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ABSTRACT
Wireless sensing has great significance in Internet of Things (IoT)
applications and has attracted substantial research interests in
academia. In this study, we propose Palantir, a first-of-its-kind
long-range sensing system based on the LoRa backscatter technol-
ogy. By utilizing the ON-OFF-Keying modulated backscatter signals,
Palantir can perform fine-grained long-range cyclist sensing. Our
findings show that sensing is more susceptible to channel quality
than communication. Hence, the design of Palantir particularly
addresses the critical challenges of signal processing, such as ampli-
tude instability, frequency offset, clock drift, spectrum leakage, and
multiplicative noise. We implement Palantir and evaluate its per-
formance by conducting comprehensive benchmark experiments.
A prototype is also built and a case study of respiration monitoring
in the real world is implemented. Results demonstrate that Palantir
can perform accurate sensing at a range up to 100 m, which is twice
that of state-of-the-art approaches. The median deviation of the
detected motion period is as low as 0.2%.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Networks → Cyber-physical net-
works.
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1 INTRODUCTION
Wireless sensing, which acquires the information of a target by
collecting and analyzing wireless signals, is a key enabling technol-
ogy for ubiquitous Internet of Things (IoT) applications. As more
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Figure 1: The sketch of cyclist sensing with Palantir.

and more wireless devices are being deployed, knowing how to
sufficiently exploit the wireless channels for various sensing pur-
poses has become a crucial and significant problem. In the past
decade, we have witnessed a large body of studies on wireless
sensing. The wireless technologies for sensing range from acoustic
[12, 29, 37], RFID [6, 34, 35, 42, 45] and WiFi [26, 27, 39, 43, 46] to
LoRa [3, 41, 48] and mmWave [13], while the sensing capabilities
extensively cover motion and activity sensing [6, 19, 28], mobility
measurement [42, 45], environmental sensing [35], and material
sensing [47], etc.

The aim of our work is to create a new sensing technology for
cyclists in the public bicycle sharing systems. Such bicycles are
widely used in many countries nowadays. Many of such bicycles
are equipped with a long range communication module (e.g. a LoRa
transmitter) [5] so that their location data can be uploaded. But
how to sense the cyclists’ condition, such as the respiration and
motions, is still a missing piece in the system.

The sensing technology we invent utilizes the LoRa communi-
cation that already exists as the excitation carrier and attaches a
simple backscatter tag as the sensor for cyclist sensing, as shown in
Figure 1. Such technology is attractive due to the following multi-
fold advantages:

First, the sensing range is longer than traditional wireless sensing
technologies [12, 35, 39] owing to the long communication range of
LoRa. Therefore our proposal can be deployed for outdoor mobile
applications.

Second, the sensing cost in terms of hardware and energy is
extremely low. What we need to deploy incrementally is merely a
backscatter tag. Compared with other options, such as wearable
devices (e.g., wristbands) connected with a smartphone [23, 32],
our proposal is much more affordable and easy to use.

Third, our proposal utilizes the ambient LoRa transmitter that
already exists on the bicycle as the excitation source. Compared
to the traditional backscatter technologies that rely on a special
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excitation source to function [14], our proposal makes it possible
to sense the cyclist on the ride everywhere.

Last but not least, the utilization of the ON-OFF-Keying (OOK)
modulated backscatter channel potentially provides fine-grained
channel parameters for sensing. Compared with the existing works
on LoRa sensing [41, 48], our proposal is most robust against self-
interference, channel noise, and the influence of mobility.

To put this idea into practice, however, there is a crucial chal-
lenge: sensing is more susceptible than communication with regard
to the channel quality. An error or noise in the signal, which is
usually tolerable in terms of communication, is very likely to hurt
the accuracy of the sensing result. Due to the influence of hard-
ware imperfection and complex channel noise, a LoRa backscatter
channel in reality falls short of the quality of supporting accurate
sensing. In addition, we believe this problem exists not only in LoRa
backscatter based sensing but commonly in the combinations of
various wireless technologies and their corresponding backscatter
systems.

How to retain the accuracy of sensing in the face of the above
challenge? In this work, we present Palantir1, a LoRa backscat-
ter based system for cyclist sensing. Palantir includes a complete
signal processing flow to extract high-quality data from the dis-
torted backscatter signals. Specifically, in view of the hardware
imperfection, we carefully design a signal shaping method to adjust
the signal amplitude and phase and solve the distortion problem
caused by spectrum leakage. To deal with complex channel noise,
we present an improved clustering algorithm by exploiting the char-
acteristics of additive noise and multiplicative noise. In this way, we
can significantly enhance the quality of the backscatter signals and,
in turn, increase the sensing range to 100 m. Moreover, we imple-
ment Palantir and carry out a case study of respiration monitoring
of cyclists to demonstrate the functionalities and effectiveness of
Palantir.

To summarize, this paper makes the following contributions:

• We present Palantir, a first-of-its-kind long-range sensing
system based on the LoRa backscatter. Palantir extends the
sensing range to 100 m, which is twice that of the state-of-
the-art LoRa sensing approaches. Palantir can be applied
to both stationary and mobile scenarios, thus creating new
opportunities for wireless sensing applications.

• We design a complete signal processing flow to particularly
deal with multiple challenging problems that are coupled
with each other, such as amplitude instability, frequency
offset, clock drift, spectrum leakage, and multiplicative noise.
Signal quality passing the signal processing flow can meet
the high requirements of sensing.

• We evaluate the performance of Palantir by performing
comprehensive benchmark experiments. We also build a pro-
totype and conduct a case study of respiration monitoring
in the real world. The results demonstrate that Palantir per-
forms accurate sensing at the range of 100 m with a median
deviation of motion period to as low as 0.2%.

1Palantír is a fictional magical artifact from Tolkien’s Middle-earth legendarium. A
palantír was an indestructible ball of crystal, used for communication and to see events
in other parts of the world.
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Figure 2: The LoRa demodulation scheme.
Roadmap. The remainder of this paper is organized as follows. In
Section 2, we present the communication model and the sensing
model, followed by the explanation of the challenges of sensing by
using the LoRa backscatter signals. Section 3 presents the design
of Palantir. We evaluate the performance of Palantir in Section 4.
Section 5 discusses the limitations and potential applications of our
proposal. Section 6 surveys related work. We conclude this work in
Section 7.

2 SENSING CHANNEL
In this section, we first introduce the communication model of the
LoRa backscatter, followed by the theoretical sensing model and the
challenges. Our sensing model does not rely on the data modulated
by the backscatter tag. At a high level, the basis of Palantir is
that the movement of the backscatter tag results in the change of
backscatter signal. Thus, the sensing model of Palantir aims to
separate the backscatter signal from the received composite signal.

2.1 Communication Model
We first introduce the standard LoRa modulation and demodulation
process and then describe the LoRa backscatter based on OOK
modulation, which is the basis of our system design.

2.1.1 LoRa primer. LoRa adopts chirp spread spectrum, which en-
ables a long communication range, for modulation. The frequency
of chirps changes linearly over time. The LoRa transmitter modu-
lates data on the initial frequency of the chirps. For demodulation,
the receiver multiplies an incoming LoRa symbol with a down-chirp
and then transforms the multiplication from the time domain to
the frequency domain via fast Fourier transform (FFT), yielding a
peak on a certain FFT bin. The receiver tracks the location of this
peak to demodulate the LoRa symbol accordingly.

We analyze the communication model of LoRa as follows. For
each data chirp in LoRa, the frequency linearly increases from an
initial frequency 𝑓0 to 𝐵𝑊

2 , wraps to −𝐵𝑊
2 and increases back to 𝑓0.

The baseband chirp signal can be represented as:

𝑆 (𝑡) = 𝑒 𝑗2𝜋 (𝑓0𝑡+
1
2𝑘𝑡

2) (1)
where 𝑘 is the frequency change rate. The duration of a single LoRa
chirp 𝑇𝑐ℎ𝑖𝑟𝑝 is determined on the basis of the spreading factor 𝑆𝐹
and bandwidth 𝐵𝑊 :

𝑇𝑐ℎ𝑖𝑟𝑝 =
2𝑆𝐹
𝐵𝑊

(2)

and the frequency change rate 𝑘 can be represented as:

𝑘 =
𝐵𝑊

𝑇𝑐ℎ𝑖𝑟𝑝
=
𝐵𝑊 2

2𝑆𝐹
(3)
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Figure 3: The time-domain signal in the ON and OFF states
are distinguishable.

