that the early
stage of the liquid leakage is distinguishable from normal state
or other confounding events. By fixing the leakage rate, we
further verify the robustness of the gap feature to distance, as
shown in Fig. 3(b-Bottom).

(3) Impact of the leakage rate and volume. We also
observe the impact of the leakage rate and volume to the signal
pattern of the Twin-Tag. As shown in Fig. 2(c)(d), we find
that: (i) The leakage rate won’t change the shape of the signal
pattern, but will only induce temporal stretching and shrinking.
(i) The leakage volume only cause the spatial truncation
without changing the shape either. Thus, the ability of early-
stage detection of Twin-Tag preserves, and in the meanwhile,
an opportunity is offered to estimate extra properties of the
leakage process.

C. Theoretical analysis of the signal pattern

Next, we explain the signal pattern of the Twin-Tag.

(1) The initial RSSI gap. We notice that there exists an
initial RSSI gap between Tag 1 and Tag 2 although they suffer
from similar reader-tag path loss. Since such phenomenon does
not preserve in the single-tag measurement, we attribute it to
the asymmetric interaction called mutual inductive coupling
between the two adjacent tags, which results from the near-
field electromagnetic induction [14] [15]. Next, we exploit the
structure-aware and asymmetric model introduced by Twins
[14] to explain the initial RSSI gap of the Twin-Tag.

As shown in Fig. 4, the dipole antenna is deemed to be
equivalent to an electric dipole (denoted as a line L) and a
magnetic dipole (denoted as a rectangle .S) in this model [14].
The equal currents induced by the reader on L; and S;,i €
{1,2}, will generate a magnetic field around themselves, and
further mutually change the magnetic flux in S; and Ss:
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Fig. 5. RFID tag Model.

where £ stands for the direction of the flux, ® represents
its absolute value. Due to the symmetry of S; and Ss to the
reader, we assume that the original fluxes (®gs, and ®g,),
and their mutual fluxes (®s,,5, and ®g,_,g,) are identical.
Besides, the fluxes induced by adjacent L; (®.,_.s, and
®,,5,) are also identical. However, the fluxes induced by
farther L; are totally different. According the Ampere’s right-
hand rule and the Biot-Savart Law, they are in the opposite
directions and ®r,,5, > ®r,_.g,. Therefore, according to
the Faraday’s law of electromagnetic induction, the inductive
electromotive force of Tag 1 is smaller than Tag 2, which
explains the initial RSSI gap:

A= 0 (@F, - 9F) = L (@1, s, 4 Br,05) >0 B)
(2) Signal variation during leakage. Since the leaked lig-
uid does not block the reader-tag LOS path, the backscattered
signal variates due to the near-field coupling between the liquid
and the tag’s antenna. We model the liquid with an equivalent
impedance Z(V), where U relates to its volume. Then, the
tag’s input impedance Z, becomes Z,(¥) = %
Denoting the tag’s chip impedance as Zc, now we can note
that the power-reflection coefficient K which represents the

ratio of backscattered power becomes:

Zo — Z5(9) 2

KW) =t =p(WF = 1= 7%

“4)

Along with the increasing of ¥, the impedance matching
relationship Z¢ = Z% (V) no long preserves, and the received
signal at the reader side becomes weaker. We attribute the
slight RSSI rise of a single tag in Stage I (Fig. 2(a)) to the
initial imperfect impedance matching [16].

However, such pattern is too slight to be robustly detected,
which motivates the design of the Twin-Tag: By considering
the mutual coupling during the leakage, we “magnify” the
signal variation in Stage I for early-stage detection. When
the liquid leakage occurs, the mutual inductive coupling gets
weak, and thus AE gradually drops to zero. Therefore in Stage
I, the RSSI value of Tag 1 rises rapidly closer to Tag 2, which
contributes a distinct and detectable signal pattern.
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IV. TWINLEAK OVERVIEW

In this work, we leverage the above characteristics of the
signal and propose TwinLeak, a low-cost system that is able
to instantly and accurately detect liquid leakage using only
the COTS RFID devices. Fig. 6 shows its processing outline,
in which we design two components: fast detection and joint
estimation.

(1) Fast Detection. To achieve real-time detection, Twin-
Leak uses a short time window to collect the RSSI and phase
readings, and identify whether leakage occurs based on the
extract signal features in the current time window. Here we
empirically set the size of the time window as 10s. Once
successive windows are determined as the leakage state (which
means a high probability for leakage), TwinLeak gives an
alarm (Sect. V-A) and extracts corresponding signal segments
for further analyses (Sect. V-B).

