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Abstract—Parallel backscatter is a promising technique for
high throughput, low power communications. The existing
approaches of parallel backscatter are based on a common
assumption, i.e. the states of the collided signals are distin-
guishable from each other in either the time domain or the
IQ (the In-phase and Quadrature) domain. We in this paper
disclose the superclustering phenomenon, which invalidates that
assumption and seriously affects the decoding performance. Then
we propose an interstellar travelling model to capture the bursty
Gaussian process of a collided signal. Based on this model,
we design Hubble, a reliable signal processing approach to
support parallel backscatter in the wild. Hubble addresses several
technical challenges: (i) a novel scheme based on Pearson’s Chi-
Square test to extract the collided signals’ combined states, (ii)
a Markov driven method to capture the law of signal state
transitions, and (iii) error correction schemes to guarantee the
reliability of parallel decoding. Theoretically, Hubble is able to
decode all the backscattered data, as long as the signals are
detectable by the receiver. The experiment results demonstrate
that the median throughput of Hubble is 11.7 X higher than that
of the state-of-the-art approach.

Index Terms— Backscatter, wireless, parallel transmission.

I. INTRODUCTION

ACKSCATTER, as a battery-free communication tech-
nology, enables Internet of Things (IoT) devices to sense
and transmit data at ultra-low cost, hence becoming attractive
to a broad range of applications [1]-[9]. As the IoT technology
proliferates in areas like logistics, warehouses, manufacture,
and retail, the deployment scope and scale of backscatter
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devices (e.g. RFID and WISP tags) have explosively grown
in recent years. How to efficiently gather data via backscat-
ter becomes a crucial problem. Under this circumstance,
parallel backscatter is proposed. When transmissions from
multiple tags come in parallel, the aggregate throughput is
expected to be much higher than that of the conventional
approaches [10]-[14].

It is however a non-trivial task to parallelize backscatter
in practice. The parallel backscatter signals will generally
collide with each other at the receiver (e.g. the reader antenna),
making it hard to recover the data from each tag. If taking the
low-power communication and environmental influence into
account, the collided signals may be noisy and variational,
which further increases the difficulty of parallel decoding.

Backscatter generally adopts ON-OFF keying modulation
to encode data [10], which accordingly generates two signal
states. At the core of parallel backscatter is a process to
identify the state of every collided signal. The existing works
to tackle this problem [15]-[18] mainly exploit the features
of signal states and state transitions in the time and IQ
(the In-phase and Quadrature) domains to accomplish parallel
decoding. A common assumption behind is that the state of
the collided signals are distinguishable.

When we implement the existing approaches with backscat-
ter tags in the wild, we observe a huge gap between the theory
and the practice. The reason lies in the follow aspects:

First, backscatter signals are noisy by nature. Viewed in the
IQ domain, the collided signals at the same state form a cluster
rather than fall at a single point. The radius of the cluster is
generally determined by the noise level. So the signal clusters
will expand in noisy environments.

Second, the distances among the cluster centers in the
IQ domain are generally determined by the received signal
strengths (RSS) at the reader. In reality, the RSS at the
reader is relatively weak, which means short inter-cluster
distances. When expanded clusters get closer to each other,
they are likely to overlap, as is so-called the Superclustering
Phenomenon. Superclustering confuses the collided signals as
well as the clusters, which obstructs parallel backscatter in
practical scenarios.

Last but not least, the number of clusters exponentially
increases with the degree of parallelism. When more and more
tags join the parallel backscatter, the chance of superclustering
also dramatically increases, which further decreases the decod-
ing rate (the percentage of packets successfully decoded).

In order to the address the above problem, we in this
paper propose Hubble, a reliable signal processing approach to
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support parallel backscatter in the wild. The design of Hubble
stems from the following key insight: the spatiotemporal
distribution of the collided signals follows a bursty Gaussian
process, which is the combination of the burstiness in the time
domain and the gaussian property in the 1Q domain. Based
on this insight, we propose an interstellar travelling model,
which accurately characterizes the underlying but deterministic
signal state transitions with random noise. By exploiting the
rich processing capacity at the backscatter receiver (e.g. the
reader), one can use this model to extract the signal states as
well as trace the state transitions. Our contributions in this
work are three-folded:

o Through extensive observations and experiments, we dis-
close the superclustering phenomenon and its negative
impact, which exists in almost all the parallel backscatter
scenarios. In exploring the root causes of superclustering,
we find that the spatiotemporal distribution of the collided
signals follows the bursty Gaussian process and propose the
interstellar travelling model to characterize this process.

o We propose the Hubble approach, which addresses several
unique technical challenges in parallel decoding: (i) a novel
scheme based on Pearson’s Chi-Square test, which contrasts
the signal’s temporal burstiness to the noise’s randomness,
helps to extract the collided signals’ combined states. (ii) a
Markov driven method is designed to capture the law of
signal state transitions. Using this method, one can contin-
uously trace the underlying state of each signal. (iii) error
correction schemes are designed to further guarantee the
reliability of parallel decoding.

« We implement Hubble and evaluate its performance across
different scenarios. Hubble significantly enhances the prac-
tical usability of parallel backscatter. Theoretically, Hubble
is able to decode all the backscattered data, as long as the
signals are detectable by the receiver. The experiment results
demonstrate that the median throughput of Hubble is 11.7x
higher than the state-of-the-art approachs.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the background
knowledge and the motivation of this work. In Section IV we
elaborate on the design of Hubble. After discussion on several
important issues in Section V, we present the evaluation results
in Sections VII. Section VIII concludes this work.

II. RELATED WORK

The central task of parallel decoding for backscatter com-
munication is to identify the state of every collided sig-
nal. Depending on how to distinguish different signal states,
the existing works can be classified into three categories.