The LoRa data are modulated by applying different 𝑓0 values
which fall between −𝐵𝑊

2 and 𝐵𝑊
2 .

The LoRa demodulation scheme is shown in Figure 2. To demod-
ulate the receiving signal, the receiver first multiplies an incoming
chirp with a down-chirp whose frequency decreases from 𝐵𝑊

2 to
−𝐵𝑊

2 . A down-chirp can be represented as:

𝑆𝑑𝑜𝑤𝑛 (𝑡) = 𝑒 𝑗2𝜋 (
𝐵𝑊
2 𝑡− 1

2𝑘𝑡
2) (4)

After the multiplication, the chirp signal is transformed to a
sine wave whose frequency is 𝑓0 + 𝐵𝑊

2 . During demodulation, the
receiver applies FFT to this sine wave and tracks the location of the
peak on the FFT bin.

In our design, we utilize the standard LoRa demodulation scheme
to obtain the start time of the packets and the start frequency 𝑓0 of
the chirps. The specific signal model of the LoRa baseband will be
further leveraged in our signal processing scheme, which we will
explain later.

2.1.2 OOK-based LoRa backscatter. The OOK-based backscatter
takes ambient signals as the carrier signal and modulates its data
via OOK modulation. In the ON state, the tag reflects the received
carrier signal; in the OFF state, the tag absorbs the received carrier
signal. As shown in Figure 3, the backscatter signal and the direct
path signal form the composite signal at the receiver, and the ON
and the OFF states are distinguishable in the time domain. Some
existing works, such as Aloba [10], have designed a backscatter
proposal to modulate the data on the LoRa chirps using OOK.

To demodulate the OOK signal, we can replace the down-chirp
in the standard LoRa demodulation scheme with a conjugate chirp2,
yielding a constant sinusoidal tone. Given the initial frequency 𝑓0
of the incoming chirp, the conjugate chirp is represented as:

𝑆 ′(𝑡) = 𝑒 𝑗2𝜋 ( (𝑓𝑠𝑖𝑛−𝑓0)𝑡−
1
2𝑘𝑡

2) (5)
Multiplied with the conjugate chirp, the received chirp will be

transformed to:
𝑆 (𝑡)𝑆 ′(𝑡) = 𝑒 𝑗2𝜋 𝑓𝑠𝑖𝑛𝑡 (6)

With the knowledge of the boundary time and initial frequency
of each chirp, we can eliminate the phase jumping of the sinusoidal
tone at the boundary of each chirp and the phase jumping caused
by frequency wrapping within the LoRa chirp. Then, the ON and
the OFF states can be distinguished by tracking the phase jumping
residual in the sinusoidal tone.
2The LoRa chirp and its conjugate chirp are symmetric to each other with respect to
the reflection off the X-axis.
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Figure 4: The sensingmodel based on the interference of car-
rier signal and backscatter signal.

In this work, we have been inspired to utilize the LoRa backscat-
ter for sensing. The ON state of OOK represents the composite of
the direct path signal and the backscatter signal, whereas the OFF
state only represents the direct path signal. The OFF state acts as a
reference helping to filter out the backscatter signal, which we will
explain later.

2.2 Theoretical Sensing Model
In this section, we introduce the theoretical sensing model with
the OOK-modulated backscatter. The significance of OOK is that
the ON and the OFF states can help to determine the presence or
absence of backscatter signals. In previous sensing works, the signal
reflected by the target is composited with the line-of-sight signal
and other multi-path signals. Thus, multiple antennas are needed
to extract the target signal [48]. By contrast, in our proposal, the
OFF state acts as a reference. The signal reflected by the backscatter
tag can be extracted by subtracting the signal in the ON and the
OFF states. This scheme indicates that the backscatter signal can be
extracted from the time-domain signal received by a single antenna.

The superposition of the received signal is shown in Figure 4(a).
The Direct path signal refers to the sub-1 GHz carrier modulated
by the LoRa baseband signal, in which the carrier sine wave is
referred to as the LoRa carrier. The backscatter signal only exists
when the backscatter tag is in the ON state, and it is a time-delay
version of the direct path signal with an amplitude attenuation. The
backscatter tag acts as a virtual transmitter. Therefore, the received
signal consists of two interfering signals. The direct path signal can
be represented as:

𝑆𝑑𝑠 (𝑡) = 𝐴𝑑𝑠𝑒
𝑗2𝜋 𝑓𝑙𝑐𝑡𝑒 𝑗2𝜋 (𝑓0𝑡+

1
2𝑘𝑡

2) (7)

where 𝐴𝑑𝑠 and 𝑓𝑙𝑐 are the amplitude of direct path signal and the
frequency of the LoRa carrier, respectively. The backscatter signal
can be represented as:

𝑆𝑏𝑠 (𝑡) = 𝐴𝑏𝑠𝑒
𝑗2𝜋 𝑓𝑙𝑐 (𝑡−𝑑

𝑐
)𝑒 𝑗2𝜋 (𝑓0 (𝑡−

𝑑
𝑐
)+ 1

2𝑘 (𝑡−
𝑑
𝑐
)2) (8)

where 𝐴𝑏𝑠 and 𝑐 are the amplitude of the backscatter signal and
the speed of light, respectively. 𝑑 represents the difference between
the propagation distance of the backscatter signal and that of the
direct path signal.

When the backscatter is in the ON state, the received signal is
the superposition of 𝑆𝑑𝑠 and 𝑆𝑏𝑠 and can be represented as:

𝑆𝑐𝑠 = 𝑆𝑑𝑠 + 𝑆𝑏𝑠 (9)
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The phase difference of the backscatter signal and the direct path
signal can be further represented as:

𝜃 = 2𝜋 𝑓𝑙𝑐
𝑑

𝑐
+ 2𝜋 (𝑓0

𝑑

𝑐
+ 𝑘𝑡 𝑑

𝑐
− 1
2𝑘 (

𝑑

𝑐
)2) (10)

As the LoRa carrier frequency is orders of magnitude larger than
the baseband bandwidth, 𝜃 can be approximated as:

𝜃 ≈ 2𝜋 𝑓𝑙𝑐
𝑑

𝑐
(11)

When the tag moves relative to the transmitter, the difference of
propagation distance (𝑑) also changes. The tag’s movement can be
determined by calculating the phase difference between the direct
path signal 𝑆𝑑𝑠 and the backscatter signal 𝑆𝑏𝑠 . Nonetheless, the
absolute propagation distance of the backscatter signal is difficult
to calculate because 𝜃 is wrapped into [0, 2𝜋). Fortunately, as long
as the tag movement is small between adjacent time windows, we
can track the movement of the backscatter tag without ambiguity.

The received signal cannot be used to directly derive 𝑑 because
the signals in the ON and the OFF states never share the same
time 𝑡 in Eq. 7 and Eq. 8. Only if they are transformed into stable
signals over time can we accurately calculate the phase difference
𝜃 between the backscatter signal and the direct path signal.

In general, the carrier composition 𝑒 𝑗2𝜋 𝑓𝑙𝑐𝑡 can be removed by
the hardware by performing a carrier demodulation. If the LoRa
baseband can be further removed, then the stable signal that fits the
theoretical model can be derived, as shown in Figure 4(b). However,
simply removing the baseband signal is insufficient for sensing. The
hardware imperfections and the complex channel noise still remain
unresolved, which we will discuss in the following section.
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Figure 7: Spectrum leakage in frequency and time domain.

2.3 Challenges of Sensing
In this section, we introduce the specific challenges when utilizing
communication signals for sensing in mobile scenarios.

Theoretically, we can remove the LoRa baseband via conjugate
multiplication. As represented by Eq. 5, a conjugate chirp trans-
forms the incoming chirp into a constant sinusoidal tone. With
𝑓𝑠𝑖𝑛 = 0, the sinusoidal tone can be transformed into a constant
signal in the time domain. However, sensing is more susceptible to
the channel quality compared with communication. Many factors
with a negligible impact on communication can seriously hinder
sensing. These factors are the main challenges of sensing, and they
can be divided into two categories, namely hardware imperfections
and complex channel noise.

