
ABSTRACT

We present Acoustic Inertial Measurement (AIM), a one-of-a-kind

technique for indoor drone localization and tracking. Indoor drone

localization and tracking are arguably a crucial, yet unsolved chal-

lenge: in GPS-denied environments, existing approaches enjoy lim-

ited applicability, especially in Non-Line of Sight (NLoS), require

extensive environment instrumentation, or demand considerable

hardware/software changes on drones. In contrast, AIM exploits

the acoustic characteristics of the drones to estimate their location

and derive their motion, even in NLoS settings. We tame location

estimation errors using a dedicated Kalman filter and the Interquar-

tile Range rule (IQR). We implement AIM using an off-the-shelf

microphone array and evaluate its performance with a commercial

drone under varied settings. Results indicate that the mean local-

ization error of AIM is 46% lower than commercial UWB-based

systems in complex indoor scenarios, where state-of-the-art in-

frared systems would not even work because of NLoS settings. We

further demonstrate that AIM can be extended to support indoor

spaces with arbitrary ranges and layouts without loss of accuracy

by deploying distributed microphone arrays.
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1 INTRODUCTION

Location information are crucial for drone operation, regardless of
the application and target deployment environment [5, 20, 26, 36,
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(b) Logistics.(a) Inventory.

(c) Rescue missions. (d) Powerline inspection.

Figure 1: Example applications of drones.

54, 56, 58]. For example, in Fig. 1, a drone for cargo inventory needs

location information to determine the position of the cargo relative

to its own. When performing drone deliveries, a drone must follow

the predefined route and land at the right target location for the

drop-off. In rescue missions, a drone needs location information

to operate most efficiently during the intervention. To inspect the

powerline, a precise drone location is needed to report where the

anomaly is.

Location information must be accurate. This requirement is es-

sential: errors in location estimates may not just degrade system

performance, but represent a safety hazard as the drone’s own

movements are largely determined by location information [10].

The indoor challenge. In outdoor settings, GPS is arguably main-

stream [21]. The indoor setting, however, represents a completely

different ballgame, as discussed in Sec. 2.

Radar-based approaches [19, 45], for example, work both in-

doors and outdoors. Their spatial resolution is limited so that it is

generally difficult to localize small-size drones. Further, objects in

the target environment easily interfere with the radar signals [15],

degrading the accuracy. RF-based localization approaches [4, 39]

require installing wireless transceivers on the drone and reengineer-

ing the flight controller. Inertial measurement methods [24, 28, 35]

are useful when absolute localization is unavailable, but the accu-

mulation of errors likely becomes an issue. Infrared-based systems
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Figure 2: AIM workflow.

require dedicated hardware on the drones and corresponding soft-

ware changes on both drones and control stations [7].

In contrast to existing literature, we present Acoustic Inertial

Measurement (AIM), a technique to localize and track drones using

the acoustic signals naturally produced by the drone propellers [2].

AIM is entirely passive: it requires no additional hardware and no

software changes on the drones. Due to the features of acoustic

signals, AIM works also in NLoS scenarios with much better perfor-

mance than the few existing systems that would be inapplicable in

these settings. Further, AIM works with a single microphone array

but may be extended with ease to support spaces with arbitrary

ranges and layouts by deploying distributed arrays.

To achieve accurate localization and tracking of drones in com-

plex indoor settings, without requiring the drones to generate any

type of signals deliberately, we must tackle key challenges:

1) A single microphone array can only acquire one direction of

arrival (DoA), which denotes the drone’s direction relative to

the array; this information alone is insufficient for location

calculation.

2) The only input to AIM is the propellers’ sound of the drone;

how to infer the drone’s location and motion from this single

acoustic signal is an open problem.

3) In complex indoor environments, the acoustic channel between

the drone and the microphone array is easily interfered by am-

bient noise and obstacles, or travels along NLoS paths.

