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Abstract— As backscatter-based IoT applications get prolifer-
ated, how to exploit backscattered signals for efficient sensing
becomes a significant issue. Backscatter-based sensing requires
accurate estimation of a backscatter channel (phase and ampli-
tude), which is distorted when multiple signals collide with each
other. As a result, the state of the arts is limited to either
parallel decoding of collided signal or channel estimation with
clean signal. Motivated by the need of high sensing capacity,
we in this article present Fireworks, the first approach for
channel estimation of parallel backscattered signals. The insight
of Fireworks is that although the channel is distorted due to
collision, the movements of the ON-OFF Keying modulated
signal still preserve the channel properties of the respective
tags. By modeling the relationship between the channels and
the signal’s moving trajectory in the IQ domain, one can make
accurate estimation of the channels directly from the collision.
We address practical problems of Fireworks, such as the high
computing complexity and the compatibility with the commercial
MAC protocol, and implement Fireworks. The results show that
Fireworks is able to estimate the channels of up to five tags
in parallel. When applied to the tracking application, Fireworks
achieves 2∼4× improvement in the tracking accuracy, compared
with the state-of-the-art approach.

Index Terms— Backscatter, wireless sensing, channel estima-
tion, parallel transmission.

I. INTRODUCTION

DUE to its low cost and battery free feature, backscatter
becomes a promising technology for IoT (Internet of

Things). Today, we have seen a huge number of backscatter
devices deployed in various scenarios, performing functions
like warehouse management and supply chain monitoring
[1]–[3]. With the rapid progress in the area of wireless sensing,
recent works propose to exploit the backscattered signals
for sensing purposes. The potential applications span across
a wide variety of scenarios, such as localization, tracking,
motion recognition, etc [4]–[20].

In spite of the apparent need of backscatter-based sensing,
the efficiency of the backscatter channel to be used for sensing
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is far restricted. Backscatter-based sensing requires accurate
estimation of a backscatter channel in terms of phase and
amplitude, which are key indicators of the target’s state.
When there are multiple targets to be sensed, inevitably their
backscattered signals will collide frequently. Collision of sig-
nals will distort the backscatter channel, making it extremely
difficult to recover the channel state.

Based on the above discussion, we find a fundamental
problem: can we estimate the channel of parallel backscat-
tered signals? Answer to this problem has great significance
in real applications. For example, in automated factories,
the trajectories of objects on the production lines should be
tracked simultaneously. In some novel HCI (Human Computer
Interaction) applications, an array of RFID tags is deployed to
emulate a virtual keyboard [7], where simultaneous sensing
of all the tags’ states is clearly a critical component of these
systems. As we will analyze in Sec. II-A, whether channel
estimation can be parallelized not only determines the sensing
efficiency, but also affects the accuracy of sensing results.

Considering that many interference resolution methods are
able to separate the collided signal, one may wonder: why
not estimate channels directly based on the separated signal?
For most interference resolution approaches, e.g. the MIMO
based methods [21]–[25], channel parameters are the prereq-
uisites for decoding the parallel transmitted signals. Without
channel information, they cannot perform parallel decoding,
not to mention channel estimation based on parallel decoding.
Moreover, backscatter devices often suffer serious mutual
interference, as is called inter-tag interference. As a result,
the collided signal isn’t the linear addition of the original
backscattered signals. Consequently, although there have been
some methods that can decode collided signals without chan-
nel information [26]–[28], they still cannot obtain the channel
parameters.

Channel estimation of parallel backscatter is indeed a
daunting task, with the following critical challenges: First,
a backscattering tag keeps flipping their states between
H and L. The rate of flips is essentially determined by the
encoding bit rate of the tag. When there are multiple colliding
tags in the channel, the collided signal is highly dynamic and
transfers among different combined states at an even higher
rate. It is extremely difficult to find steady signal samples that
reflect the channel parameters. Second, the above-mentioned
inter-tag interference will further distort the collided signals
and introduce uncontrollable estimation errors.
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In order to tackle the above problems, we in this article
propose Fireworks, the first approach for channel estimation
of parallel backscattered signals. The key insight of Fireworks
is that although the state of the collided signal keeps chang-
ing, the resulting moving trajectory of the signal on the IQ
(In-phase and Quadrature) domain is determined by and in
turn reflects the channel parameters of the tags and the
interference among them. Specifically, this insight attributes
to the following observations:

• The geometric properties (i.e., direction and length) of a
tag’s transition path between two states reflect the phase
and amplitude of that tag’s signal.

• The relationship between signal’s geometric properties
and tag’s channel parameters are preserved after collision.

• Inter-tag inference can be separated from tags’ signal in
the signal trajectory.

Based on the above insight, we propose an Inter-tag Interfer-
ence Aware (IIA) model that captures the exact transformation
from the channel parameters to the trajectory of collided
signals. To extract the channels from the signals, we invert
the above transformation by solving a global optimization
problem, which minimizes the overall distance between the
signal samples and the trajectory generated by the IIA model.
Our contributions can be summarized as follows:

• We disclose the principle of inter-tag interference under
parallel backscatter and propose the IIA model that
describes the exact relationship between channel parame-
ters and the geometric properties of the signal trajectory.

• Based on the IIA model, we present a parallel channel
estimation approach named Fireworks, and address sev-
eral challenges to make it a useable approach, such as the
high computing complexity and the compatibility with the
commercial MAC protocol.

• We implement Fireworks and evaluate its performance
with extensive experiments. The results show that Fire-
works accurately estimates channel parameters of up to
five parallel tags, with the mean errors of 0.054 rad.
in phase and 0.0029 in amplitude. When applied
to the tracking application, Fireworks achieves 2∼4×
improvement in tracking accuracy, compared with a
state-of-the-art approach [12].

Roadmap. Section II presents the motivation and challenges
of our work. In Sections III, IV and V, we elaborate on the
insight and the design of Fireworks. We present the evaluation
results in Section VI. Section VII discusses the related work.
Section VIII concludes this work.

II. PARALLEL BACKSCATTER

A. Why to Parallelize Channel Estimation?

We use target tracking as an example to show how our
work benefits backscatter-based sensing applications. A tag’s
moving trajectory is estimated by accumulating the changes
in tag’s channel parameters (i.e., phase and amplitude).
In achieving accurate trajectory recovery, the interval
between two consecutive channel estimation should be
sufficiently short. In other words, a sufficiently high rate of
channel estimation is desired.

