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Abstract—The signal phase is one of the most important
metrics in RFID-based sensing, which is a useful technique
enabling many significant applications. However, existing ap-
proaches of RFID-based sensing are often restricted in terms of
the sensing capability or accuracy, due to the phase entanglement
problem: the phase of the RFID signal is jointly affected by
multiple factors, and the change in the signal phase cannot be
directly attributed to any one of them. In order to tackle this
problem, we propose RF-Prism, a versatile sensing approach
that can simultaneously infer multiple physical factors (i.e.,
location, orientation, and material of targets), purely based on
the phase readings. RF-Prism includes a comprehensive model
to describe how different physical factors affect the phase of
the received signal, and a complete design to disentangle the
phase in the multi-frequency and multi-antenna scenario. We
implement RF-Prism and evaluate its performance with extensive
experiments. The results show that RF-Prism simultaneously
achieves a mean localization error of 7.61cm, a mean orientation
error of 9.83 degrees, and 87.9% material identification accuracy,
which outperforms state-of-the-art approaches.

Index Terms—RFID, Sensing, Phase

I. INTRODUCTION

Passive Radio-Frequency IDentification (RFID), as a major

enabler of automatic battery-free identification, has been ex-

tensively deployed in various applications [1] [2] [3] [4] [5]

[6]. Beyond the traditional identification functions of RFID

systems, recent works focus more on its sensing capability.

Since the signal received from an RFID tag is affected by

the state of the tag and the surrounding environment that the

signal propagates through, exploiting the signal metrics like

phase and RSSI makes it possible to sense a wide variety of

physical factors. For instances, we have witnessed numerous

RFID-based sensing applications in object tracking [7] [8],

motion recognition [9] [10] [11], material identification [12]

[13] [14], vibration sensing [15] [16], localization [17] [18]

[19] [20] [21], orientation sensing [22] [23] [24], humidity

sensing [25] [26], etc.

In spite of the progress in this area, we find an important

fact that is often overlooked: the metric of the RFID signal

(typically the phase) is jointly affected by all the factors

mentioned above, from the location and the orientation of

the tag-attached target to the humidity of the environment.

In a practical application scenario, the impacts of multiple

factors essentially entangle with each other in the phase of

the received signal. Consequently, when a change in the signal

phase is detected, it is hard to directly attribute this change to

any one or a portion of those factors. Neglecting this problem
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Fig. 1. Application scenarios of RF-Prism.

leads to restricted functions or poor accuracy of RFID-based

sensing.

Fig. 1 shows several typical application scenarios of RFID-

based sensing, such as the inventory management in chemical

labs and hospitals, commodity monitoring in supermarkets,

security checking, and automatic production lines. There are

many other similar scenarios that have similar challenges on

RFID-based sensing. Let’s take the inventory management in

chemical labs as an example. Every bottle and flask, where

chemical is contained, is attached with an RFID tag. Due to the

constant taking in and out operations, different chemicals may

be placed at the same position on the shelf. The same chemical

may also be placed at different positions at different time.

Since the location of the bottle and the contained chemical

jointly affect the tag’s signal, none of the existing sensing

system can answer questions like where is a certain chemical

or what is the chemical at a specified position.

Looking into the above problem, we find that it is a common

limitation of the existing works on RFID-based sensing. The

root cause is the entangled impact of different factors on

the signal phase. Due to this reason, the existing RFID

based localization approaches usually have to assume static

RF environment and fixed/known tag orientation [17], while

the RFID based material sensing approaches usually need to

calibrate for the unknown tag location and orientation [13].

Such designs are compromised against the phase entanglement

problem, and are by nature incapable of effective sensing in

real-world applications.
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This paper presents RF-Prism, a versatile RFID-based sens-

ing approach which is able to directly disentangle the phase

reading and infer all the impacting factors simultaneously.

Indeed, the phase entanglement problem is essentially an

undetermined problem where the known conditions (i.e., phase

reading) is not sufficient to solve all the unknown factors.

RF-Prism solves this problem by fully exploiting the channel

hopping capability of COTS RFID readers and the multi-

antenna deployment in most RFID systems. This provides

an opportunity to increase the dimensions of known condi-

tions by jointly exploiting information from more dimensions

(i.e., multi-frequency and multi-antenna). With the increased

amount of conditions, we build a phase-disentangled sensing

model where all the factors that contribute to the phase change

can be resolved in one-shot phase readings.

RF-Prism’s ability of phase disentangling not only improves

the accuracy in the estimation of one certain factor but also

enables simultaneously estimation of multiple factors, expand-

ing the sensing capability. This extends the application scope

of RFID-based sensing, making it able to support advanced

and complex applications where multiple factors of one target

are simultaneously interested, e.g., the chemical management

example mentioned previously.