AIM.We address these issues based on the fundamental observa-

tion that the rotating propellers create a dual acoustic channel: from

the microphone array’s view, the propellers are regarded as the

sound source, so the DoA of sound denotes the orientation of the

drone. At the same time, the propellers are also high-speed rotat-

ing machinery, so the frequency properties of the sound actually

correspond to the rotating state of the propellers, which in turn

determines the drone’s motion. Obtaining orientation and motion

information allows us to track the drone’s location continuously.

We further articulate the features of a drone’s sound signal in Sec. 3.

Figure 3: Schematic diagram of AIM in action.

Fig. 2 illustratesAIM’s workflow and serves as a road-map through

the rest of the paper. Consider for example the situation shown in

Fig. 3, where a drone flies from 𝑆𝑡 to 𝑆𝑡+1. A single 4-microphone

array with elements𝑀1 . . . 𝑀4 is deployed to capture the acoustic

signals naturally produced by the drone during the flight. The raw

signal is first pre-processed to extract the characteristics of the

acoustic signal, for example, DoA, frequencies, and Mel-Frequency

Cepstral Coefficients (MFCC). As further illustrated in Sec. 4, DoA

and frequencies help deduce the drone’s current motion, whereas

MFCC is utilized for identifying the specific drone structure, for ex-

ample, a quadcopter as opposed to an octocopter, and then loading

the corresponding profile information (e.g., mass) from a database.

By feeding the drone’s profiles into a set of dynamic equations we

formulate, we estimate its dynamic parameters, that is, acceleration

and velocity, as described in Sec. 5. The drone’s location is calcu-

lated consequently. To reduce error, we adopt a dedicated Kalman

filter and the Interquartile Range rule (IQR), also described in Sec. 5.

We implement the workflow of Fig. 2 using off-the-shelf micro-

phone arrays and perform an evaluation using a commercial drone

under varied settings, as reported in Sec. 6. Results demonstrate

that the mean error of AIM is 46% lower than commercial UWB-

based systems in complex indoor scenarios, where state-of-the-art

infrared-based systems cannot even work. Sec. 7 further provides

additional evidence of the performance and practical applicability

of AIM by reporting insights and performance from a real-world

deployment in a warehouse. We show, for example, how distributed

microphone arrays allow the system to extend the operating range,

work around obstacles, and operate in severe NLoS settings. This

functionality is achieved essentially with no accuracy penalty.

We conclude by discussing practical issues of applicability and

general use in Sec. 8 and with brief concluding remarks in Sec. 9.

2 RELATEDWORK

The distinctive feature of our work is to perform drone localization

and tracking using acoustic signals. We briefly survey existing

efforts in either field.

Drone localization and tracking. GPS is a mature approach

widely used for drone localization and offersmeter-level localization

accuracy, but its application indoors is extremely difficult [16].

RF signals are explored for drone localization [34, 39], with aver-

age errors over 10𝑚. Methods based on optics [7], UWB radios [8]

and vision [43, 49] can be applied for both indoor and outdoor drone

localization, achieving more accurate results. However, methods
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Figure 4: Quadcopter drone structure.

based on optics and vision vastly assume line-of-sight (LoS) con-

ditions and are sensitive to lighting conditions. UWB radios may

partly operate in NLoS, yet their performance vastly degrades in the

presence of equipment that absorbs or scatters UWB signal. [15].

In contrast, AIM enjoys the fact that acoustic signals may be fruit-

fully employed also in NLoS settings. For example, Mao et al. [33]

attach two speakers on the drone to emit Frequency-Modulated

Continuous-Wave (FMCW) signals, used to estimate the distance

between the drone and a mobile phone. As for AIM, it does not

install any extra equipment on the drone. Other efforts [9, 14, 31]

only regard the drone as a mobile sound source and deploy 3D or

large microphone arrays to estimate its location. Compared with

these techniques, we explore the theoretical connection between

the drone’s sound and its motions, deduce the drone’s dynamic

parameters, such as velocity and acceleration, from its sound and

track the drone by using only a small 2D microphone array.