TABLE I

NOTATIONS

Fig. 1. Impact of IRR on sensing applications.

Fig. 1(a) compares the calculated trajectories of a letter
“M” under different channel estimation rates. We can see large
deviation from the ground truth when the channel estimation
rate is low. Since channel estimation depends on the successful
reception of a tag’s signal, so channel estimation rate of a tag
equals to its individual reading rate (IRR). We first check the
IRR of the commercial backscatter system that adopts the FSA
(Framed Slotted ALOHA) protocol for tag interrogation. Then
we show how parallel channel estimation improves the channel
estimation rate.

In the FSA protocol, the reader divides time into K slots,
and each tag randomly picks a slot to reply. Since the tags
are not coordinated, they may collide in reply. We denote the
reading capacity of the reader as M , which means the reader
can read up to M colliding tags in one slot. Then, if we have
Nall tags, the throughput (successful readouts per slot) of the
system will be:

Th(M, Nall) =
M∑

N=1

N

(
Nall

N

)(
1
K

)N (
1− 1

K

)Nall−N

(1)

Note that Eq. (1) is used to express the throughput of a
RFID system when the reading capacity is M . To simplify
the expression, some detailed restrictions in the EPC protocol
(e.g., one tag is not allowed to response multiple times in one
session), which do not affect the throughput of the system, are
not considered in Eq. (1).

Based on Eq. (1), the number of slots required to collect
Nall tags can be estimated by S(M, Nall) = � Nall

Th(M,Nall)
�.

If the duration of a slot is τ , the entire inventory cost can
be calculated by Λ(M, Nall) = τ0 + τ · S(M, Nall), where
τ0 is the start-up cost [29], including the time cost for
tasks like broadcasting the SELECT command, synchroniza-
tion, and clearing history states. Then the IRR is given by:
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Fig. 2. Visualization of tag’s signal in IQ domain.

IRR(M, Nall) = 1
Λ(M,Nall)

. According to our measurement
result, we have τ0 = 19ms and τ = 0.5ms. Assume that
the reader can always select the optimal K based on Eq. (1),
we can get the IRR under different Nall, as shown in Fig. 1(b).

Figure 1(b) shows that when M = 1, IRR significantly
drops with the increased number of tags. This precludes
many sensing applications [11], [29], [30]. For example,
in automated factories, a 30Hz IRR is required to monitor
the fast moving items on the pipeline [14], [15]. According
to Fig. 1(b), however, such an IRR is achieved only when
the number of targets is lower than 10, which is unlikely on
the pipeline. That means Tagbeat works only when there are
1∼2 vibration sources, which is obviously insufficient in real-
world scenarios. Note that Fig. 1(b) shows the ideal case where
the reader can always select the optimal slot number K . The
IRR will be even lower in practice, as shown in many existing
studies [29].

The above dilemma can be mitigated with parallel channel
estimation. Fig. 1(b) tells that increasing the reading capacity
M significantly increases the IRR and thus the channel esti-
mation rate. For a system with M = 5, when 70 tags coexist
in one environment, the channel estimation rate can be kept as
high as 30Hz. This means that we can track the movement of
more than 70 targets concurrently. Such a capacity is sufficient
and attractive for many real applications. Motivated by the
need of high capacity of sensing, we continue to study the
feasibility and the solution for parallel channel estimation.

B. Understanding Parallel Backscatter

The wireless channel describes how a signal changes as it
propagates from transmitter to receiver. The transmitted signal
is denoted by S0. The received signal S is given by:

S = h · S0 (2)

where h = αejδ denotes the channel, and α and δ denote the
channel parameters amplitude and phase, respectively.

Observed in the IQ domain, the theoretical representation
of the signal is a single point (as shown in Fig. 2(a)), whose
location is determined by the channel parameters. Specifically,
the length and direction of the signal vector

−→
S correspond to

α and δ of the signal, respectively.
When only one tag is transmitting, there are two channels:

i) the channel between the reader and the tag, where the reader

A transmits a carrier wave S0 and the tag T responds its data
s(t) by reflecting the carrier wave using OOK modulation;
ii) the channel between the reader and the background reflec-
tors. Here we abstract the background reflections as from a
virtual point B, according to the linear addition principle of
signals. The received signal at the reader can be expressed by:

S(t) = s(t) · hT · S0(t) + hB · S0(t) (3)

where s(t) = 0 or 1 depends on the encoded bits. hT and
hB respectively denote the channels along the round-trips
A→ T → A and A→ B → A.

The representation of the received signal in the IQ domain
is determined by the channels of both sources of reflections:

−→
S (t) =

−→
S B + s(t) · −→S T (4)

Eq. (4) tells that due to the OOK modulation, the signal is
theoretically present at two points (Fig. 2(b)), respectively
corresponding to the silence (L) and the reflecting (H) states
of the tag. By subtracting the L-state from the H-state signal,
we can remove the background reflection and derive the vector
that denotes the channel of the tag.

When there are N tags, the IQ domain representation of the
signal is determined by the channels of all the tags:

−→
S (t) =

−→
S B +

∑N

i=1
si(t) · −→S Ti (5)

where si(t) denotes the state of Tag Ti. In this case, the col-
lided signal theoretically form 2N points, each representing
a combined state of the N tags. Fig. 2(c) shows an example
with two tags. The 22 = 4 points represent the four combined
states of the tags, namely LL, HL, LH , and HH .

In collision cases, a pair of points whose corresponding
states differ from each other in only one tag’s state is called
neighboring points (e.g., LL and HL). That tag’s channel is
characterized by the vector connecting the two points. In the
N -tag collision case, each tag will have N equivalent vectors,
as shown by the example with 2∼4 tags in Fig. 2(d).

The existing parallel decoding approaches [27], [28] are able
to identify the combined state of each point, so that the data
sequence of each tag (i.e., si(t)) is obtained. Based on the
identified points, one can find the N pairs of neighbour points
for each tag. Provided that the relative locations of all the
paired points are known, the channel parameters of the tags
can be accordingly estimated.

C. Challenges in Parallel Channel Estimation

The previous subsection presents an ideal case of parallel
backscatter. The real-world signals induce a series of critical
challenges, which we will empirically show in this section.1

We start from a simple case with one tag, as shown
in Fig. 3(a). Due to the noise, the signal samples belonging
to the same state form a cluster rather than a single point.
Meanwhile, we can also see some signal samples lie between
the two clusters. This is caused by the signal’s imperfect

1The experiment results in this section are collected from WISP tags. Due
to the page limitation, the signals from other platforms (e.g., commercial tags)
are omitted since they exhibit similar results.
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Fig. 3. Received signal: (a) one tag; (b) three tags.