The contributions of this paper are summarized as follows:

• Based on an in-depth understanding of signal’s propaga-

tion in the environment, we build a comprehensive model

to describe how different physical factors affect the phase

of the received signal, and further extend this model to

the multi-frequency and multi-antenna scenario.

• We propose the design of RF-Prism and demonstrate a

complete workflow of versatile sensing - achieving simul-

taneously phase-based localization and material sensing.

• We implement RF-Prism on a COTS RFID platform,

and evaluate its performance with extensive experiments.

Our results show that RF-Prism simultaneously achieve a

mean localization error of 7.61cm, a mean orientation er-

ror of 9.83◦, and 87.9% material identification accuracy,

which outperforms state-of-the-art approaches.

The rest of this paper is organized as follows: We review

the related works in Section II. Section III presents the design

overview. The technique details of signal disentangling and

versatile sensing are respectively elaborated in Section IV and

Section V. Section VI presents the implementation details and

the evaluation results. We conclude this paper in Section VII.

II. RELATED WORKS

In this section, we briefly review the related literatures in

RFID phase-based sensing.

Since the phase reading reflects the propagation distance of

a tag’s signal, by observing the phase changes we can track the

location of the tag, realizing applications like localization [17]

[19], tracking [8] [7], behavior identification [9] [10], rotation

sensing [24] [22], vibration inspection [15] [27], and etc. For

example, BackPos [18] proposes a hyperbola-based algorithm

to determine the position of the target tag using multiple

antennas with known geometric structure. It can achieve a

mean accuracy of 12.8cm without using anchor tags. Tagoram
[7] builds a differential augmented hologram to estimate the

probabilities of the tag’s existence on the 2D surveillance

plane. Tagbeat [27] infers the target’s vibration frequency by

observing the change of the phase reading that caused by the

periodical change in the reader-tag distance.

Besides the propagation distance, phase reading is also

related to the impedance of tag antenna. Specifically, when

attached to or close to targets with different materials, tag’s

antenna will suffer different amounts of impedance changes.

This further leads to different phase changes. Given this

phenomenon, we can treat tag as a low-cost material sensor to

perform tasks like material identification [12], touch sensing

[28], and leakage detection [29] [30]. For example, Tagtag [12]

demonstrates that phase and RSSI can be used as an indicator

to distinguish even genuine and fake perfumes. TwinLeak [29]

show that it is possible to detect a 10ml liquid leakage on

tag with a 97.2% accuracy by simply observing the phase and

RSSI change of tag’s signal. RIO [28] shows that finger touch

can also change the impedance of tag antenna, based on which

one can use tag array as a low-cost keyboard/tablet to track

user’s finger movement.

One problem endemic to phased-based RFID localization

and sensing is that the phase value is jointly determined by

multiple physical factors. So it is indeed difficult to attribute

a change in phase to any one or a portion of the factors,

making it infeasible to sense any one of the factors. Existing

method address this problem in two ways: i) considering some

of the factors as noise and eliminating their impact using

signal filtering methods or using special tag deployment; or

ii) trying to infer multiple factors simultaneously based on

sophisticated signal features which are designed dedicate to

estimate particular factors. For example, in detecting liquid

leakage, TwinLeak [29] uses a dual-tag model to eliminate

the impact of tag mobility/human on phase reading. 3D-
OmniTrack [24] propose a polarization-sensitive phase model

which can provide both the location and orientation of tags

simultaneously in 3D space. TagRay [14] uses the change

pattern and change range of the phase reading to respectively

infer the moving trajectory and material of the target.

However, all of those solutions do not fundamentally solve

the phase entanglement problem. They are compromised

against the phase entanglement problem and might perform

well in the particular scenarios they dedicate to, but suffer poor

generality when used in other scenarios. Different from those

methods, RF-Prism firstly presents a comprehensive model to

directly disentangle the phase by leveraging the frequency

and spatial diversities, and then address the entanglement

problem for different RFID sensing applications. RF-Prism

extends the application scopes of RFID-based sensing, making

it able to support advanced and complex functions. Besides,

the disentangled signals, in which the ambiguity has been

removed, can also improve the performance of existing sensing

approaches.
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Fig. 2. System Overview of RF-Prism.

III. OVERVIEW

RF-Prism is a versatile sensing system that can simulta-

neously infer multiple physical states of a target (e.g., its

location, orientation, and material), relying purely on the phase

reading from the COTS RFID tag attached to it.

RF-Prism consists of one COTS RFID reader and sev-

eral COTS tags to label the target objects. The reader is

equipped with multiple circularly-polarized antennas. We use

three antennas in 2D localization and four antennas for 3D

localization. The antennas are placed at different locations and

face toward the working region. The accurate coordinates and

directions of the antennas are measured during the deployment.

In the sensing process, the reader communicates with the tags

across different frequency channels, during which the tags

response to the reader and the phase change under different

frequencies can be observed and utilized for sensing.