(2) Joint Estimation. In addition to the detection of
leakage, some other fine-grained information, such as the
probability of leakage, the leakage rate, and the leakage
volume are also the concerns of the industrial fields. To address
this problem, TwinLeak tracks the progress of leakage by
matching the extracted signal segments with priori templates.
Specifically, we introduce a model-guided leakage tracking
algorithm that performs fast signal matching, and at the same
time tolerates local jitters while preserving signal variation
patterns induced by the leakage (Sect. VI-A). The matching
method provides two information: i) the distance between the
extracted signal segments and the priori templates, which can
be used for leakage probability estimation; ii) the progress of
the leakage process, which can be used for leakage rate and
volume estimation (Sect. VI-B).

V. FAST DETECTION

The gap feature introduced in Sect. III-B gives us an
opportunity to trigger an alarm for the leakage event in the
early stage. We call this component fast detection, which
is done in two steps: state identification and leakage signal
extraction.

A. State identification

The target of state identification is to mark the signal in
each window with a certain state: normal state, disturbed state,
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or leakage state, where the disturbed state means the signal
variation that caused by confounding events. The intuition
behind our state identification method is the signal pattern
of leakage state, which is the superimposition of the mutual
inductive coupling between tags and the impedance changing
caused by the leaked liquid, is distinct from the other states.
Therefore, we first extract the features that can distinguish
different states of each time window, and then identify the
state based on those features.

Fig. 7 shows a set of selected features. As shown in the
figure, except from the gap feature, other statistic features
and trend features are considered for both the signal of each
individual tag and the differential signal of the two tags for
accurate classification. Fig. 8 further visualizes the clustering
of the extracted features with t-SNE (t-distributed Stochastic
Neighbor Embedding). The visualization clearly demonstrates
the distinguishability of the leakage state, indicating the effi-
ciency of the classification. In addition, we find that signals
from Stage I and Stage Il can also be well distinguished
from each other due to their different signal patterns. After
extracting the features, TwinLeak identifies the state of each
window using a pre-trained decision tree.

However, the occasional anomalies in Fig 8 tell that we
cannot directly trigger an alarm for the leakage once one
window of leakage state is detected. In practical, we identify
a leakage event in the early stage by detecting k£ successive
windows of leakage state - Stage I to reduce the false alarms.
We empirically set £ = 2 to achieve a trade-off between the
early-stage detection delay and the false positive rate.

B. Leakage Signal Extraction

Now we have detected the leakage, the next target of
TwinLeak is to extract the signal segment that contains a
complete leakage process for further analysis. This is however
a challenging problem because we have to identify the starting
and the ending points accurately, or the subsequent jointly
estimation process will be error-prone. A naive method is to
exploit the result of the state identification process — simply
identifying the first leakage-state window as the start point
and the last one as the end point. However, this turns out to
be brittle because the identification of each individual window
is not precise enough. To address this problem, we propose a
two-step leakage signal extraction method, which first provides
a coarse segmentation result based on the state identification



results, and then localize the exact starting and ending points
on the coarse segment, providing a refined segmentation result.

Step 1: Coarse segmentation. In the coarse segmentation
stage, TwinLeak identifies a succession of leakage-state win-
dows and splices the signal contained in these windows to
generate a coarse signal segmentation result. The problem we
meet here is how to tolerate the errors in state identification.
Instead of treating each signal window independently, here we
explore its predecessors and successors to eliminate anomalies.

Specifically, given a sequence of labeled signal windows
{T]-(W)}, we calculate a parameter [ j(-W) for each window
which indicates the ratio of its N contextual windows that
are identified as leakage states:

) 1 J+1 5] )
I = (T, ' is leakage ®)
=i-lz

Then, a succession of m signal windows {Tj(W)}m which

satisfies (i) all ;W) > 0 and (ii) its length m > M is extracted
as a coarse segmentation of leakage signal. We empirically set
N =3 and M = 4 in the implementation of TwinLeak.

Step 2: Refined segmentation. Next, we refine the ex-
tracted leakage signal by identifying the specific starting point
of the leakage event. In Sect. III-B, we observe that the RSSI
/ phase readings remain stable before the leakage or after the
cotton gets saturated. Thus, we can estimate the starting point
by calculating the intersection point of the local linear fit of
normal samples and the local linear fit of leakage samples.