Hardware imperfections exist widely between each pair of trans-
mitters and receivers.We further divide the imperfections into three
specific challenges according to the impact, namely amplitude in-
stability, offset and drift, and spectrum leakage. Channel noise is
listed separately because we have observed obvious multiplicative
noise in the micro-benchmark experiment. The specific challenges
can be described as follows:

1) Amplitude Instability.Although amplitude is not involved
in the LoRa modulation scheme, we cannot assume its stabil-
ity in advance. In the micro-benchmark, the amplitude of the
LoRa signal transmitted by a commercial device manifests a
visible instability, as shown in Figure 5(a). Figure 5(b) shows
the samples in an I-Q coordinate system. The backscatter
signal submerges in amplitude instability.

2) Offset and Drift. Due to hardware imperfections, carrier
frequency offset (CFO) and clock drift (CD) always manifest
between the transmitter and the receiver. Besides, as the
sampling process is discrete, the sample time offset (STO)
also has an unpredictable impact on the baseband removal
scheme. These offset and drift introduce phase changes over
time, which must be resolved to obtain stable signal vectors.

3) Spectrum Leakage. Spectrum leakage is a common phe-
nomenon in wireless communication.In the case of LoRa,
spectrum leakage is especially serious when the chirp fre-
quency jumps, as shown in Figure 7(a). In the time domain,
spectrum leakage corresponds to a series of unpredictable
signal phases that covers hundreds of samples in the micro-
benchmark. As shown in Figure 7(b), a spectrum leakage
results in a phase jump after conjugate multiplication.

4) Multiplicative Noise. In the micro-benchmark, the sam-
ples in the I-Q domain form an arc after baseband removal,
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as shown in Figure 6(a). The presence of an arc cluster indi-
cates that the signal suffers from multiplicative noise instead
of additive noise, as the additive noise forms a circular clus-
ter in Figure 6(b). Multiplicative noise is mainly observed
because the backscatter tag is close to the transmitter an-
tenna in our scenario. Due to the multiplicative noise, the
clustering algorithm based on the Euclidean distance in the
I-Q coordinate system is no longer suitable.

All of the aforementioned issues must be carefully resolved be-
fore the theoretical sensing model can be used in reality. Unfor-
tunately, the issues are coupled. The phase distortion caused by
the spectrum leakage results in a discontinuous signal in the time
domain, which further increases the difficulty of solving the other is-
sues. Consequently, we design a complete signal processing scheme
to solve the issues.

3 SYSTEM DESIGN
In this section, we introduce the system design of Palantir, as shown
in Figure 8. The goal of our design is to transform the received
signal into stable signal vectors in the I-Q domain, and calculate the
phase difference between the vectors of the direct path signal and
the backscatter signal. The design of Palantir is divided into four
parts: LoRa preprocessing, signal shaping, clustering, and sensing.
The received LoRa signal is demodulated in LoRa preprocessing
to generate the initial frequency and the start time of each chirp.
Then, the amplitude and phase of the signal are stabilized over time
in the signal shaping module. The clustering module clusters those
stable signal samples into complex-value clusters whose centers
represent the vectors of the direct path signal and the composite
signal. With those vectors, the phase difference can be derived, and
the movement of the tag can be tracked by the sensing module.

3.1 LoRa Preprocessing
The first step to be implemented after the signal arrives at the
receiver is LoRa preprocessing. The LoRa packet is detected and
demodulated with a standard LoRa demodulation scheme. Notably,
the backscatter signal is orders-of-magnitudeweaker than the direct
path signal due to the signal attenuation and the insertion loss. This
condition allows us to leverage the capture effect and subsequently
detect and demodulate the LoRa packet from the direct path signal.
This module acts as a necessary preprocessing module, outputting
the initial frequency and the start time of each LoRa chirp.

3.2 Signal Shaping
The second step is conducted to transform the received time-domain
chirp signal into stable signal samples for clustering. With the aim
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of fitting the model presented in Section 2.2, the samples should
be stable in terms of both phase and amplitude, except for the
impact of the noise and the state change of backscatter signal. The
phase of the received signal changes over time mainly because of
LoRa baseband modulation, while the amplitude changes due to the
realistic hardware design. As these two reasons are independent
from each other, we can separately process the phase and amplitude
of the chirp signal.

3.2.1 Amplitude shaping. This module resolves the challenge of
Amplitude Instability. Amplitude instability impedes the task of
distinguishing the clusters representing the ON and the OFF states.
Multiple factors lead to amplitude instability, as shown in Figure 9.
The first factor is the low-frequency component introduced by the
hardware design of the transmitter. The LoRa standard puts no limit
on the stability of the signal amplitude, which allows the commer-
cial device to choose its own method of operation. By contrast, the
chirp signals generated by the universal software radio peripheral
(USRP) have a relatively stable amplitude. The second factor is the
sudden fall of the amplitude. This condition is a combined result of
the CFO and frequency wrapping. Frequency wrapping from 𝐵𝑊

2
to −𝐵𝑊

2 manifests in each LoRa chirp. Due to the CFO, a part of the
highest (or lowest) frequency of the transmitted signal falls beyond
the bandwidth of the receiver. As observed in the previous work
[25], this condition will result in a sudden fall in amplitude.

In this module, we concentrate on the low-frequency component
of the amplitude. The frequency wrapping will be resolved in a
later module because it also introduces sever spectrum leakage. It
is observed that a high-pass filter distorts the state change of the
backscatter signal. Hence, we apply a low-pass filter to derive the
amplitude envelope and subtract it from the signal amplitude.

Summary 1: The step of amplitude shaping leverages a low-
pass filter to eliminate the amplitude instability caused by hardware
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imperfections. This module inputs the amplitude of the received
baseband signal and outputs the stable amplitude.

3.2.2 LoRa baseband removal. This module removes the LoRa base-
band from the signal phase as resolves the challenge of Offset and
Drift. Unlike the chirp radar system[7], the sensing with Palantir
is based on the carrier signal, which means that the LoRa baseband
should be carefully removed. In particular, the main part of the
LoRa baseband is removed by conjugate demodulation, i.e., multi-
plying the chirp signal with the conjugate chirp. A conjugate chirp
is represented as Eq. 5, in which 𝑓𝑠𝑖𝑛 = 0 and 𝑓0 are calculated in the
LoRa preprocessing module. The phase of the received signal and
the demodulated signal is shown in Figure 10. However, the signal
phase still changes over time after conjugate demodulation. The
reason lies in the three kinds of offset and drift. We first separately
explain the impact of each type and then eliminate them in a unified
manner.

The CFO introduces an extra frequency 𝑓𝐶𝐹𝑂 . The phase of the
received signal with CFO can be represented as:

𝜑𝐶𝐹𝑂 (𝑡) = 2𝜋 ((𝑓0 + 𝑓𝐶𝐹𝑂 )𝑡 +
1
2𝑘𝑡

2) (12)

We can reasonably assume that the CFO remains the same in
a single packet. In general, the CFO will not seriously affect the
standard LoRa demodulation. The frequency difference between
the neighboring FFT bins is given by:

Δ𝑓𝑏𝑖𝑛 =
𝐵𝑊

2𝑆𝐹
(13)

where SF is the spreading factor. This means that a CFO between
−Δ𝑓𝑏𝑖𝑛

2 and Δ𝑓𝑏𝑖𝑛
2 does not change the position of the peak in the

FFT bins, and the demodulation results remain correct. For those
CFOs with a larger absolute value than Δ𝑓𝑏𝑖𝑛

2 , each chirp in the same
packet has the same offset in the peak of the FFT bin. By aligning the
peak of the LoRa preamble, the LoRa can still demodulate correctly
while neglecting the small CFO. However, the small CFO must be
eliminated because a phase-constant signal is needed.