Fig. 4. How SNR affect the phase measurement accuracy.

and non-instantaneous transitions between different states. The
noises and the transitional samples obscure the locations of the
signal states. Ideally, we can pinpoint the location of a state by
averaging locations of the samples on that state. The subfig-
ure in Fig. 3(a) shows the density distribution of the samples
on the H state. As we can see, most samples are concentrated
in the center area, which indicates the location of the state.

Things totally change when it comes to the multi-tag
collision case. In this case, the distribution of the signal
samples will become dispersed and largely deviated from the
theoretical locations, due to the fast-varying property of the
collided signal and the inter-tag interference among the tags.

1) Fast Variation of Signal: Fig. 3(b) shows an example of
three tags. Since all the tags keep flipping their states, the col-
lided signal frequently transfers among different combined
states, as shown by the state sequence in Fig. 3(b)-top. This
leads to a fast-moving signal in the IQ domain. To visually
illustrate such mobility, we extract a 2μs segment from the
sequence and plot its IQ domain trajectory in Fig. 3(b)-bottom.
We can see that the signal trajectory can go through the entire
area of signal samples even in such a short period. We also
show the density distribution of the samples in Fig. 3(b). As we
can see, the samples aren’t concentrated on any cluster area,
making it difficult to pinpoint the location of any signal state.

This phenomenon is caused by signal’s short dwell time in
cluster areas. Suppose there are N tags and the frequency of
state flip for every tag is BHz. Our measurement result shows
that the duration of one flip is τf ≈ 0.2μs, then in one second,
the time spent on state transition is Tt = N ·B · τf , while the
time for the signal to dwell on clusters is Td = 1−N ·B · τf .
With more tags transmitting simultaneously, the dwell time
on clusters becomes shorter. For example, when N = 4
tags transmit at 640Kbps (B = 1.28MHz), the signal keeps
transferring among different states and seldom stays on any

Fig. 5. Signal distortion caused by inter-tag interference.

state (Td approaches 0). So when the number of tags increases,
we cannot collect enough samples to pinpoint the location
of each state. According to the law of large numbers, given
a certain noise level σ (signal’s standard deviation on IQ
domain), the position error e will be inversely proportional
to the number of samples nc as:

e ∝ σ√
nc

(6)

The above problem becomes more serious with decreased
SNR (Signal-Noise Ratio). Specifically, with the decreased
signal SNR, the standard deviation of the samples’ locations
increases and the distance between clusters decreases. This on
one hand increases the error range (as shown by Eq. (6)).
On another hand, a shorter distance between clusters will
amplify the state position error, resulting in higher phase error,
as shown by Fig. 4. Our experiments in Section VI show that
when the SNR of the signal is 5 dB, the average based state
positioning method may lead to 1.2 rad. phase estimation error.

2) Inter-Tag Interference: Recall that the tag transmits
signal by reflecting the signal it receives. When two nearby
tags transmit simultaneously, one tag will reflect not only the
carrier wave from the reader, but also the signal from the other
tag. Such an additional source of reflection leads to non-linear
addition of the signal from two tags, which alters the locations
of the signal samples. Fig. 5(a) and Fig. 5(b) show the collided
signal of two and three tags, where tags are located with 10 cm
spacing to each other. The figures show that due to the inter-tag
interference, the signal vectors of the same tag aren’t consis-
tent with each other in either length (amplitude) or direction
(phase). We cannot figure out the exact channel parameters of
this tag based on such distorted signal vectors.

Note that although the inter-tag interference occurs only
between nearby tags (e.g., with a distance lower than 15cm),
it is still necessary to mitigate the inter-tag interference,
because many RFID based sensing applications involve closely
located tags. For example, in pipeline monitoring [14], [15]
and luggage tracking [12], the targets are closely located on
the conveyor. Some HCI applications, like RFID glove [31]
and RFID keyboards [7], deploy a set of closely located
(≤ 1cm) tags on one target. Therefore, mitigating the inter-tag
interference is important to many RFID sensing applications.

III. INTUITION UNDERLYING FIREWORKS

Fireworks’s target is to extract channel of each tag from the
fast-moving and largely distorted collision signal. To achieve
this, Fireworks leverages the observation that although the
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Fig. 6. Theoretical trajectory of tags’ signal.

IQ domain location of the collided signal keeps changing,
the way how the signal moves is deterministic. The geometric
properties of the moving trajectory are determined by the
channels of the tags and the inter-tag interferences. So, instead
of relying on the exact locations of the signal, we can extract
the channels directly from signal’s moving trajectory.

A. Signal Trajectory

We start with the trajectory of one tag’s signal. Recall that
the signal of a tag has two states, and the tag flips its state
by changing the amount of energy it reflects. So if we denote
the fraction of energy that the tag reflects by γ(t) (termed by
reflecting scale), the flip of the tag’s state can be viewed as
the variation of γ(t) between 0 and 1, where γ(t) = 0 or 1
indicates the L or H state of the signal. We can see that
during the flipping process, the tag only changes the signal’s
amplitude while the phase is fixed, as shown in Fig. 6(a).
No matter whether the amplitude changes uniformly or not,
the transition path of the signal will always be a straight path,
whose geometric properties (i.e., length and the direction)
exactly capture the amplitude and phase of the signal.

Considering the goal of parallel channel estimation, one
may wonder whether the above properties of signal trajectory
are still preserved under collisions. Indeed, in the collision
cases, although all the tags keep flipping their states, the flips
of different tags usually interleave with each other. This
is caused by the intrinsic asynchronism of the tags, e.g.,
different response delay and different clock drifts across tags
[27], [28], [32]. So, the whole trajectory of the collided
signal is a simple connection of the transition paths of
individual tags. Properties of each path still reflect the channels
of the corresponding flipping tag.

As an example, Fig. 6(b) illustrates the trajectory of the
signal from two tags. The four red points denote the locations
of the combined states, and the four solid lines denote the
transition paths. In this case, the signal trajectory can be
approximated to a parallelogram, where the two pairs of
parallel edges represent the channels of the two tags. The
irregular trajectories (denoted by the dash lines) are caused by
occasional aligned flips of two tags. Different aligning pattern
(e.g., different starting time or different transition speed of the
two tags) will lead to different shapes of the paths.