Decoding based on IQ domain information. Early works
[19]-[23] assume that channel coefficients of the tags are
stable and add up linearly at the receiver when collision occurs.
Therefore, the collided signal can be decoded according to
their locations on the IQ domain. In practice, however, channel
coefficients keep changing due to the dynamic environment
and tag movement. Under such conditions, the above methods
have to re-estimate the channel coefficients frequently to
deal with channel dynamics, which means apparently high
overhead.
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Decoding based on time and IQ domain information.
Recent works propose to decode the collided signals by
simultaneously exploiting the time and IQ domain information
[15]-[17]. The underlying assumption is that different tags
start their transmissions with different delays and flip their
states with predictable intervals during transmissions. There-
fore, signal transition caused by different tags can be identified
and separated based on their timings. By further introducing
the IQ domain information, the signal transmitted by each
individual tag is decoded.

The advantage of the works in this category is that they
don’t rely on any prior knowledge of channel coefficients or
linear dependency among collision states. The limitation is
that they require relatively precise timing, i.e. low drifting
rate (less than 200 ppm [17]) of the built-in clock of tags,
to ensure flipping of different tags occur at predictable time
points. The reality is that the COTS (Commercial off the shelf)
tags exhibit high drift rates, which are between 40,000 ppm
and 68,000 ppm [17], [18]. The intrinsic clock drifts cause
degradation of decoding rate in practice.

Decoding based on the law of state transitions. A
recent work FlipTracer [18] proposes to identify transitions
of signal states with a so-called one-flip-graph. FlipTracer is
designed based on the finding that transitions between signals’
combined states follow identical and stable probabilities. By
comparing the traced state transitions with the computed one-
flip-graph, Fliptrace is able to identify all the signal states in
the IQ domain, while doesn’t rely on signal’s stability in either
the time or the IQ domain. However, Fliptracer still implicitly
relies on the same assumption as the other existing works.
That is, the state of the collided signals are distinguishable
from each other in either the time domain or the IQ domain.

According to the above discussion, we find that the key
factor that limits the applicability of parallel decoding is the
requirement on signal quality. That means the tags have to be
located very close to the reader without obstacles. This is not
the case in most IoT applications with backscatter devices.
How to achieve reliable decoding of parallel backscatter in
the wild? This is a problem with great significance in both
research and application fields. Hubble is the first work to
address this problem.

III. BACKGROUND AND MOTIVATION
A. Primer

A backscatter tag transmits its data through ON-OFF keying
modulation. The signal, which has two states, i.e., high (H) and
low (L), can be decoded using a magnitude threshold, as shown
in Figure 1(a-top). In parallel transmission cases, signals from
N tags collide at the reader side, creating 2V energy levels,
each representing a specific combination of the tags’ states
(denoted by S = [s1,82,...,5N], where s; H or L
indicates the state of tag ¢). As an example, Figure 1(a-bottom)
shows a collided signal of two tags. We can see that the gap
between different energy levels is not stable. Decoding solely
based on the energy profile is infeasible.

A typical scheme to address the above problem is to acquire
richer information of the collided signals from the IQ domain
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Fig. 1. Signals from the tags: (a) time domain signals from a single tag (top)

and two concurrent tags (bottom). (b) IQ domain signals.

[15]-[18]. As shown in Figure 1(b), due to different phases
and signal strengths, the collided signals form four clusters
in the IQ domain. If the signal clusters are clearly separated
from each other, we can associate each cluster to a specific
combined state using the existing approaches [15]-[18]. Then,
tracing signals’ state transitions among the clusters tells the
transmitted bits of each tag. The above is the basic mechanism
of parallel decoding.

B. Challenges

A fundamental problem underlying the existing parallel
decoding method is that signal clusters in the 1Q domain
are not always distinguishable from each other. In practice,
the noise level in the environment determines the radius of a
cluster, while the RSS of the signals determines inter-cluster
distances. When NV tags transmit concurrently, the signal RSS
of each tag can affect the distances between 2V~1 pairs
of clusters. For example, in Figure 1(b), distances between
clusters LS and HS (here S = H or L) are affected by the
signal power of Tag 1. Distances between SL and SH are
affected by the signal power of Tag 2. So in this case, high
signal strength of both tags are required to make the four
clusters distinguishable from each other.

We use P(RSS;) to denote the probability that the two
states of a single tag ¢ are distinguishable under the signal
strength RSS;. Clearly, a higher signal strength RS.S;
leads to a higher P(RSS;). To decode the collided signal,
the existing parallel decoding methods require that each two
clusters are distinguishable. In a N-tag-collision case, for
each tag i, its signal strength RSS; determines the distance
between 2(N — 1) pairs of clusters. So, the probability that
each two clusters are distinguishable is expressed as:

N

Py = [[ P(RSS:) . (1)

i=1

Equation (1) indicates that both the decrease in RSS and the
increase in tag number lead to steep decrease in decoding rate.
To verify this point, we in Figure 2 shows the collided signal
under different tag numbers and RSS. Figure 2(a) shows the
case where three tags are located only 1 ft away from the
reader. We can observe 8 clearly separated clusters in this case.
When we move one of the tags to 3 ft away from the reader,
the decrease in the tag’s RSS leads to cluster overlapping,
forming superclusters, as shown in Figure 2(b). The receiver
even cannot figure out how many signal states there are, not to
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Fig. 2. Examples of the collided signals: (a) three strong tags; (b) coexistence
of strong and weak tags. (c) three weak tags; (d) coincidental overlapping;
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Fig. 3. Performance of existing methods: (a)-(b) Performance of FlipTracer
and BiGroup under different SNRs; (c)-(d) Distribution of FlipTracer’s decod-
ing rate when 2 and 5 tags transmit in parallel.

mention tracing state transitions. Figure 2(c) shows that when
all the three tags are located 3 feet away from the reader,
almost every cluster is merged into a supercluster. None of
signal’s combined states can be extracted from the IQ domain.