However, since our signal source contains four streams:
RSSI and phase readings of the twin tags (denoted as
R;,P;,i € {1,2}, respectively), separately localizing the
starting point sp[,) for each stream s € .S = {R1,Ra, Py, P>}
is error-prone and ambiguous. We choose a joint estimation
from the result collection sp = {spjy|s € S} that minimizes
the sum of the normalized fitting errors.

VI. JOINT ESTIMATION

As we observed in Sect. III-B, there exist temporal and
spatial relationships among the signal patterns under different
leakage volumes and rates. Therefore, after extracting the
signal segments corresponding to the leakage process, Twin-
Leak then jointly estimates these properties and reconfirms the
early-stage detection.

A. Model-Guided Leakage Tracking

To estimate leakage volume and rate, we should first track
the leakage process. Therefore, a simple and low-overhead
calibration is first performed to get a complete and accurate
signal template of the leakage process. Then we track the
leakage progress by matching the signal segments extracted
fast detection component to the target signal template.

Step 1: Low overhead -calibration Tag calibration is
conducted only once before the deployment of the tags.
During calibration, we manually trigger leakage process on
the Twin-Tag sensors, where the leakage rate is stable, and the
leakage volume is controlled at 20mL. The above process is
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Fig. 9. Model-Guided Leakage Tracking.

repeated for 30 times on different sensors and under different
leakage rate, during which the reader continuously reads the
tag to get the RSSI and phase streams. At last, an nearest-
centroid algorithm called DBA [17] is exploited to generate
the template based on the collected data.

Step 2: Leakage progress estimation TwinLeak tracks
the leakage process using a Dynamic Time Warping (DTW)
based search algorithm. A good overview of DTW algorithm
can be found in [18]. Broadly speaking, DTW compares two
sequence segments, denoted as S, = {S((ll),...,SaL“)} and
Sp = {S,El), vy SIELb)} by warping (i.e., stretching and squeez-
ing) one of the sequences until an optimal match between them
is found. More specifically, the target of DTW algorithm is to
find a matching function f); between S, and Sy so as to
minimize 377, (Sa[d] — Sy[far (§)])*.

Despite its wide usage, DTW cannot be directly applied
to track the leakage process for the following two reasons:
(i) The goal of DTW is to minimize the sequence distance
after arbitrary warping, however when matching two leakage
signals, the warping should be relatively “steady” rather than
“arbitrary”, due to the relatively stable leakage rate. (ii) The
leakage process may be stopped before the cotton is saturated,
thus incomplete sequence matching should be considered.
Therefore, to address the above problems, TwinLeak proposes
a model-guided DTW progress tracking method. As shown in
Fig. 9, in this method, we constrain the DTW matching path
with 2 parameters « and 3, where:

o « guides the direction of searching: since commonly the
leakage rate is relatively stable, o — the ratio of the
leakage rate of the two leakage signals is relatively stable.

e 3 bounds the step length of searching: such step-
constrained DTW can somehow avoid arbitrary warping
and tolerate local jitters.

o Together with o and 3, the spatial truncation of “unsat-
urated” signal can also be achieved in advance to avoid
unexpected errors.

We formulate these limitations with the following:

|far(iv) —dal = [[a-dp| —ia| < B (6)

The above limitations on the DTW matching path are



derived by the leakage signal model observed and analyzed
in Sect. III, thus we call it model-guided DTW matching. We
note that the value of « can be roughly estimated by comparing
the length ratio of leakage-Stage I of two leakage sequences,
and the value of 8 can be derived from the statistics of
training sequences. An example of our model-guided tracking
method is shown in Fig. 9, where the dark blue curve indicates
the optimal DTW matching path M of two leakage signals:
the template sequence (left, 4 drop/s,20mL) and the target
sequence (bottom, 1 drop/s,12mL). We can observe that M
is restricted in a narrow band, whose direction is determined

by a = i and the boundary is determined by g = 5.

B. Property Estimation.

As shown in Fig. 2, the temporal and spatial transformation
of the signal patterns are closely related to the leakage rate
r and volume v respectively. Given the template sequence
Sa and the target sequence Sy, we conclude the critical
observations as (i) 7(Sp) determines its temporal scaling of
the template S, without the shape violation; (ii) v(Sp) does
not scale up or down S, but spatially truncates it by entering
the stable state in advance. Thus, based on these observations,
r(Sp) and v(Sy,) can be estimated by inferring the temporal
scaling factor and spatial truncation ratio.