Fig. 2 shows the system architecture of RF-Prism, which is

composed of three modules:

Signal pre-processing module. This module is used to

denoise the raw phase readings provided by the commodity

RFID reader, deal with the 2π folding problem, and correct

the sudden π jump for latter processing.

Signal disentangling module. Based on a multi-frequency

and multi-antenna phase model, this module disentangles

the phase changes that caused by different factors, namely

propagation distance, tag orientation, and target material, re-

spectively. The disentangled phase signals are then feed to the

sensing module for further processing.

Versatile Sensing. This module utilizes the disentangled

phase signals for simultaneously localization and material

sensing. To further suppress the effect of tag mobility and

multi-path phenomenon, an error detector is further proposed

to detect and filter out the sensing result with large errors.

The next two sections elaborate on the signal disentangling

module and the versatile sensing module, providing the tech-

nical details.

IV. SIGNAL DISENTANGLING

As we have mentioned previously, the phase value of the

received signal is jointly determined by multiple factors, such

as the tag’s location, orientation, the material of the object that

the tag is attached to, and etc. As a result, to infer any one

of these physical factors, a necessary assumption is that all

the other factors are known and constant during the sensing

process, so that all the change in phase value can be attributed

to the desired factor. Such assumption is however unlikely in

most sensing applications where all the physical factors are

unknown and multiple factors will change simultaneously. In

this case, none of the factor can be successfully inferred from

the phase value.

To address the above phase entanglement problem, we in

this section start with a comprehensive modeling of how

different physical factors affect the received phase. We then

show how to disentangle the effect of different factors by

leveraging multiple carrier frequencies and multiple antennas.

A. Understanding The Phase Change In RFID Systems

In RFID communication, the reader transmits a constant

single-tone carrier wave (CW) and then the tag will backscatter

this CW to the reader after modulating its ID information on it.

When the backscattered signal is received, the reader reports

the phase reading by calculating the phase difference between

the transmitted and received signals. According to [24], the

phase reading θ contains four parts:

θ = (θprop + θorient + θreader + θtag) mod 2π (1)

where θprop = 2π× 2d
λ is the phase change caused by signal’s

round-trip propagation along the antenna-tag distance d and

λ refers to the wave length of the CW signal. θorient refers

to the phase rotation caused by the tag’s orientation. θreader
is related to the reader’s transmitting and receiving circuits.

θtag is determined by the tag’s reflection characteristic and is

relevant to the tag antenna’s impedance [28] [31].

Equation (1) reveals two problems endemic to phased-based

RFID sensing:
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Fig. 3. Different phase components of RFID signal.

• The phase entanglement problem: it is infeasible to infer

any of the four unknown physical factor using only one

equation.

• The phase ambiguity problem: phase wraps around every

wavelength, so when trying to infer the antenna-tag

distance d, we can only recover a fractional distance

modulo the wavelength. That is why phase information is

typically used to infer the target’s relative displacement

but not exact location.

Past sensing systems address these two problems by either

treating some of the physical factors as noise (thus sacrificing

the sensing accuracy) or limiting their application to some

particular scenarios (e.g., localizing a target with known ori-

entation and material). Different from those works, we try to

solve these problems fundamentally by directly disentangling

the phase signal with the information combined from multiple

frequencies and multiple antennas.

B. The Multi-frequency Phase Model

RFID readers use frequency hopping to avoid interference.

A typical UHF reader hops between 50 channels in the

902MHz ∼ 928MHz ISM band. The channel hopping

capability of RFID systems provide an opportunity to combine

more information for phase signal disentangling. By extending

the phase model in Eq. (1) to the multi-frequency scenario, we

have:

θ(f) = (θprop(f)+θorient(f)+θreader(f)+θtag(f)) mod 2π
(2)

where f ∈ {f1, ..., fn} (n = 50) is the center frequency of

the CW signal.

To show how multi-frequency information helps in disen-

tangling phase signal and solving phase ambiguity problem,

we in the following discuss how each part of the phase reading

changes with frequency.

Propagation-dependent phase. The relationship between

the propagation-dependent phase θprop and the frequency f
has been widely explored in existing works [32], which is

given by:

θprop(f) = (2π × 2df

c
) mod 2π (3)

where c is the speed of EM waves. Eq. (3) tells that with a

certain distance d, θprop changes linearly with the frequency

f . The slop of the line gives the distance d. In this way,

the phase ambiguity problem is solved since d is inferred
based on the changing rate of the phase (i.e., the slop), but
not the exact phase value. As a verification, Figure 4 shows

the phase reading θ collected under different frequency when

the antenna-tag distance d is set at 0.5m, 1.5m, and 2.5m,

while other factors remain constant. We can see a clear linear

relationship between θ and the frequency f . Further, the slopes

of different d are distinct.