It is worth noticing that low RSS is not the only cause
of superclustering. Even when the signals are all strong,
superclusters also exist with a certain chance. As shown in
Figure 2(d), the signal may coincidentally generate overlap-
ping clusters. This phenomenon becomes much more seri-
ous when more tags transmit concurrently, as shown in
Figures 2(e) and (f), where 4 and 6 tags collide, respectively.

With regard to the superclustering phenomenon, we observe
a huge gap between the theory and the practice, based on our
implementation of two existing approaches FlipTracer [18] and
BiGroup [15] with backscatter tags in the wild. Specifically,
we carry out a group of experiments under different settings
of the tag-reader distance and the degree of parallelism. All
the tags are positioned at the same distance from the reader.
Figures 3(a) and (b) respectively show the decoding rates
(the percentage of packets successfully decoded) of the two
approaches. We use SNR (signal-to-noise ratio) rather than the
real distance as the X-axis because SNR is a general metric
across different contexts. Clearly, the reader-perceived SNR
decreases as the tag-reader distance increases. The figures tell
that the theoretical results claimed by the existing approaches
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Fig. 4. Density distribution of collided signal.

are achievable only when the tags are very close to the reader
and the degree of parallelism is small. The decoding rates
seriously degrade when either the distance or the degree of
parallelism increases.

In order to provide a conceptual understanding of how the
superclustering problem affects the coverage of the existing
parallel decoding method, we in Figures 3(c) and (d) combine
the experimental result in Figures 3(c) and (d) and the signal
attenuation model to calculate the distribution of FlipTracer’s
decoding rate when 2 and 5 tags transmit in parallel. Specifi-
cally, Figures 3(c) and (d) plots the result in a 40 x 40.2D area.
Suppose the reader is at the center, tags deployed anywhere
in the area should be within the communication range of the
reader. Surprisingly and reluctantly, we find that the existing
approaches achieve decent performance only in a very small
portion of the entire area. That means the practical usability
of the existing approaches is far restricted in terms of space
and degree of parallelism.

Clearly, superclusering is a critical problem which seriously
affects the performance of parallel backscatter. One may
conjecture that a density-based clustering algorithm (e.g. the
one adopted by FlipTracer [18]) may help to resolve the super-
clustering problem. As a counter-example, Figures 4(a)-(c)
plot the density distributions of signals of three difference
cases. We can see that when cluster overlap with each other,
the overlapped area has a comparable density with the central
cluster areas, because the overlapped area gathers signals from
multiple clusters. So, only utilizing the IQ domain information
is no longer effective in identifying different clusters.

C. Randomness v.s. Burstiness

How to distinguish the overlapping area from the central
cluster area? Observing the signal’s temporal characteristics
in the IQ domain provides a new angle to tackle this problem.
Specifically, since the reader can oversample the received
signals, one state of the collided signal generally correspond
to many samples at the reader side. So, the collided sig-
nal will always continuously dwell on a state for a certain
period of time, before transiting to another state. That is
called the temporal burstiness of a collided signal. Due to
such burstiness, during any short period of time, the spatial
distribution of signals in the IQ domain tends to be con-
centrated in the corresponding cluster. At the same time,
the noise, which is generally supposed to be a Gaussian
factor, will make the signals randomly deviate from the cluster.
Figure 5 plots this interesting process in a 3D space, where
the Z-axis denotes time (measured by the index of signal
samples).
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We have two important findings from the above analysis:

o Although the central cluster area and the overlapped area
have similar signal densities, the arrival of the signal samples
in these two kinds of areas exhibit apparently different
levels of randomness/burstiness (as shown in Figures 5 (b)).
In other words, the signals falling into the central cluster
area is a deterministic bursty event, while the signals falling
into the overlapping area is a random event. This key finding
illuminates a way to effectively find the centers of all the
clusters, even when they overlap with each other.

o Due to the predefined data rate of communication and over-
sampling, the spatiotemporal distribution of collided signals
follows a traceable pattern. Such a traceable pattern (like the
expected dwell time at a state and the transition probability
between different states), combined with locations of the
signal samples in the IQ domain, provide fine-grained basis
for accurately tracing the underlying state transitions.

IV. HUBBLE DESIGN

Hubble is designed to extract the underlying state sequence
from the seriously jumbled collision signal based on the
bursty Gaussian behavior of the signal. Figure 6 summarizes
the sketch of Hubble. Specifically, Hubble first identifies the
locations of the cluster centers in the IQ domain, using the
center identification component. After that, Hubble begins to
trace signal’s state transitions, during which the signal tracing
and error correction components are alternated periodically to
guarantee high reliability. With the identified state transition
sequence, the collided signal can be decoded using existing
parallel decoding methods [15], [18].

In the following of this section, we first propose the
interstellar travelling model which captures signal’s bursty
Gaussian behavior, followed by the design details of Hubble.