In TwinLeak, we jointly estimate the probability of the leak-
age event and infer the leakage rate and volume by inspecting
the model-guided leakage tracking process. As shown in Fig.
9, the truncation point t = (,, t;) is detected through inversely
traversing by maximizing the similarity between the truncated
subsequences S, = fiy(Sa[l : t4]) and Sp = fir(Sp[l : ty)).
Then, we can jointly estimate the average matched distance
d(Sb) = 13711 (Sali] — Sbli]), the leakage rate 7(Sp) =
7(Sa) - {* and volume v(Sp) = v(Sa) - 7=. To estimate the
probability of the leakage event, we calculate the probability
that d(Sp) belongs to a pre-derived distribution of the average
matched distances of the training set. This probability could
be further utilized as an reconfirmation of the early-stage
detection made by fast detection component.

VII. IMPLEMENTATION AND EVALUATION

In this section, we first detail the implementation of Twin-
Leak (Sect. VII-A) and then introduce the evaluation settings
and the metrics (Sect. VII-B). The experiment results of some
critical micro-benchmarks and the detection precision is shown
in the subsequent subsections.

A. Implementation

The implementation of TwinLeak mainly consists of the
hardware part and the software part. First, we handcraft
dozens of the Twin-Tag. Two important parameters of the
Twin-Tag are: (1) the size of the absorbent cotton is around
10cm x 2em x 0.4em, which can absorb about 20mL liquid
before getting saturated; (2) the distance between the twin
tags is around 1mm, which can result in about 5d B RSSI gap.
Apart from the sensor, an ImpinJ Speedway R420 RFID reader
with a Laird circular polarized antenna is deployed to provide

Fig. 10. Real-World Deployment of TwinLeak.

continuous waves and receive the backscattered signals from
Twin-Tag. Fig. 10 demonstrates the real-world deployment of
TwinLeak in our industrial IoT project Pavatar for the power
industry [19].

The software part has 3 main components: (1) a Websocket
data provider (implemented in Java) that continuously acquires
RSSI and phase readings through ImpinJ’s API; (2) an offline
trainer (implemented in MATLAB) that generates the gen-
eral signal templates; (3) an online detector (implemented in
Python) performs the liquid detection task with the processing
components described in Sect. V and VI.

B. Methodologies and Settings

Our evaluation mainly focuses on the problem of detecting
whether the leakage event occurs or not in given signal
sequences. TPR (True Positive Rate) evaluates the capability
of TwinLeak to recognize the leakage event, and FPR (False
Positive Rate) evaluates the frequency of false alarm under the
multi-path interferences. We also focus on the impacts of the
critical properties (e.g. rate and volume) of the leakage event
on the detection accuracy.

The data for training the state identifier and extracting the
signal template is collected in various scenarios, e.g. different
leakage rates and volumes as well as unrestricted reader-
tag distances. The signals disturbed by the external multi-
path interferences are also utilized for the offline classifier
training. Furthermore, we separately collect an evaluation
dataset, in which the leakage rates (1,4, 8drop/s) and volumes
(10,15,20mL) are the main variables, and reader-tag distance
is fixed to 60cm since we measure that such distance won’t
change the signal pattern in Sect. III-B. We collect 10 samples
for each combination of these two parameters.

C. Micro-benchmarks

First, we evaluate some micro-benchmarks of the core
components in TwinLeak.

(1) State Identification. As the first step of TwinLeak,
state identification gives the system a preliminary view of the
signal state. Fig. 11(a) plots the classification confusion matrix.
We can observe that, although we only use a simple but fast
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Fig. 11. The evaluation of State Identification.
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Fig. 12. The evaluation of Coarse Segmentation.

decision-tree classifier, three signal states can be well distin-
guished from each other due to the good patterns provided by
Twin-Tag. Although “inner” misclassification of Stage I and I1
of the leakage state is relative high, the TPR of overall leakage
state reaches 98.7%. Moreover, the false alarm induced by the
interferences is acceptable although it might be misclassified
as the normal state. Since state identification adopts a fixed
time-window of length 10s for feature extraction, we evaluates
the impact of the rate of the signal variation by controlling
the leakage rates. Fig. 11(b) shows that the FPR and TPR are
almost unaffected by the leakage rate, which mainly results
from the good generalizability of Twin-Tag’s signal patterns.

(2) Leakage Signal Extraction. The two-step signal ex-
traction method, which extracts the signals during the leakage
events from coarse to refined, is a critical pre-processing
further false-alarm refusal and property estimation.