Orientation-dependent phase. According to [24], when

a signal propagates from a circularly-polarized antenna to a

linearly-polarized tag, the tag’s polarized vector w will affect

the phase value θorient as:

tan(θorient) =
2(u · w)(v · w)

(u · w)2 − (v · w)2 (4)

where u and v are the horizontal and vertical unit directional

vectors of the reader’s antenna, as illustrated in Figure 3.

The direction of vector w gives the orientation of the tag.

Eq (4) reveals that θorient relies only on the directions of

the antenna and the tag. Frequency change have no effect on
θorient because none of the variables in Eq (4) depends on the

frequency of the channel. As a verification, Figure 5 shows

the phase reading collected when the orientation of the tag is

set at 0◦, 30◦, and 45◦, while other factors remain constant.

We can see that since θorient will not change with frequency,

the change in θorient incurs the same phase shifts across all

frequencies. The slopes of the line that obtained at different

tag orientation are identical.

Reader and tag-dependent phase. As we have shown in

Eq (1), the phase reading θ is also affected by the phase

offset introduced by the imperfect hardware of the tag (denoted

as θtag) and the reader (denoted as θreader). Here, θtag and

θreader are typically abstracted to one parameter θdevice. Ac-

cording to [12], when a tag is attached to targets with different

material, its antenna impedance will change. This impedance

change will cause change in θdevice accordingly. Different

material introduce different amount of phase change. This is

why many existing works perform material identification based

on θdevice.

To further explore the relationship between θdevice and

f , we collect phase readings from the same tag when it is

attached to targets with different materials (e.g., wood, glass,

and plastic). All the other set-ups are identical across the three

cases. Figure 6 shows the results. We can see that the slopes of

different materials are distinct, indicating that θdevice changes
linearly with the frequency as:

θdevice(f) = (kt · f + bt) mod 2π (5)

kt and bt are the slop and the intercept of the line, which

changes with different material. In other words, kt and bt
contains information about the target material, thus they can

be used to infer the material that a tag attached to.

Putting things together. Now, we understand how each part

of the phase reading changes with frequency, as shown by Eq
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(3)∼Eq (5). Substituting those equations into Eq (2), we can

get the multi-frequency phase model as follows:

⎧⎪⎪⎨
⎪⎪⎩

θ(f) = (k · f + b) mod 2π

k =
4πd

c
+ kt

b = θorient + bt

(6)

Equation (6) indicates that the phase reading θ changes linearly

with the frequency f . The slop of the line (i.e., k) is jointly

determined by the antenna-tag distance and the target material,

and the intercept of the line (i.e., b) is jointly determined

by the tag orientation and the target material. By performing

linear fitting on the phase reading θ collected under different

frequency f , we can get b and k. That is to say, we now have

two equations and four unknown parameters, i.e., d, θorient,
bt, and kt. Although the number of equations has increased

by introducing the frequency domain information, it is still

difficult to disentangle each part of the phase reading from θ.

We solve this problem by employing multiple reader antennas.

C. The Multi-antenna Phase Model

A localization system typically involves at least three an-

tennas to perform triangulation. This provides us with an

opportunity to further disentangle different factors in Eq

(6) by adding additional equations from additional antennas.

However, adding new antennas also introduce new unknown

variables (i.e., new antenna-tag distance d and new tag orienta-

tion) because a new antenna will have a new coordinate and a

new directional vector. That is to say, in a N -antenna system,

we will have 2N equations and 2N + 2 unknown variables.

Fortunately, those 2N + 2 unknown variables are not in-

dependent. Taking the 2D localization as an example, we can

express the position of the tag with a 2D coordinates (x, y) and

the directional vector of the tag as (α) (in polar coordinates).

Then k and b in Eq (6) can be rewritten by replacing

variables d and θorient with dist(coordinate(Ai), (x, y)) and

θorient(direction(A
i), α):

⎧⎨
⎩
ki =

4π × dist(coordinate(Ai), (x, y))

c
+ kt

bi = θorient(direction(A
i), α) + bt

(7)

where dist() is the Euclidean distance function. Ai refers to

the ith antenna, whose coordinate and direction is measured

during deployment. Now we can see that no matter how many
antennas we include, the number of unknown parameters is
always 5 in a 2D localization case. Three antennas at different

positions can provide enough independent equations for solv-

ing those unknown variables and getting an unique solution.

When extending the problem into the 3D case, the number of

unknowns will increase to 7 and four antennas are sufficient

in this case. Three or four antennas are usually employed

in previous multiple-antenna based RFID localization systems

and the widely used ImpinJ R420 reader naturally support 4

different antenna ports, hence our design does not bring extra

overhead.