B. Understanding the Inter-Tag Interference

The previous subsection discloses the relationship between
the signal trajectory and the channels of the tags.

Fig. 7. Signal propagation with inter-tag interference.

This subsection examines how the inter-tag interference affects
the relationship. We first consider a simple case with two tags,
as shown by Fig. 7. In this case, besides the basic signals
mentioned in Sec. II-B, there are two additional sources of
signals: the signals transiting along the paths A → T1 →
T2 → A and the paths A→ T2 → T1 → A.

We find that both the two interfering signals experience
two reflections, i.e., by T1 and T2. This reveals an interesting
fact: the inter-tag interference between two tags occurs only
when both the two tags are in their reflecting (H) states.
Although a tag also reflects tiny amount of signal at its L state,
the reflected signal is very weak, which will decay to nearly
zero after two reflections. So we can ignore the interfering
signal when either of the tags is on L state.

To understand the impact of inter-tag interference on the
signal trajectory, we can treat the interfered signal as if
it is transmitted from a virtual signal source, which also
flips between two states: silence and reflection. Specifically,
it reflects the signal only when both the corresponding two tags
are in the reflection states. Then, according to the principle of
signal propagation and reflecting [33], the fraction of energy
this virtual source reflects (denoted as γINT (t)) is given by
the reflecting scale of the corresponding two tags: γINT (t) =
γT1(t) · γT1(t). Then, the trajectory of the collided signal can
be viewed as a linear combination of the channels of the three
reflection sources and their reflecting factors:
−→
S (t) =

−→
SB + γT1(t)

−→
ST1 + γT2(t)

−→
ST2 + γT1(t)γT2 (t)

−−−→
SINT

(7)

where different transition paths can be viewed as different
combinations of the channels of the tags and the inter-tag
interferences, as shown in Fig. 8(a). Taking the transitional
sample A (which is collected when γT2(t) = 0.5) as an exam-
ple, its location is determined by a linear combination of signal
vectors

−→
SB 0.5 · −→ST1 ,

−→
ST2 , and 0.5 · −−−→SINT . Eq. (7) indicates

that: i) the deviation of state HH (where γT1(t) = γT2(t) = 1)
from its original position actually represents the signal vector
of the inter-tag interference

−−−→
SINT ; ii) the two trajectories

LL → HL and LL → LH (γINT = γT1(t) · γT2(t) = 0)
are free from the inter-tag interference.

Then let’s consider the N -tag collision case. In this case,
the trajectory of the collided signal is determined by the
channels of both the N tags and the interferences among
every 2 ∼ N tags. The number of interfering paths can be
estimated as Nint =

∑N
i=2

(
N
i

)
. Due to the signal attenuation,

the amplitude of the signal reflected for more than twice

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 29,2021 at 02:20:07 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: PARALLEL BACKSCATTER: CHANNEL ESTIMATION AND BEYOND 1133

Fig. 8. The theoretical trajectory of the interfered signal.

(e.g., the signal traveling from A → T1 → T2 → TN → A
in Fig. 7) will decay to nearly zero. This is demonstrated in
our experiment result later. As a result, we can approximate
the number of interferences as M ≈ (N2 ). Then the trajectory
of the collided signal can be modeled as:

−→
S (t) =

−→
SB +

N∑
i=1

γTi(t)
−→
STi +

N∑
i=1

N∑
j=1

γTi(t)γTj (t)
−−−→
S

(i,j)
INT

(8)

where S
(i,j)
INT (i 
= j) denotes the inter-tag interference between

Ti and Tj . A three-tag example is shown in Fig. 8(b).
In summary, we have obtained a transformation between the

channels of the tags and the geometric properties of the signal
trajectory. Based on this knowledge, we can make accurate
estimation of the channels directly from the collision.

IV. DESIGN

A naive solution to estimate the channels is to use the un-
interfered signal samples – the length and direction of the
un-interfered paths characterize the tags’ channels. However,
the number of the un-interfered samples decreases exponen-
tially with the number of tags. For each tag, less than N+1

2N

of the signal samples can be used to extract its channel.
Considering that the backscatter signal usually exhibits low
SNR, using such a small fraction of samples will lead to
excessively high estimation error. Our idea in solving this
problem is to translate the channel estimation problem to
a global optimization process: we can obtain the optimal
channel estimation by finding the DTG that best fits the
observed signal samples. By utilizing information contained
in all the transition paths, the optimization process can obtain
plenty of constraints to produce accurate results.

A. The IIA Model

Suppose we have N tags T = {T1, . . . , TN}, for each
tag Ti, its channel parameters can be represented by a
2-tuple PTi = (αTi , δTi). The channel of the interference
between each pair of tags Ti and Tj is represented by
P

(i,j)
INT = (α(i,j)

INT , δ
(i,j)
INT ). The signal trajectory is represented

by a set of samples whose locations are denoted by (I, Q).
We now present the mathematical formulations of the trans-
form between a set of 2-tuples P = {PT,PINT} and the
trajectory of the samples.

Fig. 9. Fitting the DTG to the samples.

When N tags transmit in parallel, the signal trajectory is
commonly determined by the channels of all the tags:

I(γ) = αB · cos(δB) +
∑N

i=1
γTi · αTi · cos(δTi)

+
∑N

i=1

∑N

j=1
γTiγTj · α(i,j)

INT · cos(δ(i,j)
INT )

Q(γ) = αB · sin(δB) +
∑N

i=1
γTi · αTi · sin(δTi)

+
∑N

i=1

∑N

j=1
γTiγTj · α(i,j)

INT · sin(δ(i,j)
INT ) (9)

where (αB, δB) is the background reflection and γ =
{γT1 , . . . , γTN} denotes the reflecting scale of the tags. Recall
that the signal’s transition is usually caused by the flip of only
one tag. So we should set a constraint on the reflecting scales
of the tags: at any time, there exists at most one tag Ti, whose
reflecting scale satisfies γTi ∈ (0, 1). Eq. (9) is a mathematical
representation of DTG.

B. Graph Fitting

In this section, we describe the global optimization process
designed to estimate channel parameters. Specifically, let Sobs

denote the IQ domain samples, where Sobs(i) = (I(i), Q(i))
is the location of sample i. Sest(P) denotes the constructed
DTG based on the IIA model (Eq. (9)). Fig. 9 gives an example
of Sobs and Sest in a three-tag collision case. To obtain the
optimal channel estimations, we need to compute:

P∗ = argmin
P

∑
R(Sest(P),Sobs). (10)

where R(•) captures the overall distance between the gen-
erated DTG and the observed samples, which quantifies the
goodness-of-fitting of Sest under a given set of channel
parameters P. Clearly, R(•) will be minimized when we get
the optimal channel estimation.