A. The interstellar travelling Model

In this section, we propose our interstellar travelling model
to capture the bursty Gaussian behavior of the signal. We start
by briefly introducing the standardized coding (FMO or Miller)
used in backscatter transmission. Here we take FMO coding
for example (Miller coding exhibits similar characteristic with
FMO0). FMO flips signal state at every bit boundary, and the
bit 0 has an additional mid-bit state flipping. Since the reader
can oversample the received signal, signal will dwell on a
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Received signal

Fig. 6. Workflow of Hubble.

state before transiting to the other state. Specifically, suppose
the sampling rate of the reader is Mp, and the bitrate of
the tag is Br, then signal will dwell on one state for ]g—f
and 21_‘/1{3’; samples’ length, when transmitting bit O and bit 1,
respectively. So, when one tag is transmitting, signal’s dwell
time is averaged at Ty = %

Then let’s look at the scenario when Np tags transmit in
parallel. In this scenario, the collided signal has K = 2N7
states, denoted by Sy, ..., Sk. Since the flips of different tags
usually interleave each other, signal’s average dwell time can

be expressed as:

2Mp
3N B,

We model the signal’s dwell time as following the expo-
nential distribution. Specifically, the exponential distribution
describes the time interval between events which occur ran-
domly at a stable average rate. There are two main properties
of the collided signal that make the dwell time follows the
exponential distribution:

)

Ty =

1) The average dwell time is constant. As shown in Eq (2),
the average dwell time of a signal is solely determined by
the number of tags (N) and the bitrate of each tag (B;).
Although different tags have different clock frequencies
and drift times, the average bitrate of a tag B; (although
deviates from the claimed value) is constant in a collision
case. That is to say, the average dwell time is stable.

2) The dwell time of the collided signal is highly random and
unpredictable. First, due to the difference in tags’ power
charging rate, different tags have different response delays.
This leads to different and random initial offsets of the tags’
signals. Second, due to the high drifting rate of the tags’
clock, the bit durations of the tags neither identical among
tags nor stable over time. The randomness in response
delays and bit durations of the tags makes the dwell time
of the collided signal highly random and unpredictable.

Based on the above discussion, the probability that a signal
will dwell on a state for ¢4 samples can be expressed as:

e Tata 3)

We further conduct a set of experiments to verify our
assumption on the exponential distribution. In the experiment,
we let 4~6 WISP 4.0 tags transmit concurrently. Bitrate of
the tags changes from 50 Kbps to 250 Kbps. Figures 7 (a)-(c)
show the observed distribution of ¢4 and the fitted exponential
distribution under different bitrates with different numbers of
tags. We find that the dwell time of the signal properly fits
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Fig. 7. Distribution of signal’s dwell time.

the exponential distribution. We further conduct experiments
to observe the distribution of t; when tags with different
model transmit concurrently. Figure 7 (d) shows the result
when there are two WISP 4.0 tags and two WISP 5.0 tags.
Clearly, the distribution of ¢4 will not be affected by a tag’s
model.

Due to the time-domain burstiness of the collision signal
described above, we can estimate the probability that the i-th
signal sample is on state .Sy, based on Py(t4) and the state of
the previous sample:

, _ [ Pa(ta),
PT(Za Sk|td) - { (1d—de(td))PtranS(S(I’ Sk)’

si—1 = Sk
Si—1 — Sq

“)

Here Pirqns(Sq,Sk) is the transition probability between
states S, and S; (S; # Sk), and s; denotes the state of
sample 7. Equation (4) indicates that for the ¢-th signal sample,
the probability that it is on a certain state .Sy depends on: i) the
state of the (¢ — 1)-th signal sample (i.e., whether the (i —1)-th
sample is on state Sg); ii) the probability that the signal will
stay on a certain state given that it has stayed for t; samples;
and iii) the transition probabilities among different states.

Equation (4) captures signal’s burstiness in time domain.
Now we explore signal’s Gaussian property in the IQ domain.
Specifically, due to the noise, received signal samples on the
same state Sj are dispersed and scattered around a centroid
position (denoted by (I, Q%)) in the IQ domain. Assume
that the noise follows the Gaussian distribution, then the
probability that a signal sample on state S} is located at a
location (7, Q) can be estimated by:

Prq((1,Q)|Sk) = (1, Q, I, Q, X) Q)

where 7(e) is the probability density of the Gaussian distribu-
tion. X is the covariance matrix, which is related to the noise
level.

Combining Pr and Pjq provides an estimation of the
probability that the i — ¢th signal sample is located at (I, Q):

Ppa((1,Q)]i - Pr(kli,ta) (6)

Z Pro((1,Q)|5)

Ppg captures the bursty Gaussian behavior of the signal,
which is observed in Figure 5. We can exploit this model to
extract the signal states and trace transitions among the states.
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B. Extraction of Combined States

The key in state extraction is to find the signal clusters,
which represent different signal states. We divide this process
into two phases. In the first step, Hubble coarsely clusters
the samples using the density-based clustering method [24].
Very likely, some overlapped clusters may be grouped into
a supercluster in this step. Then, in the second step, Hubble
decomposes those superclusters one by one in the descending
order of their cardinality (the number of samples assigned into
the cluster), until a cluster contains only one center is detected.

In this section, we focus on the second step, exploring how
to reliably identify cluster centers in a supercluster.

1) Temporal Distribution of the Signal: For identifying the
centers in a supercluster, the most thorny problem we meet is
how to distinguish between the central area of a cluster and
an overlapping area. Experimental results in Section II-C
tell that although these two areas exhibit similar IQ domain
representation (i.e., density), their representation on time
domain exhibit different levels of burstiness/randomness. As
shown in Equation (6), for a collided signal, the probability
that the i-th sample occurs at a location (I,Q), namely
Ppa((I,Q)i), is determined by two factors: i) the state of
sample ¢ (which is captured by Pr); and ii) the signal’s 1Q
domain distribution (which is captured by Prg).

On one hand, for a location (I, Q) that is close to a cluster
center that represents a state Sy, Prg((I,Q)|Sk) is high only
when the signal is at state Sy (i.e., s; Sk). That’s to
say, the sample’s occurrence probability at (I,(Q) is highly
determined by Pr(i,k), which captures the probability that
sample i is at state Si. Equation (4) tells that a signal’s state
exhibits strong burstiness in time domain if (I, Q) is close to
a cluster center.