Another problem is that when we add new antennas to

the reader, we are supposed to consider the phase change

caused by the antenna hardware errors. More specifically,

different antennas will have different impacts on the received

phase readings, resulting in different θreader(A
i) and also

θdevice(A
i) when we query the phase values through the three

(or four) antennas, although they are connected to the same

reader. However, since θreader(A
i) and θdevice(A

i) only rely

on the hardware devices, unrelated to surrounding environ-

ments, they are determined once the reader and antennas are

chosen and will never be changed. Thus, we can simply correct

the phase errors by switching among the different antennas

for phase readings before the deployment while keeping other

conditions the same, and then calculating and eliminating their

differences. In this way, all antennas will have an identical

θreader so that aforementioned inference still holds.

V. VERSATILE SENSING

With the phase disentangling module described in Section

IV, we can separate the effect of each physical factor from

the observed phase reading. The obtained parameters, each
of which is solely determined by one physical factor, can be

further employed to perform simultaneous and unambiguous
estimation of all the physical factors. In this work, we take two

typical application of RFID sensing (i.e., localization and ma-

terial identification) as examples to demonstrate the capability

of RF-Prism. We believe that with the multi-frequency multi-
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antenna phase model and the idea of phase disentangling, RF-

Prism can support more powerful and fancy applications.

A. Localization

As we have discussed in Section IV, the tag’s coordinate

(x, y) and its orientation α can been directly obtained by solv-

ing the 2N functions provided by the N antennas. Compared

with the existing RFID-based localization, the localization

method in RF-Prism provides the following advantages:

• Tag’s coordinate is directly extracted from the phase term

that solely related to signal propagation (i.e., θprop). As

a result, RF-Prism does not rely on a calibration process

to estimate and compensate for the phase offset that

caused by hardware diversity of the reader-tag pair and

the material of the target that the attached to (i.e., θdevice).

• Since a tag’s coordinate and orientation are extracted

simultaneously, RF-Prism does not assume static and

known tag orientation during localization.

• Based on the information from multiple frequencies,

we can resolve the phase ambiguity problem without

exploiting antenna arrays and AoA information.

In summary, RF-Prism is the first to achieve calibration-free

localization based purely on the phase reading from COTS

tags, without incurring any extra hardware overhead (e.g., the

antenna array).

B. Material Identification

In the design of RF-Prism, material identification is per-

formed based on the parameters kt and bt, which is proved

to be highly related to the material of the target that the tag

attached to. However, kt and bt is not solely determined by

the target material, it is also related to the hardware diversity

of the reader-tag pair, which is mainly caused by imperfect

manufacturing. So, before using kt and bt for material identi-

fication, we should first compensate for this hardware diversity

through a calibration process.

Calibration. Since the impact of device diversity is invari-

ant in the whole sensing process, we can compensate for it

by performing a pre-calibration before the deployment. In the

calibration process, we place each tag Ti (without attaching

it to any object) at a known position with known orientation

and collect the phase reading across all channels. The phase

reading θ(f) can be expressed as:

θ(f) = (θprop(f) + θorient(f) + θ
(Ti)
device0

(f)) mod 2π (8)

where θ
(Ti)
device0

is the phase term that solely determined by the

i-th reader-tag pair. By subtracting the known θprop and θorient
from the above equation, we can calculate θdevice0(f) and

store it in a database. For identifying the material of tag Ti, we

subtract θ
(Ti)
device0

(f) from the tag reading θ(f) to compensate

the device diversity. Note that different from the calibration of

θdevice which should be performed once the tag is deployed

in different environment or attached on different target, the

calibration of θdevice is need to performed only once for each

tag. And this calibration is required only when RF-Prism is

used for material identification.

Feature extension. In the existing material identification

methods, complex hardware structures (tag array) or dedi-

cate tag behavior (e.g., moved by a robot) are required to

eliminate the impact of other factors, such as the reader-

tag distance and the orientation of the tag. Different from

those methods, we can directly extract parameters, i.e., kt and

bt, which is solely determined by the target material (after

calibration) from the phase reading. In RF-Prism, kt and bt
are the main features that is used for material identification.

To further mitigate the frequency-selective fading, we include

θmaterial(f) = θdevice(f) − θdevice0(f) that collected under

different f into the feature vector. So finally the feature vector

that used for material identification is:

F = (kt, bt, θmaterial(f1)...θmaterial(fn)) (9)

After extracting the features form the phase reading, RF-

Prism employs a classifier to identify the target material. In

Section VI, we tested performance of three commonly used

classifiers: K-Nearest Neighbor(KNN), Support Vector Ma-

chine(SVM) and Decision Tree. The result show that Decision

Tree provides the best classification accuracy, so we choose

Decision Tree for material identification. The details about

how we construct the training dataset and the performance of

the three classifiers are introduced in Section. VI.

C. Error Detector

One assumption underlying RF-Prism is that the physical

state of the tag and the target material remain static during

the time when the reader hopping across the whole frequency

band. Tag’s movement or rotating within this period will incurs

high localization and sensing error. To solve this problem,

an error detector is designed to find and filter out the time

windows which contain data that collected when the tag is

moving or rotating.