However, we may meet two problems: i) Since Sest(•) is a
multivalued piecewise function, to quantify the overall distance
between Sobs and Sest we should first match each sample to
the correct path. ii) Since the optimization problem is non-
convex, to avoid the local-optimal problem, we should find a
good initialization in the searching process. The following will
introduce our searching method which solves these problems.

1) Mapping a Sample to the Correct Path: We solve this
problem by utilizing the result of parallel decoding [27], [28],
[32], [34]. Recall that the parallel decoding method can obtain
the state transition sequence (i.e., s(t) in Eq. 3) of each tag
from the parallel transmitted signals. Thus we can get the
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Fig. 10. Coarse-grained searching: (a) A three-tag case; (b) Phase and
amplitude estimation.

flip sequence of each tag (i.e., the time points when each tag
flips its state). That is to say, i) the reader can accurately
decode the ID/data in the packets of all the colliding tags; and
ii) for each sample, since the corresponding state of each tag is
known, the reader can always map this sample to the correct
cluster or transition path [34]. As a result, the samples that
belong to different transition paths are separated.

2) Coarse-to-Fine Searching: Now, we focus on how to
search for the optimal estimation of the channels. We design
a coarse-to-fine searching method that first performs a coarse
estimation of the channels, which provides a good initial
point. Then we approach the optimal estimation by using the
gradient-descent algorithm. Here we use the three-tag case
in Fig. 10(a) as a example to introduce the searching process.

Coarse-grained estimation. The N tags’ channels can be
initialized using the samples on the N interference-free paths
(marked by the three red lines in Fig. 10(a)). Fig. 10(b) zooms
in the signal samples on clusters LLL and HLL and shows
how to estimate the phase and amplitude of Tag 1. Specifically,
we just find the average locations of the samples on states
LLL and HLL (marked by the two red points in Fig. 10(b)).
Then the length and direction of the vector connecting this
two points give the amplitude and phase of Tag 1’s signal.

Of course, such a coarse-grained estimation is erroneous
due to the error in state positioning. However, since the noise
level (i.e., radius of the signal clusters) is limited, the error
range is limited, as shown in Fig. 10(b). So, it still provides
a good initial point for the following gradient descent search-
ing process. To illustrate it, Fig. 11(a) shows R(Sest,Sobs)
under different channel parameters of T1, given certain chan-
nels of T2, T3, and the inter-tag interferences. As we can
see, the coarse-grained channel estimation of T1 locates in
the neighbourhood of the global minima.

The channels of the interference between each pair of tags
can be initialized based on the signal trajectory that contains
the signal of only these two tags (e.g., the three quadrilaterals
that include the all-L state, as marked in Fig. 10 (a)). We call
this method as quadrilateral fitting. We take the estimation of−−−→
S

(1,2)
INT (t) in Fig. 10(a) as an example to introduce this method.

Given the coarse-grained estimation of the channels of T2 and
T3, we can recover the theoretical trajectory of these two tags,
which presents as a parallelogram, as shown by Fig. 10(a). The
deviation of state HHL gives a coarse-grained estimation of−−−→
S

(2,3)
INT (t). Fig. 11(b) shows the residual value under different

channel parameters of T1.

Fig. 11. Fine-grained searching: (a) R(•) under different phase and
amplitude of T1; (b) R(•) under different phase and amplitude of the
interference between T1 and T2.

To fit the DTG to the signal samples, we should also
estimate the channel parameters of the background reflection,
which determine the displacement of the signal from the (0,0)
position. This can be easily estimated by using the signals
sampled when there is not any tag transmitting.

Fine-grained estimation. In this process, we first generate
DTG based on the coarse-grained estimation results, and then
repeatedly adjust the channel estimation according to the
residual value, until the power of the residual converges.

C. Reducing the Computational Complexity

In the graph fitting process, Fireworks needs to search across
2 ·N channel parameters and

(
2
N

)
interference parameters on

all the n samples. The introduced computational complexity
is calculated by O(2(N +

(
N
2

)
) ·n · I), where n is the number

of the samples and I is the number of searching iterations.
In the design of Fireworks, we have n ≤ 1000. Our experi-
mental results in Section VI show that the maximum capacity
of Fireworks is N = 5. The required number of iterations I is
usually not more than 6. Considering that the sensing systems
require online processing, we in this section try to reduce the
computational complexity of Fireworks by reducing the num-
ber of parameters to be searched in the graph fitting process.

1) Reducing the Number of Channel Parameters: When
estimating the channel parameters of a tag, if the tag’s SNR
is high enough and the number of colliding tags is low,
performing the coarse-grained estimation (as introduced in
Sec. IV-B) may already produce satisfying result. So, for each
tag, we can only include its channel parameters into the global
graph fitting process as needed.

To achieve this, Fireworks configures a channel accuracy
requirement (p, eδ, eα), where p is the acceptable error rate.
eδ and eα are the tolerable error range for phase and ampli-
tude estimation. For example, a combination of p = 3%,
eδ = 0.05 rad., and eα = 0.002 requires the phase and
amplitude error to be respectively less than 0.05 rad. and
0.002 with a probability of at least 97%. Recall that the error
in channel estimation is mainly caused by the error in state
positioning. For each tag Ti, eδ and eα can be transformed to
the tolerance in state position error (e(i)

p ) as:

eδ ≥ arctan

(
2 · e(i)

p

αi

)

eα ≥ 2 · e(i)
p (11)
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where αi is the amplitude of Ti. Based on (11), we get

e(i)
p = min{α · tan(eδ)

2
,
eα

2
} (12)

Then, we set the tolerance in positioning error on I-axis and

Q-axis (denoted by e
(i)
I and e

(i)
Q ) as e

(i)
I = e

(i)
Q = e(i)

p√
2

.