We denote the true positive of coarse segmentation as
the result that it generates a good proposal containing an
ground truth leakage signal. We can tell from Fig. 12 that an
incomplete coarse segmentation is more likely to be proposed
due to the misclassification of data slices during the time when
the signal variation is relatively gentle. e.g. 7 = 1 drop/s. We
will address later that these incomplete segmentations won’t
affect the final classification but might degrade the property
estimation.

Besides, we measure the relative errors of refined segmenta-
tion on those good sequences proposed by the last step. Fig. 13
shows that low relative errors (the absolute localization errors
divided by the total length) around 1.5% can be obtained by
the algorithm. The rate of signal variation mainly affects the
performance, because the deviations get more distinct if the
signals vary more sharply.

(a) Local. Error (v = 10mL) (b) Local. Error (v = 20mL)

Fig. 13. The evaluation of Refined Segmentation.

Leakage Volume = 20mL
100.00%

Leakage Volume = 10mL
100.00%

100.00% 100.00% 100.00% 100.00%

TPR/FPR
TPR/FPR

Leakage Rate (drop/s)
(a) Temp. Match. Acc. (v = 10mL) (b) Temp. Match. Acc. (v = 20mL)

Leakage Rate (drop/s)

Fig. 14. The evaluation of Model-Guided Leakage Tracking.

D. Leakage Detection

Second, we evaluate the main task of the leakage detection
by examining the final detection accuracy and the prediction
errors of property estimation.

(1) Detection Precision. We match all the segmented testing
data (3 x 3 x 10 = 90 samples), provided by our fast
detection module, to the pre-learned signal template with
the proposed model-guided leakage tracking algorithm. The
average matched distance d is derived from the matching
process, which solely acts as the final indicator for the bi-
nary classification. Fig. 14 demonstrates that TwinLeak can
achieve a relatively high TPR and low FPR regardless of the
leakage rates and volumes. Although the segmentation might
be incomplete, the optimal average matched distance along
the restricted searching band can well describe the similarity
between the template and the target sequences.

(2) Estimation Error rate. Then, given the leakage rate
r# = 4 drop/s and volume vy = 20mL (Saturated) of
the template, we evaluate the prediction error of the leakage
rate and volume. As shown in Fig. 15, we can tell the
absolute prediction errors for both of the leakage rate and
volume are very small and not sensitive to the changes of the
other property. Moreover, we calculate the average relative
prediction error as €, = 14.7% and &, = 15.3%.

E. Application-Driven Metrics

(1) Timeliness V.S. Accuracy. To satisfy the timeliness
requirement, TwinLeak can directly raise an alarm when k&
successive windows are determined as the leakage state -
Stage I (denoted as TwinLeak-Fast). Compared to the full pro-
cedure of TwinLeak (denoted as TwinLeak-Full), TwinLeak-
Fast can improve much timeliness but might sacrifice some
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performance. Fig. 16(a) shows the trade-off between timeliness
and accuracy. We can see that the slower the leakage process,
the greater the gain of TwinLeak-Fast (e.g. about 8.5X when
r = 1drop/s). We find that TwinLeak can make early leakage
alarms when only about 4.6m /L liquid leaks in average.

(2) Multi-Point Surveillance. Another critical application-
driven evaluation is the capability of monitoring multiple
potential leakage points, e.g. numerous and dense flanges
shown in Fig 1. It is known that the interrogation frequency
of a RFID tag will degrade as the increase of the number
of its densely-deployed neighboring tags due to the channel
collision [20]. However, TwinLeak are competent for the
multi-point surveillance task, because its tendency features are
very resilient to the degradation of the interrogation frequency.
As shown in Fig. 16(b), TwinLeak can achieve an overall
TPR higher than 97.2% and an overall FPR lower than
0.5%, and the performance has barely declined, even in the
case of very intensive deployments (18 Twin-Tags, ~ 3X
lower interrogation frequency). We further simulate a stronger
degradation in the interrogation frequency by random down-
sampling and find that when it declines more than 100X our
starts to become unavailable.

VIII. CONCLUSION

In this work we present TwinLeak for real-time and accurate
leakage detection using COTS RFID tags and readers. A key
innovation is to detect leakage and estimate leakage rate and
volume based on the changes in the strength of coupling effect
between tags. TwinLeak achieves a TPR higher than 97.2%
and keeps the FPR below 0.5%, with the early alarms after
only about 4.6mL liquid leaks, providing the necessary pre-
cision and delay for many applications. Moreover, TwinLeak
can simultaneously estimate the leakage properties e.g. rate
and volume, and keep the relative prediction error around
10%. TwinLeak not only has been tested and used in practical
applications, but also will open up a wide range of exciting
research opportunities.
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