The basic insight is that when the tag is static, the phase

readings will change linearly with the frequency, according

to our empirical study in Section IV. However, if the tag

is moving or rotating during the frequency hopping process,

the collected phase reading under different frequency are

indeed correspond to different antenna-tag distances and tag

orientations. In this case, the linear relationship will not hold

any more. Thus, we can detect the movement and rotation of

the tag by simply checking whether a linearity relationship

still holds between the phase reading and the frequency.

D. Multipath Suppression

The linear relationship check is also helpful for suppressing

the multipath effect which is also a common problem in

RFID sensing systems. According to [13], [20], an important

observation is that the phase readings change linearly over

the carrier frequencies if the multipath effect is negligible

(or in other words the LOS signals dominates). Otherwise,

in a multipath environment, the phase readings at different

channels suffer from different superposition of phase from all

propagation paths. This can also result in nonlinear changes of

the phase readings. Different from the mobility case, if there
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Fig. 7. Experimental setup of RF-Prism.

still exists a relatively stronger direct-path signal, multipath

effects will not totally break the linear relationship like what

happens when the tag is moving, but make the samples on

some frequencies largely deviate while the remaining samples

can still be fitted into a line.

So in this case, we can just identify the outliers on those

frequencies which are affected a lot by multipath and pick up

the relatively ”clean” channels for localization and sensing.

Commercial RFID readers hopping their channels over 50

different frequencies within 902 ∼ 928MHz. It is more than

enough for a linear fitting so this selection can be conducted.

VI. EVALUATION

A. Implementation

We implement a prototype of RF-Prism using a commodity

ImpinJ Speedway R420 RFID reader, three Laird S9028PCL

circularly-polarized antennas, and Alien EPC Gen2 UHF pas-

sive RFID tags. The reader works at the UHF frequency band

902.75 - 927.25 MHz and hops over 50 frequency channels.

The reader costs about $1500 and 3 antennas costs about $400.

For back-end software, we use the ImpinJ Octane SDK

Toolkit to connect and control the reader for data collection via

an Ethernet cable. Data processing and localization/material

identification algorithms are developed in MATLAB. All the

software components run at a PC, which is equipped with Intel

Core i5-8600 CPU and 16G memory.

B. Methodology

The experiment setup is shown in Fig. 7. The three antennas

are placed with 0.5m spacing to each other, facing with a

2m × 2m working region. The coordinates and directions of

the antennas are measured before experiments.

For localization, the tags are placed at 25 points with

known positions as ground truth. To further test RF-Prism’s

performance in orientation sensing, we rotate the tags by 0◦,

30◦, 60◦, 90◦, 120◦, and 150◦ respectively at each position.

We repeat the measurement for every rotation degree 5 times

so the experiments are repeated 30 times at each position.

During the experiment, the tag is attached to a plastic object

which do not affect the tag’s signal feature.

For material identification, 8 different types of material are

tested, including 4 solid objects (wood, plastic, glass, metal)

and 4 liquids (water, skim milk, edible oil, 75% medical

alcohol). All these materials are easy to fetch in daily lives.

We choose those material types according to their different

conductivity, so we can detect the phase differences caused by

them and then identify them. If two kinds of materials have

similar conductive characteristics (like 50% and 60% alcohol),

the sensing system hardly can differentiate between them.

Note that the RFID tag often stops working when its circuits

are directly attached to a metal surface, hence we place two

pieces of paper between the tag and the metal surface to ensure

we can collect the data successfully. When performing liquid

identification, the liquid are contained in an identical glass

bottle. For each type of material, measurements are repeated

150 times (100 for 0◦ and 50 for 90◦) at different positions in

the working region. 50% of the trials in 0◦ are used as training

set and the others are used for validation. We evaluate the

material identification performance in terms of the accuracy

for a 8-class classification problem.

Comparison: We compare RF-Prism with two state-of-the-

art approaches:

• Mobitagbot uses two antennas and also leverages the

multi-channel technique to improve the localization. But

Mobitagbot cannot eliminate the effect of orientation,

device, and material related phase offset.

• Tagtag performs material identification based on the

DTW algorithm. It eliminates the impact of signal prop-

agation using the the RSS readings.

C. Overall Performance

In this section, we test the performance of RF-Prism on

localization, orientation sensing, and material identification.

Location Errors. The localization performance of RF-

Prism is evaluated under varying orientations and materials.

The result is shown in Fig. 8. RF-Prism achieve a mean

location error of 7.61cm across the degrees from 0◦ to 150◦.