To determine whether a tag Ti’s channel parameters need
to be included in the graph fitting process, Fireworks employs
T-distribution to quantify the possibility that the positioning
error falls into the pre-defined tolerable range (i.e., eI and eQ).
Specifically, suppose there are nc signal samples in a clus-
ter, a confidence interval (Ĩ − σ̃√

nc
t p

2
, Ĩ + σ̃√

nc
t p

2
) can be

constructed along the I-axis, where Ĩ and α̃ are the average
and the standard deviation of the nc samples, respectively.
t p

2
can be determined from the t-distribution look-up table. The

confidence interval along the Q-axis can be similarly defined.
Combining Eq. (11) and the expression of the interval, we find
that with more signal samples on each cluster and higher signal
SNR of the tag (i.e., lower σ̃ and larger α), the coarse-grained
estimation becomes more reliable.

So, for each tag Ti, if we have σ̃I√
n
t p

2
≤ e

(i)
I and σ̃Q√

n
t p

2
≤

e
(i)
Q , which means performing coarse-grained estimation is

sufficient to maintain satisfying result, we will not update its
parameters in the subsequent graph fitting process.

2) Reducing the Number of Interference Parameters: Recall
that inter-tag interference occurs only between nearby tags.
In a N -tag-collision case, it is unlikely that all the

(
2
N

)
pairs

of tags are closely located. Therefore, in the coarse-grained
estimation process, if the estimated amplitude of the inter-

tag interference
−−−→
S

(i,j)
INT (t) is lower than a predefined threshold,

we consider the corresponding tags Ti and Tj as a non-
interfering pair and directly set the interference parameters
as zero. This further reduces the number of parameters to be
estimated.

Algorithm 1 presents the complete workflow of Fireworks’s
channel estimation process. After reducing the number of
parameters to be included in the graph fitting process, the com-
putation complexity of Fireworks is further reduced. Our
experiment results show that, when implemented on an USRP
N210 connected to a PC with 3.6GHz CPU and 16G memory,
Fireworks takes 610∼790μs to resolve the channels of 5 tags.

V. INTEGRATION WITH COMMERCIAL MAC PROTOCOL

We may meet a problem in applying Fireworks in practical
RFID systems – commercial MAC-layer protocols are mostly
designed to avoid collision, which limits the performance gain
of Fireworks. For example, in standard EPC C1G2 protocol,
each tag contends for the channel by first sending a random
RN16 packet at a randomly selected time slot within a
frame. If the RN16 packet is successfully decoded by the
reader, the reader ACKs the RN16 and the corresponding tag
responds its EPC (tag ID). In an M -tag collision case, although
Fireworks can successfully get the channel parameters of all
the M tags from the collided RN16 signal, it can only get
the EPC of one tag. It cannot map the other M − 1 channels
to the corresponding M − 1 tags. As a result, the throughput

Algorithm 1 Coarse-to-Fine Searching
Require:

Locations of the n samples: Sobs = {(Ii, Qi)|1 ≤ i ≤ n};
The accuracy requirement: Re = (p, eδ, eα);

1: P← CoarseEstimation(Sobs) � Initialize P
2: [Pcoarse,Pfine]← ReduceParameters(P,Re)
3: Sest ← IIAModel(P)
4: R̃ ← OverallDistance(Sobs,Sest) � Goodness-of-

fitting
5: while R̃ > ThR do
6: Pfine = Pfine − η∇R(Pfine) � Gradient
7: Sest ← IIAModel(Pcoarse,Pfine)
8: R̃← OverallDistance(Sobs,Sest)
9: end while

10: return [Pcoarse,Pfine]

reported in Sec. II-A will be reduced to:

Th(M, Nall) =
M∑

N=1

(
Nall

N

)(
1
K

)N (
1− 1

K

)Nall−N

(13)

By comparing Eq. (13) and (1), we find that the performance
gain of Fireworks is reduced when working with the collision
avoidance protocol. A naive solution to this problem is to
remove the RN16 process and let the tags directly send their
EPCs. However, such a modified protocol cannot support stan-
dardized commercial tags in widely deployed RFID systems.

To solve this problem, we wonder whether EPC is the only
identity of a tag? Existing studies [18], [35], [36] show that
a tag’s PHY-layer feature can also be used as an identity.
Inspired by those studies, we propose to use tags’ frequency
errors and channel parameters, two features that can be
extracted from the collided RN16 signal, as a fingerprint to
distinguish different tags. With such a PHY-layer identity,
we can identify the tags without their EPC ID.

Frequency error. A tag’s clock exhibits high frequency
error (denoted as ∂), resulting differences in tags’ clock
frequencies [27], [28], [35]. Such a difference further results in
the difference in tags’ bit durations, i.e., the time between two
bit-boundary flips of a tag’s signal. Considering that Fireworks
is able to trace the flippings of each tag, it can calculate the
bit duration of each tag based on the collided RN16 signal.

Due to the limited ADC sampling rate, a reader can only
obtain a coarse-grained estimation of a tag’s frequency error,
which has limited discernibility. The study in [35] shows that
using only the frequency error achieves an identification accu-
racy of only 71%. So we propose to combine tags’ frequency
error and channel parameters for more robust identification.

Channel parameters. Due to the difference in tags’ loca-
tions, orientations, and other physical states, different tags have
different channel parameters. So, we can also use channel
parameters as a PHY-layer feature to identify the colliding
tags. We face two problems here. First, different tags may
have similar channel parameters. Second, a tag’s channel
parameters, which change with the mobility of the tag, cannot
serve as a stable tag identity.
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To solve the first problem, we leverage the fact that most
sensing applications use multiple antennas. So, for each tag Ti,
if we have MA antennas, we can get MA channel estimates
{P(1)

Ti
, . . . ,P(MA)

Ti
}. It is unlikely that two tags have similar

channel estimates on all the MA antennas. To verify this
assumption, we perform an experiment with 50 tags, which
are located randomly in a 1.5m×2m area. We use MA = 3
antennas to collect the phase readings of the tags. If the differ-
ence between two phase readings is lower than 0.06 rad. (the
error variance of phase estimation, as shown in Section VI),
we consider these two phases as identical. The experimental
result tells that we cannot find two tags which have identical
phase readings across all the three antennas. So combining
the channel estimates from multiple channels gives a robust
fingerprint to identify each tag.

To solve the second problem, we find that due to the
limited moving speed of a tag, the change in a tag’s channel
parameters between two queries is also limited. So, the reader
can map a new channel estimate to the corresponding tag based
on the records of the tags’ channel parameters. In the case
where a tag goes out of the reading range and re-appears,
the reader cannot directly identify this tag based on its channel
parameters. In this case, Fireworks will consider it as a new
tag and re-constructs its fingerprint.

Specifically, in our PHY-layer tag identification method,
the reader forms the fingerprint F = {∂,P(1)

T , . . . ,P(MA)
T }.