The STO introduces a short time offset Δ𝑡 in the received signal.
Representing the sample rate as 𝐹𝑠 , Δ𝑡 falls between − 1

2𝐹𝑠 and
1
2𝐹𝑠 . As the frequency of the chirp signal changes linearly, the
STO introduces a frequency offset 𝑘Δ𝑡 , which has a much smaller
absolute value than Δ𝑓𝑏𝑖𝑛

2 . Although the STO will not offset the
FFT peak, its impact on the phase is maintained after conjugate
demodulation. The phase of the received signal with STO can be
represented as:

𝜑𝑆𝑇𝑂 (𝑡) = 2𝜋 (𝑓0 (𝑡 + Δ𝑡) + 1
2𝑘 (𝑡 + Δ𝑡)2) (14)

Notably, unlike CFO, the STO will introduce a phase jump with
the change of 𝑓0 even if the STO is consistent in a single packet.
These phase jumps are predictable because we know exactly the
change pattern of 𝑓0. However, the change of 𝑓0 is accompanied by
spectrum leakage. Thus, we concentrate on the continuous part of
the STO in this section and discuss the phase jumps later.

The CD results in a scale factor𝑚 on the independent variable
𝑡 . Taking CD into account, the phase of the received signal can be
represented as:
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Figure 10: Phase of the received signal and the demodulated
signal. The CFO is the main part of the demodulated signal
phase accumulating between chirps, but other factors exist.

𝜑𝐶𝐷 (𝑡) = 2𝜋 (𝑓0𝑚𝑡 + 1
2𝑘 (𝑚𝑡)2) (15)

The CFO, STO or CD does not independently affect the received
signal, but they influence each other and eventually change the
phase of the received signal to the following:

𝜑𝑏𝑎𝑠𝑒𝑏𝑎𝑛𝑑 (𝑡) = 2𝜋 ((𝑓0 + 𝑓𝐶𝐹𝑂 )𝑚(𝑡 + Δ𝑡) + 1
2𝑘 (𝑚(𝑡 + Δ𝑡))2) (16)

After conjugate demodulation, the remaining phase caused by
these three kinds of offset and drift takes the form of a quadratic
polynomial that can be represented as:

Δ𝜑𝑏𝑎𝑠𝑒𝑏𝑎𝑛𝑑 (𝑡) = 2𝜋 (𝑎0𝑡2 + 𝑎1𝑡 + 𝑎2)

𝑎0 =
1
2𝑘 (𝑚

2 − 1)

𝑎1 = 𝑓0 (𝑚 − 1) + 𝑓𝐶𝐹𝑂𝑚 + 1
2𝑘𝑚

2Δ𝑡

𝑎2 = (𝑓0 + 𝑓𝐶𝐹𝑂 )𝑚Δ𝑡 + 1
2𝑘𝑚

2Δ𝑡2 (17)

With the constant parameters 𝑎0, 𝑎1, and 𝑎2, we can remove the
remaining phase change caused by the offset and drift. Unfortu-
nately, due to spectrum leakage, 𝑎2 is distorted to unpredictable
values. Thus, a single packet does not share the same 𝑎2 in its
duration, which means that we cannot calculate 𝑓𝐶𝐹𝑂 , Δ𝑡 , and𝑚
and remove the phase change in the entire packet. However, these
parameters can still be calculated in each continuous part of the
signal phases via curve fitting as long as the value of 𝑓0 is constant.

Summary 2: This module removes the LoRa baseband from the
signal phase and solves the offset and drift problems. We separately
analyze the influence of each kind of offset and drift and model
their joint impact on the signal phase. This module inputs the phase
of the received baseband signal and outputs the stable phases.

3.3 Clustering
Given the previous modules, the received signal can be transformed
into signal samples for clustering. The third step of Palantir is
clustering, including dual clustering and cluster identification. In
particular, we refer to the output of signal shaping as state samples.
When the backscatter signal stays in the same state (ON/OFF), the
state samples are constant in both amplitude and phase except for
the impact of noise.

3.3.1 Dual clustering. Thismodule includesMultiplicationNoise
and presents a clustering method that takes both additive noise
and multiplicative noise into consideration. The clustering method
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Figure 11: The CDF of phase and logarithm of amplitude,
compared with that of normal distribution.
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Figure 12: State samples in I-Q and Logarithm of amplitude-
Phase coordinate systems.

is based on k-means [15], which is a classic clustering algorithm.
As mentioned in Section 2.3, the received signal suffers from mul-
tiplication noise and forms an arc in the I-Q coordinate system,
which means that simply applying k-means is inappropriate. The
clustering method is based on Euclidean distance, which implies
that state samples should form a circular cluster. This situation
occurs in the I-Q coordinate system only when the additive noise
is dominant.

The k-means approach is generally not designed to distinguish
arc clusters withmultiplicative noise.When two clusters are close to
each other, k-means is more likely to cause mistakes in arc clusters
than in circular clusters. The state samples can be represented as:

𝑆𝑠𝑎𝑚𝑝𝑙𝑒 = (𝐴𝐴𝑛𝑜𝑖𝑠𝑒 )𝑒 𝑗2𝜋 (𝜃+𝜃𝑛𝑜𝑖𝑠𝑒 ) (18)

The distortion in the phase of the state samples appears to be
additive and follows a normal distribution, and the same situation
is true for the logarithm of amplitude, as shown in Figure 11. Hence,
the state samples with multiplicative noise form a circular cluster in
the logarithm of the amplitude-phase coordinate system, as shown
in Figure 12.

Palantir performs k-means in both the I-Q coordinate system
and the logarithm of the amplitude-phase coordinate system to deal
with additive noise and multiplicative noise, respectively. Normal-
distributed distortion equally impacts the state samples in each
cluster. Hence, the two clusters generated by k-means should have
similar standard deviations, which can be used to judge the accuracy
of clustering. If the clustering results in both coordinate systems
are accurate, then they vote to decide the result of dual clustering.
This scenario means that some state samples in the transition zone
are abandoned, which is conducive to improving the estimation
of the cluster centers. However, if one of the clustering results is
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which represents an abnormal velocity. In order to compare
Δ𝜃 in (a) and (b), we rotate to align 𝑉𝑑𝑠 .

relatively inaccurate, then either multiplicative noise or additive
noise is dominant. We simply ignore the inaccurate one and output
the better clustering result.

Summary 3: This module focuses on multiplicative noise. By
transferring the state samples from the I-Q coordinate system to
the logarithm of the amplitude-phase coordinate system, we can
transform the arc clusters into circular clusters. Moreover, the dual
clustering scheme takes both additive noise and multiplicative noise
into consideration. The input of this module is the state samples,
and the output is the centers of clusters.

3.3.2 Cluster identification. This module resolves the challenge
of Spectrum Leakage. Although samples in the time domain can
be clustered, it is nontrivial to identify the ON and the OFF states.
Without extra knowledge of encoding, it is impossible to directly
identify which state each of the cluster represents. In this section,
we first prove that as long as the identification is consistent, a
mismatch of the ON and OFF states does not harm the sensing result.
Thereafter, we present a method to guarantee the consistency.

After stabilization, the signal samples can be clustered into
complex-value cluster centers. We use the complex signal vectors
𝑉𝑑𝑠 , 𝑉𝑏𝑠 , and 𝑉𝑐𝑠 to represent the direct path signal, backscatter
signal, and composite signal, respectively. For the sensing task,
knowing exactly which cluster a sample is located is unnecessary.
The focus are the centers of the clusters, as they represent signal
vectors 𝑉𝑑𝑠 and 𝑉𝑐𝑠 . The spectrum leakage introduces a series of
unpredictable signal phases, which breaks an entire packet into
pieces of samples with continuous phases. We refer to these pieces
as maximum sensing units. The backscatter tag is regarded to bemo-
tionless in a single sensing unit. For fine-grained sensing, a smaller
sensing unit can be chosen as long as the backscatter signals in
both the ON and OFF states exist in each unit.
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Hundreds of samples must be abandoned when the frequency
jumps. Even more problematic, the phase jumps because of the
STO when the frequency jumps, as mentioned in Section 3.2.2.
This means that the movement of the backscatter tag cannot be
represented by the phase of the signal vector𝑉𝑏𝑠 . To determine the
tag movement between adjacent sensing units, we calculate the
change in angle between 𝑉𝑑𝑠 and 𝑉𝑏𝑠 , which can be represented as
:

Δ𝜃 = ln 𝑉𝑏𝑠2
𝑉𝑑𝑠2

− ln 𝑉𝑏𝑠1
𝑉𝑑𝑠1

= ln 𝑉𝑏𝑠2
𝑉𝑏𝑠1

𝑉𝑑𝑠1
𝑉𝑑𝑠2

(19)

𝑉𝑑𝑠 and 𝑉𝑐𝑠 does not have an equal role in the sensing model. In
the presence of 𝑉𝑏𝑠 = 𝑉𝑐𝑠 −𝑉𝑑𝑠 , if we mismatch the cluster centers
and the states, then the above equation will turn into:

Δ𝜃 ′ = ln −𝑉𝑏𝑠2
𝑉𝑏𝑠2 +𝑉𝑑𝑠2

− ln −𝑉𝑏𝑠1
𝑉𝑏𝑠1 +𝑉𝑑𝑠1

= ln 𝑉𝑏𝑠2
𝑉𝑏𝑠1

𝑉𝑏𝑠1 +𝑉𝑑𝑠1
𝑉𝑏𝑠2 +𝑉𝑑𝑠2

(20)

Notably, the magnitude of𝑉𝑑𝑠 is orders-of-magnitude larger than
that of 𝑉𝑏𝑠 . We regard 𝑉𝑑𝑠 as a constant among adjacent sensing
units, i.e., Δ𝜃 ≈ Δ𝜃 ′. Therefore, there will be no effect even if we
mistake all 𝑉𝑑𝑠 for 𝑉𝑐𝑠 and all 𝑉𝑐𝑠 for 𝑉𝑏𝑠 at the same time.

In ensuring the consistency of the identification, we can reason-
ably assume that the tag movement between the adjacent sensing
units is small. As shown in Figure 13, an inconsistent identification
causes a large Δ𝜃 between adjacent sensing units, i.e., an abnormal
velocity. Hence, we choose the identification with a smaller Δ𝜃 to
ensure consistency.

Summary 4: This module resolves the last challenge of spec-
trum leakage. We have proven that a global mismatch will not harm
the sensing result as long as the identification is consistent. Con-
sistency is ensured by assuming that the tag movement is small
in a relatively short time. This module takes the cluster centers
as the input, classifies them according to ON and OFF states, and
outputs the phase changes caused by the tag movement between
the adjacent sensing units.

3.4 Sensing
The final step of Palantir is sensing. We have calculated Δ𝜃 between
adjacent sensing units. The change of flying distance of backscatter
signal can be calculated as:

Δ𝑑 =
𝑐Δ𝜃

2𝜋 𝑓𝑙𝑐
(21)

When the tag crosses the line-of-sight path between the trans-
mitter and the receiver, the mirror position may pose a problem [4].

This issue results in an ambiguity in the moving direction, but the
ambiguity can be identified on the basis of the sudden change in the
tag’s speed. Hence, the impact of mirror position can be eliminated.

For certain applications, some optional improvements will still
remain. For example, respiration sensing can attain better results
by applying a band-pass filter. Particularly, in mobile scenarios in
which the transmitter is moving, a high-pass filter may be necessary.
This condition can be attributed to themovements of the transmitter
that change the propagation distance of the direct path signal, which
means 𝑉𝑑𝑠 rotates inherently. As the calculation of Δ𝑑 is based on
the angle between 𝑉𝑑𝑠 and 𝑉𝑏𝑠 , the rotation of 𝑉𝑑𝑠 is passed on to
Δ𝑑 . This restriction hinders complete and accurate tracking with
a moving transmitter but has no influence on frequency sensing,
such as respiration monitoring.

Summary 5: This module is the final step of sensing, trans-
forming the phase changes back into the changes in propagation
distance Δ𝑑 . As the final output of Palantir, Δ𝑑 can be further used
for certain sensing applications.

4 EVALUATION
In this section, we conduct comprehensive experiments to study the
performance of Palantir in various situations. In Section 4.1, we will
introduce the hardware and experimental settings. In Section 4.2,
we will quantitatively evaluate the performance of Palantir by
using a reciprocatingmachine that generates stable and controllable
movements. In Section 4.3, we will measure the respiration of a
volunteer while riding a bicycle.

4.1 Experimental Setup
Our experimental setup is shown in Figure 14. We take a commer-
cial LoRa node (a Semtech SX1276 chip) as our transmitter and a
USRP N210 as the receiver. Both the transmitter and the receiver
are equipped with an omni-directional antenna. The LoRa node
runs at 902 MHz with 𝑆𝐹 = 11 and 𝐵𝑊 = 500 KHz. In general,
𝐵𝑊 and 𝑆𝐹 determine the LoRa communication range but do not
influence the sensing result because the signal strength in the time-
domain does not change with 𝐵𝑊 and 𝑆𝐹 . The USRP is placed at
a fixed position on the road and samples at 1 MHz. A WISP 5.0
is used as the backscatter tag which is powered by a battery. The
energy cost of Palantir is the same as that in Aloba[10], which is
0.3 mW. In the benchmark experiments, a reciprocating machine is
used to generate a controllable periodic motion. Given the size of
the reciprocating machine, it cannot be installed on a bicycle. For
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(a) Sensing result in 10 m.
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(b) Sensing result in 100 m.
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(c) Sensing result with interference.

Figure 15: Sensing result in 10 m, 100 m and under interference.

benchmarking in mobile scenarios, we use a trolley as an alternative.
Palantir senses the motion period and the motion amplitude of the
tag to determine how fast and how deep the breath is, respectively.
We rely on the deviation of the sensed period and amplitude to
evaluate the performance of Palantir.

4.2 Benchmark Experiments
We conduct comprehensive experiments to evaluate the sensing
accuracy of Palantir by using two metrics, i.e., motion period devia-
tion andmotion amplitude deviation. The motion period deviation is
calculated by extracting an effective peak in the sensing result, and
then the time interval between adjacent peaks is treated as a period.
This method results in a higher standard deviation compared with
revolutions per minute (RPM), but the fine-grained sensing quality
is also revealed. As for the motion amplitude deviation, we treat
the peak-to-valley difference in a period as a motion amplitude
sample. Figure 15 shows the sensing result in 10 m and 100 m, and a
case of interference in which a volunteer moves around. The period
is marked with red lines. Palantir performs accurate sensing at a
distance of 10 m. The sensing results have a high accuracy in the
motion period.

4.2.1 Impact of TX-RX distance. We conduct our experiments in
different TX-RX distances to evaluate the sensing range of Palantir.
Figure 16 shows the relative error of the motion period and motion
amplitude when the TX-RX distance is 10 m, 20 m, 30 m, 40 m,
50 m, and 100 m. The motion period deviation when the TX-RX
distance is 10 m has a median of 0.3%, and the ground-truth motion
frequency is 1 Hz. As the distance between TX and RX widens,
the motion period deviation has a larger range, which means that
the sensing accuracy of a single period decreases. The maximum
motion period deviation can reach 5% when the TX-RX distance is
100 m, while the median deviation remains small (−0.2%). However,
the motion amplitude deviation increases with TX-RX distance
from 4.39% at 10 m to 11.65% at 100 m. This trend can be attributed
to the decrease in signal noise ratio (SNR) with a longer propagation
distance due to the signal attenuation. As mentioned in Section 3.3,
in obtaining accurate sensing results, the position of the cluster
center must be carefully detected. A lower SNR may result in a
larger radius of clusters, causing a partial overlap of the different
clusters. This condition can adversely affect the accuracy of the
cluster centers and ultimately lead to a decrease in accuracy of the
motion amplitude. Nevertheless, Palantir can complete the accurate
sensing tasks at a distance of 100 m.
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Figure 16: Impact of TX-RX distance.
4.2.2 Impact of motion amplitude. We conduct our experiments
with different motion amplitudes to evaluate whether Palantir
can be applied to different sensing scenarios. The ground-truth
of motion amplitude is obtained according to the reciprocating ma-
chine’s settings. The statistical results are shown in Figure 17. As
the ground-truth motion distance is shown in X-axis, we plot the
absolute deviation of the motion amplitude instead of the relative
error in Figure 17(b). We select seven different motion amplitudes
between 2 cm and 8 cm. The period deviations are low in all settings,
but they are even slightly lower when the motion amplitude is long.
This finding may be explained by the change in amplitude which is
steeper with the same frequency and a longer motion amplitude.
Compared with a flatter amplitude change pattern, the steeper
pattern further clarifies the peak position. However, the absolute
deviation of the sensed motion amplitude does not show variations
among the different settings. This result means that Palantir can
work sufficiently with different motion amplitudes, and it can fit
the need of different sensing scenarios.
4.2.3 Impact of motion frequency. We also evaluate Palantir with
different motion frequencies. The statistical results are shown in
Figure 18. Similar to the setting described above, as the different
ground-truth values are shown in X-axis, we replace the relative
error of motion period in 17(a) with RPM deviation. Notably, the
RPM sample is obtained via a simple division with the time of
each period, and the results show a larger standard deviation com-
pared with the results of long-term statistics. The experiments in
all settings show a median deviation of lower than 0.1 RPM. As
mentioned previously, a steeper amplitude pattern means that the
movement near the extreme point is faster. This can explain why