Different degrees show similar results and the maximum

different (between 30◦ and 150◦) is only 0.70cm. This verifies

RF-Prism’s ability in phase disentangling which enables it to

eliminate the effect from orientation on localization. When

changing the material of the target object, we fix the tag’s

orientation at 0◦. RF-Prism achieve a mean location error of

7.48cm across 8 materials. Among the four solid materials,

the location error of metal is slightly higher than that of

other three materials, probably because that metal surfaces

will cause a strong signal reflection which buries the signal

backscattered from tags (which we use for sensing). Due to

the similar reason, the non-conductive oil performs better than

other conductive liquids.

Orientation Errors. Figure 9 shows the orientation errors

of RF-Prism when the tag is located at different positions

and attached to targets with different materials. We divide all

the positions into three different regions, i.e., near, medium

and far, based on the tag-antenna distances. The results in the

near, medium and far regions are 8.59◦, 10.40◦ and 10.50◦,
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respectively. RF-Prism achieves higher orientation accuracy

in near regions than in medium and far regions. We think

the reason behind is that when the antenna and the tag are

close, line-of-sight signals are stronger and impacted less by

other unexpected signals like reflected signals from the ground

or white noises in the environment. We find that metal and

the three conductive liquids have a slightly higher errors than

others due to similar reasons in the analysis of location errors.

Material Identification Accuracy. Fig. 10 shows the

material identification accuracy of RF-Prism with different

positions and orientations. Positions are also divided into near,

medium, and far regions, and the corresponding material iden-

tification accuracy are 88.6%, 87.5% and 87.5%, respectively.

In average, the result in near region is also slightly better

than those in medium and far regions, but this observation

is inconsistent for different material types. We also test the

performance of material identification in two different tag

orientations: 0◦ and 90◦. The results show that, with only the

training data at 0◦, RF-Prism still achieves ideal and similar

performance (88.0% and 87.8%) at 0◦ and 90◦. Consequently,

we believe that different distances or orientations do not have

significant impacts on material identification in RF-Prism.

Figure 11 further shows the confusion matrix of the material

identification result. For almost all the materials, the classifi-

cation accuracy is higher than 87%, except water (85%). The

result tells that water is easy to be confused with skim milk

(6%), probably because water and skim milk have similar

conductive characteristics such as permittivity. Unlike the

results in the localization and orientation sensing experiments,

metal gets a high accuracy in material identification (90%).

That is because that the performance of material identification

relates not only to the performance of phase disentangling,

but also the natural feature discrimination between different

materials. Although metal produces stronger interference, it

exhibits more distinguishable features compared with other

materials.
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Fig. 13. Material identification accuracy with different classifiers.

Impacts of multipath effect. In order to evaluate the impact

of multipath interference on RF-Prism and the performance

of the multipath suppression method described in Section

V-D, we conduct experiments under two different scenarios:

(1) a clean space without any other surrounding objects;

(2) a multipath setup with some cartons and people around

the RFID tag and the antennas, but the LOS propagation

is still guaranteed. The results in terms of the localization

error, orientation error, and material classification accuracy are

shown in Figure 12. The ”Multipath+” bar and ”Multipath”

bar stand for RF-Prism system with and without the multipath

suppression method. We can find that multipath effect can

actually cause a significant performance degradation. Without

the multipath suppression method, the localization error and

orientation error in a multipath environment are roughly 2×
than those in a clean space, and the material classification

accuracy suffers a drop of 23%. The main reason behind is

that the multipath signals can interfere with the LOS signal,

resulting in inaccurate results when we calculate the phase

parameters. Another important observation is that our channel

selection method can effectively suppress the multipath effect

and achieves similar performance with the result obtained in

clean space. It produces 37.8%, 43.2%, and 26.1% perfor-

mance gain in localization, orientation estimation, and material

classification, respectively.

Noises caused by the signal interference from other RF

devices in the environment can also impact greatly the system

performance since phase measurements may be inaccurate

or even inaccessible. But different from the multipath effect,

noises are usually transient so RF-Prism is more likely to filter

out them just like in the mobility error case.

Performance of different classifiers. We also test the per-

formance of three widely used classifiers for material classifi-

cation: K-Nearest Neighbor (KNN), Support Vector Machine

(SVM) and Decision Tree. The results is shown in Fig. 13. The

accuracy of KNN, SVM and Decision Tree are 75.6%, 83.5%,

and 87.9% respectively. Clearly, Decision Tree outperforms

the other two classifiers. The possible reason behind is that:

1) KNN dose not work well with high dimensional data while

the dimension of the feature vector we defined is 52. 2) The

performance of SVM varies with different kernel functions,

but usually it is not easy to find the optimal kernel function.

Latency of Sensing. The time overhead of RF-Prism mainly

lies on three components: i) data gathering with channel

hopping, ii) data pre-processing and parameter estimation with

linear fitting, iii) sensing. In our implementation, data pre-

processing and parameter estimation can be completed within

0.06s. The localization results are obtained once the parameter

estimation is done. The time overhead for the three classifiers

are all within dozens of milliseconds. The data gathering

component dominates the overall time overhead. For example,

the ImpinJ R420 reader we use has to spend 200ms on each

channel, so a hopping round covering all the 50 channels

will cost 10s. This problem is totally caused by the hardware

limitation. On other platforms which can complete the channel

hopping within shorter periods or allow users to customize the

hopping pattern, RF-Prism can also work in a much faster way.