The fingerprints of all the tags form a fingerprint table, named
FTable. In the runtime, once the reader extracts a fingerprint
F from the collided RN16, it measures the distance between
F and all the fingerprints in FTable. If all the distances are
larger than a threshold, we consider the corresponding tag as
a new one. Then we ACK its RN16 to get its EPC and add F
to FTable. Otherwise, the tag is identified as Ti if Fi has the
smallest distance with F. To capture the change in the tags’
channel parameters, the reader then updates Fi as Fi = F.

VI. EVALUATION

A. Implementation and Experiment Settings

The reader side of Fireworks is built based on the USRP
N210 software defined radio (SDR) with UBX RF daughter-
boards and 900 MHz antennas. The ADC sampling rate of
the reader is set at 20MHz. The TX and RX gain of the
antennas are set at 10dBi. The TX power of the reader is
set at 20dBm, which is much lower than what a commercial
reader can support (i.e., 30dBm). The reason we do not use a
higher TX power is that an USRP based reader do not support
self-interference cancellation. A high TX power will lead to
poor SNR of the received signal. Due to the low TX power,
the transmission distance between the tags and the reader is
limited to 2 meters in our experiment.

The tag side is implemented on programmable WISP tags
in our experiment. In the experiments, we use WISP tags
rather than commercial tags, because WISP is more suitable
for evaluating the performance of Fireworks. Recall that the
main target of Fireworks is to extract the channel parameters
of each tag from the collided signal, it is necessary and

desirable to evaluate the accuracy of the recovered channel
parameters through the experiments under different settings.
Using WISP tags makes it feasible to control the parallelism
and to obtain the ground truth of channel parameters of each
tag. If we use commercial tags, the communication between
the reader and the tags must follow the EPC protocol. In this
case, we need to recover the channel parameters from the
collided RN16 signal, as we have discussed in Section V. The
problem here is although we can recover the channels, it is
non-trivial to map them to the corresponding tags, without
the knowledge of their EPC IDs. In other words, we cannot
map the estimation results to the ground truth to evaluate
the errors. The method proposed in Section V can solve this
problem by using a tag’s PHY-layer fingerprint as its ID,
however, with additional errors. Therefore, although Firework
can be applied with commercial tags, we choose WISP as the
hardware platform in the experiments.

B. Channel Estimation Accuracy

In this experiment, we evaluate the accuracy of channel
estimation under different influencing factors. Specifically,
we adjust the number of tags, the tag-reader distance D (which
leads to different signal SNR), the tag spacing d, and the
bitrate of the tags to evaluate how these factors affect the
performance of Fireworks. By default, we have D = 50cm
(the corresponding signal SNR is about 15dB) and d = 10cm.

We treat the channel obtained in the non-collision TDMA
scenario as the real value. Specifically, for each setting,
we conduct experiments under both collision scenario and
TDMA scenario. The estimation error is calculated as the
difference between the values obtained under these two
scenarios.

We compare Fireworks with a baseline method which
first uses FlipTracer [28], a state-of-the-art parallel decoding
method, to identify the combined state of each signal cluster,
and then extracts the channel of each tag based on the centers
(i.e., the density peaks) of the clusters (we term this baseline
method as FlipTracer in the following of this article.)

Performance under different numbers of tags. In this
experiment, we let 2∼5 tags transmit simultaneously. The
estimation error under different number of tags are shown
in Fig. 12(a). We have the following findings:

• With more tags, the mean error of both the two methods
increase due to the aggravated interference among tags.
For example, the phase error of FlipTracer increases from
0.3∼0.7 rad. to 0.6∼1.4 rad. when the number of tags
increases from 2 to 5. Compared with FlipTracer, Fire-
works does not suffer obvious performance degradation.
Specifically, in the 5-tag case, the mean error of phase
estimation is 0.135 rad., which is almost one magnitude
lower than that of FlipTracer. Its mean error of phase and
amplitude estimation across all the parallelism levels are
0.054 rad. and 0.0029, respectively. Such a high accuracy
is achieved due to Fireworks’s ability to compensate the
inter-tag interference.

• For FlipTracer, the tag number affects not only the mean
error of channel estimation, but also the error variation.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 29,2021 at 02:20:07 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: PARALLEL BACKSCATTER: CHANNEL ESTIMATION AND BEYOND 1137

Fig. 12. Channel estimation error: (a) channel estimation error v.s. tag number; (b) channel estimation error v.s. SNR; (c) impact of d; (d) impact of bitrate.

Fig. 13. Tracking accuracy: (a) recovered trajectory; (b) tracking error with one tag; (c) tracking error with two tags; (d) tracking error with three tags;
(e) tracking error with four tags.

This is due to the increased flipping frequency of the
signal when more tags transmit simultaneously. Fireworks
is almost not affected by the increased tag number since
it extracts the channels directly based on the trajectory of
the signal.

Performance under different signal SNR. In this experi-
ment, we use three tags. The tag-reader distance changes from
30cm to 100cm, and the corresponding signal SNR decreases
from 15dB to 5dB. The performance under different SNRs are
shown in Fig. 12(b). This two figures tell that:

• A surprising observation is that the mean error of
FlipTracer slightly decreases with the decreased SNR.
The phase error range increases from 0.3∼0.6 rad.
to 0.3∼1.2 rad. when the SNR decreases from 20dB
to 5dB. This is indeed due to the aggravated inter-tag
interference when the signal power is high. In contract,
Fireworks is not sensitive to the SNR due to its ability to
compensate the inter-tag interference.

• For both the two methods, the error variance of the
phase estimation increases with the decreased signal
SNR, because the low SNR amplifies the phase error.

Due to the page limitation, we do not show Fireworks’s
performance in tackling the near-far problem (i.e., when
there is a significant difference between tags’ signal SNRs).
We leave this in the future works.

Performance under different inter-tag distances. The
inter-tag distance d is an important factor which determines the
intensity of inter-tag interference. In this experiment, we use
3 tags and change d from 3cm to 15cm. The experiment result
is shown in Fig. 12(c). As expected, the performance of Flip-
Tracer degrades significantly with the decreased d. Fireworks
consistently outperforms FlipTracer at all distances. Specif-
ically, when the inter-tag distance is only 3cm, Fireworks

incurs only a 0.03 rad. median error in phase estimation and
a 0.005 median error in amplitude estimation.