On the other hand, if (I,Q) is on an overlapping area,
Pro((I,Q)|Sk) exhibits no significant skewness for different
Sk. In this case, Ppa((1,Q)|i) will not change with the state
of sample i (i.e., Pr(i, k)). That is to say, signal samples will
arrive at the overlapping area with a constant average rate.
In addition, due to the Gaussian noise, the signal’s arrival at
the overlapping area occurs randomly and independently. So,
we can model the signal’s arrival in the overlapping area as
a Poisson process. The interval between successive arrivals
follows the exponential distribution.

We use the supercluster shown in Figure 4(c) as an example
to verify the above assumption. Specifically, we extract the
signal samples from a central area and an overlapped area
(as shown in Figure 8(a)). Then we calculate the occurrence
interval of samples in these two areas (denoted as Int. and
Int,). Figure 8(b) compares the distribution of Int. and Int,,.

We can see that, although the average values of Int. and
Int, are similar (indicating their similar densities), their dis-
tributions are quite different. The distribution of Int,, properly
fits the exponential distribution, as shown in Figure 8(c).
However, distribution of Int, deviates seriously from the
exponential distribution, as shown in Figure 8(d). This is due
to the signal’s bursty occurrence in the central area.

2) Center Identification: The above observation motivates
us to combine the distribution characteristics of the signal in
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both time and IQ domains as a metric to assess which areas
are central areas. Specifically, we search in the supercluster
with a moving grid (as shown in Figure 8(a)), where the size
of the grid is W and the moving step is % Here, W can
be adapted according to the noise level. For each location g,
we denote the occurrence intervals between the samples in the
window by Intg. We calculate two metrics of each location
g: 1) the number of samples in g, denoted by D(g); and ii)
the burstiness of samples’ occurrence in g, denoted by B(g).
Here, burstiness is quantified through Pearson’s Chi-Square
statistical test, by computing the deviation of the observed
distribution of Intg from the exponential distribution.

Figure 9 shows the normalized density and burstiness of
each grid g in Figure 8. We term this graph as a determine
graph. We can see that only the central areas exhibit both
high density and high burstiness. Then we propose a metric
to quantify how likely a grid g is a central area:

P.(g) = 8- B(g) - D(g). @)

where [ serves as a normalization constant.
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A challenge we meet in identifying the centers based on
P, is that we do not know the number of clusters. A naive
method is to use a threshold: the grids whose P. exceed the
threshold will be identified as cluster centers. However, this
is not a general solution because we cannot find a appropriate
threshold for all the collision cases. In the design of Hubble,
instead of judging directly based on P., we propose to recog-
nize the cluster centers through a frial process. Specifically,
since central areas usually exhibit both high density and high
burstiness, we consider the points that locate at the top right
area of the decision graph (e.g., D(g) > 0.5 and B(g) > 0.5),
as the candidates of cluster centers. Then we treat the first 5%
samples as training samples and assign them to the candidates
using the method proposed in Section IV-C (where P, serves
as the weight of each candidate). The result can indeed help
to recognize the cluster centers.

As an example, Figure 10 shows the trial result of the case
in Figure 8. We find that most samples are assigned correctly.
Therefore, if we denote the number of training samples that are
assigned into g as |g|. A hint for selecting the cluster centers
is provided by sorting |g| in the decreasing order, as shown
in Figure 10. Here, the anomalously decrease in the 5-th rank
helps us to identify the top 4 candidates as the cluster centers.

C. Tracing of State Transition

Now we have K cluster centers, each representing a signal
state. The next task is to identify the underlying state of each
sample ¢. The state of sample ¢ can be inferred based on two
clues: i) the location of sample ¢; and ii) the signal’s underlying
transition pattern. We use an example to illustrate our idea.

Figure 11(a) shows a example with two clusters A and B. In
this case, it’s hard to identify the states of the samples located
in the overlapping area (e.g., a and b) based on their locations.
By further considering the time domain information, we find
that when sample a arrives, the signal has stayed at A for
only 6 samples. While when b arrives, the signal as stayed for
28 samples. Since the average dwell time T} is 25 samples in
this case, we can infer that the signal is likely to flip when
sample b arrives. So, sample a probably belongs to cluster A,
while sample b probably belongs to cluster B.

In some cases, utilizing only the dwell time is not effective.
As shown in Figure 11(b), four clusters overlap with each
other. Sample s is located in the overlapping area of B and
C. Although we know that the signal is leaving A based on
the dwell time, but we cannot determine where the signal is

Td=25 Td=20
o B Start point o sc
a b ' B
s.: td=6 A .; Higher Pr.,
st td=28

1 ]
(@) (b)

Fig. 11.  Assigning a sample that located in the overlapped area: (a) two-
cluster-overlapping case; (b) four-cluster-overlapped case.

transiting to. We solve this problem based on signal’s different
transition probability between clusters, as discussed in [18].

Based on the above discussion, a sample’s state should
be identified based on a joint consideration of the sample’s
location, signal’s probable dwell time at a state, and the
transition probabilities between states. We model this process
as a Markov-based model. Specifically, we treat the combined
state of the samples as hidden states of the markov model.
Then P, which captures signal’s gaussian property in the
IQ domain, acts as the emission probability and Pr, which
captures the temporal burstiness of the signal acts as the tran-
sition probability. Then the likelihood for assigning sample @
to state S is given by:

P(i, Sk) = Puw(Sk) - Prq((I, Q)[Sk) - Pr(i, klta),  (8)
Here, P, (k) = %
k=1"¢
Given P(i, Sy ), solving the following optimization problem

assigns the IV received samples to the K states in a way that
maximizes the likelihood of the assignments.

is the weight of each cluster.

N
arg max Z P(i, k). )
Cc =
This problem can be solved using Dynamic Programming in
O(K N) operations.