D. Case Study 1: Localization

The key advantage of RF-Prism is it can simultaneously

extract multiple factors from the phase reading, thus its

performance in localization will not be affected by the tag’s

orientation and the material of the target. To see how this

ability benefits the existing RFID-based localization technolo-

gies, we compare RF-Prism with Mobitagbot, a localization

method which cannot mitigate the impact of tag orientation or

target material on the localization process. Fig. 14 shows the

CDF (Cumulative Distribution Function) of the localization

error when the orientation of the tag is invariant (at 0 degree)

and the object attached to the tag is unchanged. As we can

see, RF-Prism achieves a mean location error of 7.33cm
and a maximum error of 16cm. MobiTagbot gets a little

bit higher but very similar mean location error of 8.25cm.

It implies RF-Prism and MobiTagbot exhibit the same level

performance in localization if there is no interference from

other factors. Then we rotate the tag and further change the

material of the object to see how the varying orientation

and material affect the localization performance of these two

systems. The results are shown in Fig. 15 and Fig. 16.

We can see that the performance of MobiTagbot degrade
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Fig. 20. Overall average classification accuracy of RF-Prism and Tagtag with
different setups.

significantly with more varying factors: with a changing ori-

entation, the performance of MobiTagbot degrades by about

20%, then the changing material further introduces another

150% performance degradation. In contract, RF-Prism always

exhibit ideal and consistent localization accuracy even under

varying orientation and material. It exhibits more apparent

performance gain with more varying factors, which should

be attributed to RF-Prism’s ability to extract the phase term

that solely related to the propagation distance. In contract,

Mobitagbot only considers the orientation/material-dependent

and phase change as random noises, thus resulting in relatively

poor performance.

E. Case Study 2: Material Identification

Similarly, the performance of RF-Prism in material iden-

tification is also immune to factors like signal propagation

distances or tag orientations. To further show how this abil-

ity benefit the existing material identification methods, we

compare RF-Prism with Tagtag. Fig. 17 ∼ 19 compares

the identification performance of RF-Prism and Tagtag under

setups with different number of varying factors. RF-Prism

consistently outperforms Tagtag and the performance gain

becomes more apparently with more varying factors.

Fig. 20 summarizes the overall material identification accu-

racy of RF-Prism and Tagtag under those three different setups.

The minus symbol in the x label means the corresponding fac-

tor is kept unchanged in the experiment while the plus symbol

means it is a variant factor. We can see that when both the

tag-antenna distance and the tag’s orientation are invariant, RF-

Prism and Tagtag achieve similar mean identification accuracy

(88.1% and 85.0%, respectively). However, when we place the

target at different positions, the identification accuracy of RF-

Prism is still 88.0% while that of Tagtag degrades to 80.7%.

The reason behind is that Tagtag eliminates the impact of

the antenna-tag distance by simply leveraging the coarse RSS

readings. We also find that rotating the tag does not further

enlarge the performance gap. This is because that Tagtag also

uses channel hopping to cancel the impact of tag orientations.

Note that although Tagtag shows similar performance with

RF-Prism in some cases, there is still a fundamental differ-
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ence between these two methods. Specifically, Tagtag tries to

mitigate the impact of all the other physical factors while RF-

Prism is essentially designed for phase disentangling, which

fundamentally addresses the phase entanglement problem.

Thus it can be used in many other sensing applications, and

do not stop at the two examples shown in this paper.

VII. DISCUSSION & CONCLUSION

In this work, we propose RF-Prism, a versatile RFID

sensing system that can simultaneously infer multiple physical

factors from one phase readings. Based on a comprehensive

understanding of how different factors affect the phase reading,

we design a phase disentangling method to extract the phase

change attributed to different factors. The disentangled phase

signals are further utilized to simultaneously infer the location,

the orientation, and the material of the target. We implement

the prototype of RF-Prism with COTS RFID devices and

conduct extensive experiments to evaluate the performance of

RF-Prism. Experimental results verifies RF-Prism’s ability in

simultaneously estimating multiple physical factors and show

that for any of the three factors, RF-Prism always outperforms

the corresponding state-of-the-art sensing system.
There are some more extensions for RF-Prism that can be

developed in the future work. One of them is to perform

the system in 3D space, which is totally feasible as long

as increasing the number of antenna to 4. Another is to

apply more powerful deep-learning methods to improve the

performance of material identification. It dose not conflict with

the existing system, too. The reason why only basic methods

are tested in this paper is that we want to avoid confusing the

performance gain caused by phase disentangling and advanced

classification methods such as neural networks.
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