Performance under different bitrates. Tags’ bitrate is also
an important factor which determines how fast the signal
moves on the IQ domain. In this experiment, we observe
how different bitrates of the tags affect the performance
of Fireworks and FlipTracer. Again, we use three tags and
the bitrate of the tags change from 100Kbps to 500Kbps.
Since the WISP platforms currently support only a 256Kbps
bitrate, we conduct simulations to see the performance of
the two methods with 500 Kbps bitrate. The result is shown
in Fig. 12(d). We find that for both the two methods,
the bitrate affects the error variance of channel estimation.
Compared with FlipTracer, Fireworks is more robust to the
high bitrate because it is designed to estimate the channels of
the tags directly from the moving trajectory of the collided
signal.

C. Sensing Accuracy

In this section, we use target tracking as an example
to evaluate how Fireworks improves the performance of
the backscatter-based sensing applications. In the experi-
ment, we let the tags move together along different tracks.
Three antennas are deployed around the three corners of the
100× 150 cm2 surveillance region. To avoid the interference
among them, we set them to different frequencies.

We compare the performance of two tracking methods:

• Tagoram. Tagoram is a state-of-the-art tracking method
which reconstructs the moving trajectory of a tag based
on the phase of its signal. In Tagoram, the tags transmit
sequentially based on the conventional EPC protocol.

• Tagoram+Fireworks. In this method, the tags transmit
simultaneously, then the reader uses Fireworks to recover
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the channel parameters of all the tags. The recovered
channels are then used by Tagoram for tracking.

Trajectory accuracy. In the experiment, we let three tags
move simultaneously along trajectories with different shapes
(a line trajectory and a circle trajectory) and of different
letters, as shown in Fig. 13. The movement along each
trajectory is completed within 1.5 seconds. Fig. 13 shows an
example of the recovered trajectories. The trajectories in gray
are the ground truths, while the blue and red ones are the
estimates of Tagoram and Tagoram+Fireworks, respectively.
As we can see, Tagoram+Fireworks accurately reconstructs
not only the relatively straight segments but also the curved
strokes, while the trajectories of Tagoram deviate significantly
from the ground truths, especially for the trajectories with
higher complexity. This is due to the significantly reduced
sampling rate of Tagoram when three tags transmit
simultaneously.

Performance under different numbers of tags. In this
experiment, we change the number of tags from 1 to 4. Under
each tag number, we let the tags move along the trajectories
shown in Fig. 13 for 20 times. The CDF of the trajectory errors
for Tagoram and Tagoram+Fireworks.

The figure shows that Fireworks+Tagoram significantly out-
performs Tagoram especially with more tags. This is owning to
the high sampling rate of Fireworks. Specifically, when there
is only one tag, the sampling rate of Tagoram is about 57Hz.
The Fireworks+Tagoram only slightly outperforms Tagoram.
When there are two tags, the sampling rate of Tagoram
decreases to 39Hz. As a result, the median error of Tago-
ram increases to 1.7cm and the 90th percentile increases
to 2.6cm. For Fireworks+Tagoram, its median error and 90th
percentile are 1cm and 1.4cm, outperforming Tagoram by
almost 2×.

When there are four tags, the median error of Tagoram+
Fireworks is 1.3cm and the 90th percentile is 1.5cm. No sig-
nificant performance degradation is observed compared with
the two-tag case. While Tagoram’s median error increases
to 5.1cm and the 90th percentile increases to 6cm. Fire-
works improves the performance of Tagoram by 4× in this
case.

Performance for trajectories with different complexities.
The complexity of the trajectory is also an important factor that
affects the performance of the tracking systems. First, since
the movement along all the trajectories are completed within
the same time length (1.5 second), different complexities of
the trajectories means different moving speeds. In addition,
trajectories that have more curved strokes or sharp corners
(e.g., letter ‘M’) usually lead to higher tracking difficulty.
So we test the performance of Fireworks using three groups
of trajectories with different complexities. The CDF of the
trajectory errors of Tagoram and Tagoram+Fireworks for
different groups of trajectories are shown in Fig. 14.

By comparing the three figures, we find that the improve-
ment brought by Fireworks is more obvious with complex tra-
jectory. Tagoram’s median tracing accuracy for the trajectories
with high, medium, and low complexities are 1.1cm, 2.5cm,
and 3.2cm, respectively. After combined with Fireworks,

Fig. 14. Tracking error of trajectories with different complexities.

the accuracy increased to 0.7cm, 1.0cm, and 1.2cm, bringing
1.5×, 2.5×, and 2.7× performance gain, respectively.

VII. RELATED WORK

Many works have been proposed to separate the par-
allel transmitted signal. A typical example is Successive
Interference Cancelation (SIC) [26]. However, SIC requires
significant difference in the SNR of the colliding signals.
Hence it only applies to limited scenarios. Methods like
ZigZag [37] and mZig [38] decode the collided signal base
on the assumption that the collision is a linear addition result
of the colliding signals, which is not the case of backscatter
transmission.

Recently, many methods are designed to decode the
parallel transmitted backscatter signals [27], [28], [32], [34],
[39]–[45]. Specifically, LF-Backscatter [32], BiGroup [27],
and FlipTracer [28] can decode the collided signals by exploit-
ing the spatial and/or temporal characteristics of signals’
combined states. The latest proposal Hubble [34] further
improves the practical usability of the parallel backscatter
technology, achieving a 5-tag parallelism under relatively
weak SNR (signal to noise ratio). However, all of the above
methods are just able to recover the coarse-grained signal
state of each tag, but cannot obtain the fine-grained channel
parameters.

Compared with parallel decoding methods, Fireworks deep-
ens the level of signal processing and extracts the channels
of backscattered signals. Compared with its previous version
introduced in [46], Fireworks in this article is more light-
weight and is compatible with the commercial MAC protocol,
which makes it applicable to many existing RFID sensing
systems.

VIII. CONCLUSION

This article studies the backscatter-based sensing from a
new angle, namely channel estimation of parallel backscat-
tered signals. With an eye on the increasingly dense deploy-
ment of backscatter-based IoT devices, how to make them
work together as efficiently as possible is clearly a signif-
icant issue. Our proposal Fireworks is the first approach
that enables channel estimation of parallel backscattered
signals. Fireworks makes accurate channel estimation and
indeed enhances the efficiency and accuracy of backscatter-
based sensing applications. In our future work, we plan to
explore the multi-antenna approach on the reader, which
potentially further increases the capacity of parallel channel
estimation.
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