Model initialize. Initially, Prg and Pr are unknown and
we roughly initialize these two parameters as follows:

Prq: Equation (5) tells that Py is related to two parame-
ters: 1) the location of cluster k; and ii) the covariance matrix
3. Assume that the background noise is relatively stable, >
can be measured based on the clustering result of previous
transmission tasks.

Pr: As shown in Equation (4), Pr is related to two
parameters: P; and Pj,q,s. Specifically, Py is initialized based
on Equation (3), where Ty = ﬁigm Here, B,y can be
estimated based on the available bitrate configuration of the
backscatter system, and N can be estimated based on the
total number of tags (denoted by Ng;;), and the number of
transmission slots in one frame (denoted by K).

Nu.ll R Na”—R
Nay 1 1
N = E R — 1-—— 10
( R ) (K ) ( K ) 1o
R=1
Phirans: Pirans 18 initialized as equal for all the cluster pairs.

Model update. P; and P,y are updated periodically at
run-time. In each period, we just count the dwell time of the
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signal and the number of transitions between different clusters,
based on the samples that are already identified. However,
errors in the assignments, even rarely occurs, may lead to
inaccurate estimation of Py and Pj.qns. SO, wWe propose a
method to correct those errors, as explained in Section IV-D.

D. Error Handling

Error detection. Hubble detects errors leveraging the relia-
bility of each assignment i (i.e., P(%, Sg)). Specifically, we find
that most incorrectly assigned samples are located in the over-
lapping area. This leads to a relatively low Prg, and therefore
a low P(i,Sg). To verify this assumption, we consider the
case in Figure 4(c) again. Figure 12(a) shows the distribution
of P(i,Sy) for correct and incorrect assignments. As shown,
P(i, Sy) is actually a indicator of error.

However, we cannot just identify an assignment with low
P(i, Sk) as an incorrect assignment! because a correct assign-
ment may also have low P(i, Si). Fortunately, we find that
compared with the incorrect assignments, correct assignments
typically lead to short recovery time (i.e., the number of
successive assignments that with low P(i,S))). Figure 12(b)
shows the distribution of recovery time for correct and incor-
rect assignments. We can see that more than 90% of the correct
assignments lead to a recovery time less than 2 samples. For
the false assignments, about 92% of them lead to a recovery
time that fall between 2 and 4 samples. Based on the above
discussion, we can identify an assignment sequence, which
exhibits successive low P(i, S;) as a suspicious segment.

Error correction. For error correction, we directly merge
the samples in a suspicious segment to the cluster that the
predecessor is assigned to (as shown in Figure 13(a)). In
some rare cases, the suspicious segment accidently covers a
bit boundary (as shown in Figures 13(b) and (c)). In this case,
we just merge the first % samples in the suspicious segment
to Cpre and the rest to C,.. Note that an incorrect merging
in a cross-boundary case only leads to slight displacement of
the bit boundary, which does not affect the decoding process.

V. PRACTICAL ISSUES

This section discusses some practical problems.

Partial collision problem. Partial collision problem refers
to the case where the responses from two colliding tags suffer
serious packet-level offset, as shown in Figure 14(a). This

we use a threshold, which is empirically set at P(i, k) = 0.7, to find the

low reliable assignments
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Fig. 14. Partial collision: (a) a two-tag example; (b) received signal.

makes the collided signal unevenly distributed on the 1Q
domain, which may lead to signal clustering errors. In the
previous sections of this paper, we have assumed that the
transmission of the colliding tags are synchronized by the
reader (packets transmitted from different tags do not seriously
offset with each other). However, if we relax the restriction,
allowing tags to transmit totally asynchronously, the partial
collision problem will occur.

To solve this problem, we use a moving window to detect
the change point at which the number of colliding tags
changes, as shown in Figure 14(b). Specifically, in each
window, we count the number of clusters in the 1Q domain.
Once the cluster number changes, which indicates that the
number of tags changes, a change point is detected. Then we
segment the signal based on the change points and decode the
signal in each segment individually. The number of colliding
tags in each segment is unchanged.

Enabling partial decoding. Hubble cannot separate two
clusters which are completely overlapped. This happens when
a tag suffers particularly low signal SNR. In this case, Hubble
tries to extract only the signals of the strong tags (if exist), and
consider the weak signals as noise. Take the case in Figure 2(b)
as an example, the signal from Tag 3 is too weak, making the
clusters HHL and HHH, and LLL and LLH completely
overlap with each other. In this case, Hubble will ignore the
signal from Tag 3 by merging Cluster HLL and HLH, and
LHL and LHH, leaving only four clusters which represent
the combined states of Tags 1 and 2.

To decide which clusters should be merged, we exploit
the bottom-up hierarchical clustering algorithm. Specifically,
we measure the inter-dissimilarity between each pair of clus-
ters (the distance between cluster centers), and merge the
cluster pairs one by one in the descending order of the
inter-dissimilarity. After each merging, we measure the self-
dissimilarity of the combined clusters (the distance between
the cluster centers of the two merged clusters). We get the
optimal clustering result when both high inter-dissimilarity and
low self-dissimilarity are achieved.

As an example, Figure 15 shows the hierarchical clustering
process for the 1Q signal in Figure 2(b). Figure 15(a) shows
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Fig. 15. Partial decoding: (a) IQ domain location; (b) cluster merging based
on inter-dissimilarity and self-dissimilarity.

the locations of the cluster centers. Figure 15(b) shows the
minimum value of inter-dissimilarity and the maximum value
of self-dissimilarity that measured after each merging. The
marked numerals means the number of clusters after each
merging. Then we can get the optimal clustering result by
finding the point that located at the lower-right corner.