SenSys ’21, November 15–17, 2021, Coimbra, Portugal Haotian Jiang, Jiacheng Zhang, Xiuzhen Guo, Yuan He

2 3 4 5 6 7 8

Motion Amplitude (cm)

-0.02

-0.01

0

0.01

0.02

R
el

at
iv

e 
E

rr
o

r

(a) Relative error of motion period.

2 3 4 5 6 7 8

Motion Amplitude (cm)

0

0.08

0.16

0.24

0.32

0.4

M
o

ti
o

n
 A

m
p

li
tu

d
e 

E
rr

o
r 

(c
m

)

(b) Motion amplitude deviation.

Figure 17: Impact of motion amplitude

1 1.25 1.5 1.75 2

Motion Frequency (Hz)

-1

-0.5

0

0.5

1

R
P

M
 D

ev
ia

ti
o

n
 (

rp
m

)

(a) RPM deviation.

1 1.25 1.5 1.75 2

Motion Frequency (Hz)

0

0.04

0.08

0.12

0.16

0.2

R
el

at
iv

e 
E

rr
o

r

(b) Relative error of motion amplitude.

Figure 18: Impact of motion frequency.
the relative error of motion amplitude is slightly smaller with a
higher motion frequency. This benefit is observed in the RPM de-
viation because a higher frequency indicates that the same period
deviation is transformed into a higher RPM deviation.

4.2.4 Impact of Interference. The experiments have been conducted
to evaluate the impact of interference on Palantir. Previous works
in wireless sensing have shown strong sensitivity to interference. A
good explanation is that the interference sources do not differ from
the sensing target in signal reflection patterns. Palantir leverages
the OOK backscatter to generate a distinguishable signal in the
time domain, enabling the sensing target to stand out from the
interference. Thus, the interference is treated as an environmental
reflection. To evaluate the impact of interference, the volunteer is
instructed to move at different speeds around the propagation path.
The statistical results are shown in Figure 19. When the volunteer
moves at 4𝑚/𝑠 , the motion period deviation ranges from −2.8% to
2.2%, and the median relative error of motion amplitude can reach
13.7%. The movement of the interference source may have different
impacts on the TX-RX path and the backscatter path. According to
the signal propagation model, the signal attenuates quickly after
multiple reflections. This scenario means that a reflector is not
likely to introduce multi-path interference to the backscatter signal
but only to the direct path signal. Thus, the decrease in sensing
accuracy can be mainly attributed to the decrease in SNR when the
line-of-sight path is blocked by the interference.

4.2.5 Impact of vehicle velocity. Finally, we evaluate the perfor-
mance of Palantir in the mobile scenario. The statistical results are
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Figure 19: Impact of interference velocity.
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Figure 20: Impact of vehicle velocity.

shown in Figure 20. As mentioned previously, the movement of a
vehicle can be removed by using a high-pass filter. However, the
filtering method due to its imperfection, inherently decreases the
accuracy of the motion amplitude. The period deviations when the
trolley moves at 3 and 4 𝑚/𝑠 are high mainly due to the bumps
caused by uneven roads. These bumps cause the transmitter and tag
to experience jitters in different patterns, which distorts the motion
period of the backscatter tag. This distortion is extremely strong
along rugged roads and if vehicles do not have shock absorbers,
such as a trolley. Fortunately, bicycles, wheelchairs, and strollers
are more resistant to bumps than trolleys owing to their shock
absorbers and inflatable wheels. Nevertheless, Palantir keeps the
median of the amplitude deviation to as low as 16%.

4.3 Case Study
With the development of IoT and LoRaWAN, the coverage of LoRa
gateways has also widened. Owing to its long communication range
and low power consumption, LoRa can be well applied to the public
bicycle sharing system. The LoRa transmitter node is usually cheap
and portable and hence can be widely installed on vehicles such
as bicycles. This case study on Palantir provides an example of
outdoor long-term continuous monitoring. Our study, including
the experiments, has been approved by the Institutional Review
Board. The experiments and results can be summarized as follows:
Experiments: Our case study is about respiration sensing while
riding a bicycle. As shown in Figure 14(c), we attach the omni-
directional antenna to the public bicycle. The WISP 5.0 is attached
onto the clothes on the chest. The respiration of a volunteer is
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(a) Respiration sensing at 10m.
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(b) Respiration sensing at 20m.
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(c) Respiration sensing at 50m.
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(d) Respiration sensing at 100m.
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(e) Mobile respiration sensing at low speed.
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(f) Mobile respiration sensing at high speed.

Figure 21: Case study: Respiration sensing at different distance and speed.

sensed at the distance of 10, 20, 50, and 100 m. Then, the volunteer
is instructed to ride the bicycle at slow and high speeds, i.e., average
speed of 3 and 5𝑚/𝑠 , respectively. Our case study has been designed
to verify the feasibility of the proposed scheme in the actual scene.
Thus, the ground truth of respiration is not collected.
Results: The sensing results are shown in Figure 21. The red dotted
lines mark the respiratory period detected by Palantir. Palantir
obtains stable periodic changes, which can be used as a clue for
respirationmonitoring, as shown in Figure 21(a). As the propagation
distance increases, the SNR gradually decreases, which leads to a
slight decrease in the stability of the sensing results. As shown in
Figure 21(b)-(d), some jitters with small amplitude have appeared,
but accurate sensing results can still be obtained. Furthermore, as
shown in Figure 21(e)-(f), more jitters appear in the sensing result
when the speed increases. This finding can be attributed to the
bumps caused by uneven roads. Nevertheless, Palantir can perform
accurate respiration sensing in mobile scenarios.

5 DISCUSSION
SensingRange. Palantir can achieve sensing in hundreds ofmeters
with an OOK backscatter, indicating that the number of receivers
can be significantly reduced. Unfortunately, when the tag moves to
the middle of the transmitter and the receiver, the signal attenuation
reaches its peak [33]. Theoretically, this scenario not only happens
when the backscatter tag acts as a reflector, but it also exists widely
in the reflection process of wireless signal. Previous works [41, 48]
use panel antennas to generate stronger signals. However, in mo-
bile scenarios, panel antennas are not an available option because
the tag-to-antenna direction changes in a large range. Moreover,
panel antennas are not easy to install or carry on small vehicles,
such as bicycles. With omni-directional antennas, the backscatter
tag should be no more than meters away from the transmitter (or

receiver), while the distance between the transmitter and the re-
ceiver can be in hundreds of meters. We believe this limitation is
acceptable because a LoRa transmitter is cheap and small, and LoRa
gateways are deployed sparsely with power supplies.
Application Scenarios. The bicycle-sharing system is an appli-
cation scenario of Palantir. A public bicycle rental authority may
want to use the respiration data to improve bicycle design or pro-
vide emergency assistance. The current wearable motion sensors
usually have a short communication distance, and the sensing data
must be transferred via smartphones and cellular networks. By
contrast, Palantir supports direct information collection. Moreover,
with the aim of alleviating potential privacy concerns, the collected
data can be associated with each bicycle instead of the cyclist.
Multi-User Scenarios. The multi-user scenarios are diverse, and
they depend on the different combinations of transmitters and tags.
Palantir can deal with a scenario in whichmultiple tags are attached
to a cyclist [10] and a scenario involving multiple transmitters and
a single tag [36]. Moreover, the sensing accuracy will increase
with a higher transmission rate of the LoRa node. This means that
the signals from multiple users are more likely to collide in air.
Orthogonal parametric settings and channel hopping may be good
options in handling signal collisions in multi-user scenarios.
Benefits of Multi-Antenna. A multi-antenna design may en-
hance the performance of Palantir; this aspect is planned in our
future work. If multi-antennas can be designed to independently
operate Palantir, then errors can be reduced with the averaging of
measurement data. On the other hand, as the angle of arrival of
the signals can be calculated, Palantir can also obtain an additional
dimension of information.
Doppler Effect. As our sensing target is mobile, a concern may be
whether the Doppler effect will be a problem. According to Eq. 11,
the impact of the Doppler effect is negligible in Palantir, because
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the speed of a bicycle is orders of magnitude lower than that of the
electromagnetic wave.