VI. DISCUSSION

Signal SNR v.s. Bitrate. The performance of a paral-
lel decoding method is affected by two factors: channel
quality (SNR) and the sampling rate of the reader, which
respectively determine the signal resolution in IQ and time
domains. Consider that a reader’s sampling rate is two orders
of magnitude higher than tags’ bitrate, channel quality is
the bottle-neck factor that restricts the decoding performance.
Hubble is designed to break through this limitation. It achieves
this by exploiting the bursty Gaussian behavior of the collided
signal, which is brought by the asymmetry between the tags’
bitrate and the reader’s sampling rate. In another word, Hubble
provides an opportunity to trade tags’ bitrate for high parallel
decoding reliability under low SNR. This motivates future
research on optimizing the parallel decoding method, e.g.,
bitrate adjustment according to the channel quality.

Computation overhead. To reduce the computation
overhead, instead of directly processing each sample using
Hubble, we first divide the samples into grids (which is much
less than the samples) and cluster those grid using DBSCAN.
Therefore, the computation overhead for this process is only
O(kg - logky), where k, is the number of the grids. Then
Hubble separates the combined clusters using the method
introduced in Sections IV-B and IV-C. The computation
overhead of this process is O(G + M - (K + w)), where M
is the number of the samples that in the supercluster.

Generalization of Hubble. Hubble can be generalized to
various platforms using OOK modulation. However, it has dif-
ferent performance when implemented on different platforms,
depending on the MAC layer protocol the platform uses.

If we use the COTS tags, we need to strictly follow
the standard EPC protocol where collisions are avoided by
RN16 packets. Therefore, the performance gain of parallel
decoding will be limited. Even so, achieving a 5~6 decoding
capacity can still significantly increase the channel utilization.
The analysis result in [21] shows that a 5-tag capacity can
increase the channel utilization from 37% to 88%.

If we remove the elements for channel contention in the
EPC protocol, the tags can directly transmit their EPC ID.

= BiGroup ===* FlipTracer === Hubble
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Fig. 16. Overall performance.

When collision occurs, the reader decodes the collided EPC
ID using Hubble. In this case, the maximum performance gain
of Hubble, compared with the EPC protocol, achieves 10.7 %,
as shown by our evaluation results in Section VII-H.

Impact of channel variation. Dynamic in both the working
environment and the tags lead to channel variation, which
changes the locations of the clusters on the IQ domain. Hubble
is robust to such dynamics because the transmission time
of a typical RFID packet is as short as a few milliseconds,
which is within channel coherence time. This is a reasonable
assumption verified in many existing works [15], [18].

VII. EVALUATION
A. Experiment Setting

We implement Hubble on the USRP N210 and program-
mable tags (WISP). The SDR reader is connect with two UBX
RF daughterboards. The sampling rate of the reader is set at
20MHz. The default bitrate of the tags is set at 100Kbps and
the default packet length is set at 200 bits.

Our current implementation inherits some limitations of
the WISP. Specifically, its coverage is limited by WISPs’
communication range, which is typically within 2 m. This
limitation is not inherent to our design. Hubble is generalizable
to any backscatter platforms. For example, it can work with
COTS tags whose communication range is 10m, or emerging
RFID systems which enables long-range communication [7].

In the experiment, we compare the performance of Hub-
ble with two state-of-the-art methods, FlipTracer [18] and
BiGroup [15], which perform parallel decoding based on time
and IQ domain information, respectively. Both of the two
methods assumes separated clusters on IQ domain.

Methodology: We evaluate the performance of Hubble
under different numbers of tags and different SNRs. The
SNR is adjusted by changing the tag-reader distance. In the
experiment, we change the number of tags from 2 to 6. In
the case with n tags, we conduct n experiments. In the -
th (1 < ¢ < n) experiment, we fix the locations of n — ¢
tags within a 0.5ft transmission range, and move the other ¢
tags (termed as weak tags) further away from the reader, until
reaching the boundary for signal detection. In each location,
the tags transmit 100 packets concurrently, and the reader
decodes the collided signal using different approaches.

B. Overall Performance

Figure 16 shows the CDF of the throughput efficiency
(defined as the ratio of throughput to aggregated PHY bitrate)
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of Hubble, FlipTracer, and BiGroup. The figure tells that the
median throughput efficiency of FlipTracer and BiGroup are
only 0.07 and 0.11, respectively. BiGroup performs slightly
better than FlipTracer in low-SNR scenarios due to its ability
to partially decode collisions. Hubble has a median throughput
efficiency of 0.82, outperforming FlipTracer and BiGroup by
11.7x and 7.4 %, respectively.

More detailed results are given in Figure 17, which shows
the throughput efficiency of the three schemes v.s. the SNR of
the weak tags, under different numbers of concurrent tags and
different proportions of weak tags. Clearly, all the three factors
seriously affect the performance of FlipTracer and BiGroup.
In comparison, Hubble is not so sensitive to those factors due
to its ability to separate overlapped clusters.

C. Impact of the Signal SNR

As shown in Figure 17, the throughput efficiency of both
FlipTracer and BiGroup decreases rapidly with SNR. This
phenomenon becomes more apparent with more concurrent
tags. In comparison, Hubble is much more robust to the
low SNR. For example, when two tags transmit concurrently,
Hubble achieves a 0.85 throughput efficiency even when the
SNR of both the two tags is only about 4dB, while that of
FlipTracer and BiGroup are 0.01 and 0.03, respectively. Even
when 6 tags transmit concurrently and some of the tags exhibit
low SNR, Hubble can still decode 15% packets.

D. Impact of the Number of Concurrent Tags

Figures 18(a) and 18(b) show the averaged throughput
efficiency and bit error rate (BER) under different numbers
of tags. As shown in the figure, with the increased number of
concurrent tags, the BER of FlipTracer and BiGroup increase
significantly due to the serious superclustering problem. The
impact of the tag number is more apparent than that of the
SNR because the number of clusters increases exponentially
with the number of tags. Compared to FlipTracer and BiGroup,
the performance of Hubble is not so sensitive to the increase

Performance of different approaches under different SNR and different numbers of colliding tags.
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in the number of tags. Consider the case with 6 tags shown
in Figure 17, the throughput of FlipTracer and BiGroup reach
to 0 even when the SNRs of all the tags are particularly high. In
comparison, Hubble still achieves a 75% throughput efficiency.

E. Transmission Across Obstacle

In this section, we evaluate the performance of Hubble in
the NLOS (non-line-of-sight) scenario. The obstacle includes
a 23 x 16x4cm book, a glass panel, and a human. We have
two test positions: the LOS position and the NLOS position,
both are located 2ft away from the reader. For each kind of
obstacle, we change the number of concurrent tags from 2 to
4. In the case with n tags, we conduct n + 1 experiments.
Specifically, in the ¢-th experiment (0 < ¢ < n), ¢ tags are
located at the NLOS position and the other tags are located at
the LOS position. The result is shown in Figures 19.

As shown in the figure, the presence of an obstacle decreases
the throughput of all the three approaches. For Hubble, when
there are only two tags transmit concurrently, the performance
degradation caused by the presence of the human is only
5% ~ 9%. When 4 tags transmit concurrently, the performance
degradation becomes much more obvious, reaching to 75%
when all the tags are located at the NLOS location.

FlipTracer and BiGroup are much more vulnerable to the
NLOS scenario. As shown in Figure 19, even when there are
only two concurrent tags, the presence of an obstacle can
lead to 51% and 65% performance degradation for BiGroup
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and FlipTracer, respectively. So, the existing parallel decoding
approaches do not work in highly cluttered environments.

F. Impacts of Practical Factors

Bitrate. Bitrate of the tags is also a important factor which
affects the performance of Hubble. To evaluate the impact
of bitrate, we conduct an experiment with three tags, and
vary both the bitrate of the tags and the signal SNR. The
result is shown in Figure 20(b). We can see that, Hubble can
still achieve a decent performance at 256Kbps (the maximum
bitrate that the WISP platforms can support).

Dynamic environment. We further investigate the impact of
dynamic working conditions. Three cases are compared: i) the
orientations of the tags keep changing; ii) the tags are moved
towards and away from the reader (horizontal movement);
and iii) the tags are moved in parallel to the reader (vertical
movement). The result is shown in Figure 20(b).

In the rotation case, the performance of Hubble is close
to the stationary case, indicating that the impact of orientation
changing is negligible. In comparison, the impact of the actual
device moving (especially the horizontal moving) is more
promise, due to the changes in the SNR. This impact becomes
more obvious when more tags transmit concurrently.

G. In-the-Wild Experiment

To better demonstrate the efficacy of Hubble, we further
evaluate its performance in the wild. In the experiments, 8 tags
are located within the communication range (about 6 feet for
the WISP tags) of the reader but at different distances to
the reader. They transmit packets periodically with different
interval (20 ~ 30 ms) and collisions occur randomly due to
the different transmission schedules of the tags.

Figure 21(a) shows the throughout efficiency of different
approaches under different degrees of parallelism. We can
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observe slight performance degradation compared with that
achieved in the controlled experiment. The degradation is
caused by partial collision between packets. We can see that
although slightly decreased, the in-the-wild performance of
Hubble is still much better than FlipTracer and BiGroup.

H. Trace-Driven Simulation

We perform trace-driven simulations to investigate the per-
formance gain of Hubble when it is integrated with EPC
protocol. In the simulation, N tags are randomly deployed
in a 2R x 2R area, where the reader is located at the center
of the area. The tags respond to the reader following the EPC
standard. The number of slots Ny is adjusted by a parameter ()
(N, = 29). In a collision slot, the reader decodes the received
signal using Hubble, FlipTracer, and BiGroup, respectively.

Figure 21(b) compares the performance of Hubble with
the traditional EPC protocol where collision slots will be
discarded. For the traditional EPC protgvcol, we set Q =
|logd’ |. For Hubble, we set Q = [logs | to create more
collisions. Figure 22 shows the performance gain of Hubble
under different N and R. Here, R is normalized as the factor
of tags’ communication range. The result tells that i) the
performance gain decreases with R. ii) the number of tags
has no obvious influence on the performance gain;

Figure 22 shows the performance gain of Hubble compared
with FlipTracer and BiGroup. In this experiment, () is set
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Fig. 23. Performance gain when Ny = N/3.

at [logd’|. The result tells that Hubble’s performance gain
compared with FlipTracer and BiGroup increases significantly
with R. This is because that Hubble is more reliable than
FlipTracer and BiGroup, especially in low SNR scenarios.

We further decrease @) to Uogév / 3J to evaluate the perfor-
mance gain of Hubble with more collision slots. The result
is shown in Figure 23. Clearly, the performance gain is much
higher than that achieved when Q = |logs' |.

VIII. CONCLUSION

This paper presents Hubble, a signal processing approach
to reliably trace signal state transitions, based on the bursty
Gaussian behavior of the signal. Hubble achieves a 90%
decoding rate when two tags transmit concurrently under a
5dB SNR, and a 70% decoding rate when five tags transmit
under a 10dB SNR. With Hubble, the median throughput of
parallel backscatter can be improved by 11.7x. However, due
to the limited quality of the channel and the limited sampling
rate of the reader, the decoding capacity of Hubble is limited
to 6 tags. Potential solution may include integrating Hubble
to multi-channel (multi-carriers) or multi-antenna scenarios,
where the decoding capacity can be further multiplexed.
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