6 RELATEDWORK
Our work is related to the following three research areas:

6.1 Backscatter Sensing
The idea of utilizing the backscatter system for sensing has been
proposed for a long time. RFID, as the representative technology,
has been widely employed for sensing. TagBeat [45] inspects micro
and high-frequency mechanical vibrations with commercial off-the-
shelf RFID tags and readers. TagSMM [42] presents a RFID-based
vibration sensing system which can measure vibration amplitude
in sub-millimeter resolution. RFree-GR [6] achieves complex and
fine-grained gesture recognition with a Multimodal Convolutional
Neural Network. Despite the continuous development of RFID sens-
ing, the limitation of the sensing range has not been solved. The
symmetrical design of COTS reader makes the RFID tags always
at the midpoint of the propagation path, which corresponds to the
most serious attenuation and makes it easy to submerge in the
self-interference. To extend the sensing range, the researchers turn
their attention to other backscatter systems.

6.2 LoRa Backscatter
Recently, LoRa has attracted significant attention owing to its long
communication range and low energy consumption. Various ap-
plications, such as smart agriculture [38], smart home [22] and
emergency rescue [2] utilize LoRa as the communication method.
However, as evaluated in previous works [20, 21], the scalability
of LoRa is limiteddue to its long channel occupation. Some works
[8, 17] have attempted to avoid signal collisions by designing effi-
cient MAC layer protocols, while others sought other techniques
in solving this problem through parallel decoding [31, 36, 40].

Contrary to the above scheme, some researchers changed their
perspective towards superimposed signals. The backscatter system,
which has been applied to a wide range of RF signals [14, 44] and is
limited by communication distance, happens to fit the need of LoRa.
LoRa Backscatter [30] can reach a communication distance of 2.8𝑘𝑚
when co-located with an RF-source by synthesizing legitimate LoRa
packets. PLora [24] takes an ambient LoRa signal as the excitation
signal, thus modulating the original chirp into a new standard
LoRa chirp signal on a different LoRa channel. XORLora [18] can
achieve backscatter communication with commodity LoRa devices
through frequency shifting. However, PLoRa and XORLora have a
low spectrum efficiencies due to the frequency shifting. Aloba[10],
which is the most relevant work with respect to Palantir, applies the
OOKmodulation to the LoRa backscatter system. This development
has inspired us to design a side-channel sensing scheme for long-
distance scenarios.

6.3 LoRa-based Sensing
Besides communication, LoRa has also attracted many researchers
in other applications. Various works have focused on indoor and
outdoor localizations with LoRa [1, 9, 11, 16]. In recent years, several
works have leveraged the advantages of LoRa’s communication
range to realize long-distance sensing. WideSee [3] can realize

wide-area human sensing with a directional antenna. However,
only large-scale human activities, such as walking or waving hands,
can be sensed by WideSee due to its coarse resolution. In view of
achieving a much larger coverage, a drone can be utilized to carry
the LoRa transceiver pair and its control system.

The work of Zhang et al. [48] is another development for LoRa
sensing, as their research has utilized multiple antennas at the
receiver side to extract the reflected signal. Their work increases
the sensing range to 25 m for human respiration sensing. However,
a longer sensing range means more interference. All moving targets
in the sensing range are sensed by the LoRa signal, which means
the target of interest cannot be easily distinguished. Sen-fence [41]
allows for improvements on this basis. Through software-level
beamforming, Sen-fence narrows the sensing to a beam-shaped
area. With multiple receivers, Sen-fence forms a closed sensing
area and weakens the interference outside the area, achieving a
sensing range of 50 m. However, although Sen-fence can reduce
interference, it also introduces new restrictions. The sensing area
needs to be taken as prior knowledge, and multiple antennas and
multiple receivers are needed. Most importantly, this solution can
hinder the sensing of large-scale activity and the sensing in mobile
scenarios.

Summary: Our work, Palantir, takes advantage of the LoRa and
backscatter technology in sensing. By applying the OOK-modulated
backscatter to LoRa sensing, Palantir not only can achieve a sensing
range of 100 m but also works sufficiently in mobile scenarios. On
basis of the existing works on LoRa backscatter [10], Palantir can
explore the potential sensing ability of existing communication
channels. Compared with the existing sensing works, our research
on Palantir no longer requires an accurate prior knowledge of the
target location (or initial location), thus expanding the application
scenarios of long-range wireless sensing. To the best of our knowl-
edge, Palantir is the first work of its kind that achieves wireless
sensing of fine-grained behaviors (e.g., respiration) for long-range
mobile targets.

7 CONCLUSION
In this work, we propose Palantir, a sensing system based on the
LoRa backscatter. Palantir not only can achieve long-range sens-
ing but is also applicable to mobile scenarios. We reveal the gap
between sensing and communication and design a practical sig-
nal processing scheme to extract stable signals for sensing with
a single-antenna receiver. Although we design Palantir based on
the LoRa backscatter, our work fills the gaps between sensing and
communication that commonly exist in all kinds of wireless signals.
With Palantir, the sensing range can be increased to 100 m, which
is twice the range of state-of-the-art work. Palantir also works
sufficiently for sensing mobile targets, providing an example for
long-term ubiquitous sensing with public bicycles.

ACKNOWLEDGMENT
We thank our shepherd and the anonymous reviewers for their
insightful comments. This work is supported in part by National
Key R&D Program of China No. 2017YFB1003000, National Science
Fund of China under grant No. 61772306, and the R&D Project of
Key Core Technology and Generic Technology in Shanxi Province
(2020XXX007).



Sense Me on the Ride: Accurate Mobile Sensing over a LoRa Backscatter Channel SenSys ’21, November 15–17, 2021, Coimbra, Portugal

REFERENCES
[1] A. Bansal, A. Gadre, V. Singh, A. Rowe, B. Iannucci, and S. Kumar. Owll: Accurate

lora localization using the tv whitespaces. In IPSN. ACM/IEEE, 2021.
[2] G. M. Bianco, R. Giuliano, G. Marrocco, F. Mazzenga, and A. Mejia-Aguilar. Lora

system for search and rescue: Path-loss models and procedures in mountain
scenarios. IEEE Internet of Things Journal, 8(3):1985–1999, 2020.

[3] L. Chen, J. Xiong, X. Chen, S. I. Lee, K. Chen, D. Han, D. Fang, Z. Tang, and
Z. Wang. Widesee: Towards wide-area contactless wireless sensing. In SenSys.
ACM, 2019.

[4] Z. Chen, P. Yang, J. Xiong, Y. Feng, and X.-Y. Li. Tagray: Contactless sensing and
tracking of mobile objects using cots rfid devices. In INFOCOM. IEEE, 2020.

[5] D. Croce, D. Garlisi, F. Giuliano, A. L. Valvo, S. Mangione, and I. Tinnirello.
Performance of lora for bike-sharing systems. In AEIT AUTOMOTIVE, 2019.

[6] C. Dian, D. Wang, Q. Zhang, R. Zhao, and Y. Yu. Towards domain-independent
complex and fine-grained gesture recognition with rfid. Proceedings of the ACM
on Human-Computer Interaction, 4(ISS):1–22, 2020.

[7] R. J. Fitzgerald. Effects of range-doppler coupling on chirp radar tracking accuracy.
IEEE Transactions on Aerospace and Electronic Systems, AES-10(4):528–532, 1974.

[8] A. Gamage, J. C. Liando, C. Gu, R. Tan, and M. Li. Lmac: Efficient carrier-sense
multiple access for lora. In MobiCom. ACM, 2020.

[9] C. Gu, L. Jiang, and R. Tan. Lora-based localization: Opportunities and challenges.
In EWSN. ACM, 2019.

[10] X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu. Aloba:
rethinking on-off keying modulation for ambient lora backscatter. In SenSys.
ACM, 2020.

[11] G. Y. Ha, S. B. Seo, H. S. Oh, and W. S. Jeon. Lora toa-based localization using
fingerprint method. In ICTC. IEEE, 2019.

[12] J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y. Noh, P. Zhang, and
P. Tague. Do you feel what i hear? enabling autonomous iot device pairing using
different sensor types. In SP. IEEE, 2018.

[13] C. Jiang, J. Guo, Y. He, M. Jin, S. Li, and Y. Liu. mmvib: micrometer-level vibration
measurement with mmwave radar. In MobiCom. ACM, 2020.

[14] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi: Bringing low
power to wi-fi transmissions. In NSDI. USENIX, 2016.

[15] K. Krishna and M. N. Murty. Genetic k-means algorithm. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439, 1999.

[16] K.-H. Lam, C.-C. Cheung, and W.-C. Lee. Rssi-based lora localization systems
for large-scale indoor and outdoor environments. IEEE Transactions on Vehicular
Technology, 68(12):11778–11791, 2019.

[17] L. Leonardi, F. Battaglia, and L. L. Bello. Rt-lora: A medium access strategy to
support real-time flows over lora-based networks for industrial iot applications.
IEEE Internet of Things Journal, 6(6):10812–10823, 2019.

[18] H. Li, X. Tong, Q. Li, and X. Tian. Xorlora: Lora backscatter communication with
commodity devices. In ICCC. IEEE, 2020.

[19] X. Li, Y. Zhang, I. Marsic, A. Sarcevic, and R. S. Burd. Deep learning for rfid-based
activity recognition. In SenSys. ACM, 2016.

[20] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li. Known and unknown facts
of lora: Experiences from a large-scale measurement study. ACM Transactions on
Sensor Networks (TOSN), 15(2):1–35, 2019.

[21] C.-W. Liang, Y.-L. Wu, C.-Y. Shi, S.-M. Lu, and H.-C. Lee. Evaluation of a lora
mesh wireless networking system supporting time-critical transmission and data
lost recovery: Poster abstract. In IPSN. ACM/IEEE, 2019.

[22] S. Opipah, H. Qodim, D.Miharja, Sarbini, E. A. Z. Hamidi, and T. Juhana. Prototype
design of smart home system base on lora. In ICWT. IEEE, 2020.

[23] S. Pan, T. Yu, M. Mirshekari, J. Fagert, A. Bonde, O. J. Mengshoel, H. Y. Noh, and
P. Zhang. Footprintid: Indoor pedestrian identification through ambient structural
vibration sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(3):1–31, 2017.

[24] Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson.
Plora: A passive long-range data network from ambient lora transmissions. In

SIGCOMM. ACM, 2018.
[25] J. Shi, D. Mu, and M. Sha. Lorabee: Cross-technology communication from lora

to zigbee via payload encoding. In ICNP. IEEE, 2019.
[26] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao. Magicol: Indoor localization

using pervasive magnetic field and opportunistic wifi sensing. IEEE Journal on
Selected Areas in Communications, 33(7):1443–1457, 2015.

[27] Y. Shu, Y. Huang, J. Zhang, P. Coué, P. Cheng, J. Chen, and K. G. Shin. Gradient-
based fingerprinting for indoor localization and tracking. IEEE Transactions on
Industrial Electronics, 63(4):2424–2433, 2015.

[28] J. R. Smith, K. P. Fishkin, B. Jiang, A. Mamishev, M. Philipose, A. D. Rea, S. Roy,
and K. Sundara-Rajan. Rfid-based techniques for human-activity detection.
Communications of the ACM, 48(9):39–44, 2005.

[29] K. Sun, T. Zhao, W. Wang, and L. Xie. Vskin: Sensing touch gestures on surfaces
of mobile devices using acoustic signals. In MobiCom. ACM, 2018.

[30] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota. Lora
backscatter: Enabling the vision of ubiquitous connectivity. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):1–24, 2017.

[31] S. Tong, J. Wang, and Y. Liu. Combating packet collisions using non-stationary
signal scaling in lpwans. In MobiSys. ACM, 2020.

[32] M. Uddin, A. Salem, I. Nam, and T. Nadeem. Wearable sensing framework for
human activity monitoring. In WearSys. ACM, 2015.

[33] A. Varshney, O. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, and T. Voigt.
Lorea: A backscatter architecture that achieves a long communication range. In
SenSys. ACM, 2017.

[34] C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and S. Lu. Multi-touch
in the air: Device-free finger tracking and gesture recognition via cots rfid. In
INFOCOM. IEEE, 2018.

[35] J. Wang, L. Chang, S. Aggarwal, O. Abari, and S. Keshav. Soil moisture sensing
with commodity rfid systems. In MobiSys. ACM, 2020.

[36] X. Wang, L. Kong, L. He, and G. Chen. mlora: A multi-packet reception protocol
in lora networks. In ICNP. IEEE, 2019.

[37] Y. Wang, J. Shen, and Y. Zheng. Push the limit of acoustic gesture recognition.
IEEE Transactions on Mobile Computing, 2020.

[38] Z. Wang, Z. Jiang, J. Hu, T. Song, and Z. Cao. Research on agricultural environ-
ment information collection system based on lora. In ICCC. IEEE, 2018.

[39] C. Wu, F. Zhang, Y. Fan, and K. R. Liu. Rf-based inertial measurement. In
Proceedings of the ACM Special Interest Group on Data Communication, pages
117–129. 2019.

[40] X. Xia, Y. Zheng, and T. Gu. Ftrack: Parallel decoding for lora transmissions.
IEEE/ACM Transactions on Networking, 28(6):2573–2586, 2020.

[41] B. Xie and J. Xiong. Combating interference for long range lora sensing. In
SenSys. ACM, 2020.

[42] B. Xie, J. Xiong, X. Chen, and D. Fang. Exploring commodity rfid for contactless
sub-millimeter vibration sensing. In SenSys. ACM, 2020.

[43] Y. Xie, J. Xiong, M. Li, and K. Jamieson. md-track: Leveraging multi-
dimensionality for passive indoor wi-fi tracking. In MobiCom. ACM, 2019.

[44] X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni. Passivevlc: Enabling
practical visible light backscatter communication for battery-free iot applications.
In MobiCom. ACM, 2017.

[45] L. Yang, Y. Li, Q. Lin, X.-Y. Li, and Y. Liu. Making sense of mechanical vibration
period with sub-millisecond accuracy using backscatter signals. In MobiCom.
ACM, 2016.

[46] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang. Farsense: Pushing the range
limit of wifi-based respiration sensing with csi ratio of two antennas. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3):1–26,
2019.

[47] D. Zhang, J. Wang, J. Jang, J. Zhang, and S. Kumar. On the feasibility of wi-fi
based material sensing. In MobiCom. ACM, 2019.

[48] F. Zhang, Z. Chang, K. Niu, J. Xiong, B. Jin, Q. Lv, and D. Zhang. Exploring
lora for long-range through-wall sensing. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(2):1–27, 2020.


	Abstract
	1 Introduction
	2 Sensing channel
	2.1 Communication Model
	2.2 Theoretical Sensing Model
	2.3 Challenges of Sensing

	3 System Design
	3.1 LoRa Preprocessing
	3.2 Signal Shaping
	3.3 Clustering
	3.4 Sensing

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmark Experiments
	4.3 Case Study

	5 Discussion
	6 Related Work
	6.1 Backscatter Sensing
	6.2 LoRa Backscatter
	6.3 LoRa-based Sensing

	7 Conclusion
	References