Various signals emitted by the drones may be employed to iden-

tify the type of drone. Matthan detects drones by observing the

characteristics of the transmitted wireless signals [37, 38]. Bleep [2]

embeds FMCW signals in the PWM signals of the drones’ mo-

tors as a side channel for drone communication, allowing each

drone to be identified based on a unique FMCW fingerprint. Both

DronePrint [25] and SoundUAV [42] utilize data-driven approaches

to identify the drone via its distinct acoustic characteristics during

flight. In AIM, drone identification is not the ultimate goal, but

rather a necessary step to perform localization and tracking.

Acoustic signals in localization and tracking. Several works

demonstrate the use of acoustic signals for localization and track-

ing [12, 27, 50, 52]. With a single microphone array, Voloc [44]

aligns the multi-path DoA estimation for accurate localization of

indoor acoustic sources; Symphony [51] extends this method to lo-

calize multiple sources by leveraging the prior-known layout of the

array. PACE [11] localizes multiple mobile users simultaneously by

leveraging structure-borne and air-borne footstep impact sounds.

These works assume that the localization target and themicrophone

array are on the same plane or that the target’s altitude is known,

to solve a bi-dimensional localization problem. Differently, we ex-

ploit the signal feature in both the spatial and frequency domains,

achieving three-dimensional localization with a single array.

Recent works adopt wearable devices for tracking, such as smart-

watches and earphones. SoM [57] tracks the wrist using a smart-

watch with IMUs and employs the smartphone to send beacons

for error calibration. Ear-AR [55] uses the IMU in earphones and
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Figure 5: Typical structures of four drone types: (a) quadcopter; (b)

hexacopter; (c) octocopter; (d) Y6. Different colors represent different

directions of rotation.

smartphones to track the indoor user’s location and gazing orien-

tation. When the embedded microphone and speaker in the wired

or wireless earphones have already formed a transceiver pair, Ear-

phoneTrack [13] proposes to track either the microphone or speaker

with this pair. Unlike what we do with AIM, these approaches are

effective only in the short range, specifically between wearable

devices and users’ smartphones.

3 THE SOUND OF DRONES

In this section, we explore the features of a drone’s sound signals

and how they relate to motion.

3.1 Key Features

Drone propellers are designed to displace the air around them. The

resulting pressure gradient creates a force vector. We model the

connection between the sound of the drone’s propellers and its

physical structure.

Fig. 4 illustrates the most common drone structure, that is, the

one of a quadcopter composed of two orthogonal arms. A propeller

is mounted at either end of each arm. The force vector obtained by

the propeller rotation can be decomposed into a vertical component

𝑇 𝑣
𝑖 and a horizontal component 𝑇ℎ𝑖 .
The vertical component lifts the drone and can be calculated as

𝑇 𝑣
𝑖 = 𝑘𝑣 𝑓 2𝑖 , where 𝑓𝑖 is the rotation frequency of the 𝑖𝑡ℎ propeller

and 𝑘𝑣 is a constant related to the lift coefficient. The drag force𝑇ℎ𝑖
horizontally controls the rotation of the body and can be calculated

as𝑇ℎ𝑖 = 𝑘ℎ 𝑓 2𝑖 , where 𝑘
ℎ is a constant related to drag coefficient [29,

32]. The lift forces of all propellers follow the same direction, while

the drag forces of adjacent propellers are opposite to compensate

for the torque otherwise generated, which induces spinning.

The sound produced by the propellers is highly correlated with

the frequency 𝑓𝑖 of each motor. Because each propeller has multiple

blades, two in most cases, the fundamental frequency of the sound

is not the rotation frequency 𝑓𝑖 , but the blade passing frequency

(BPF). The BPF is defined as 𝑓 𝐵𝑃𝐹𝑖 = 𝑛𝑓𝑖 , where 𝑛 is the number of

blades. In addition to the BPF, harmonic frequencies may also be

observed as an integer multiple of the BPF [6, 22].

If we can capture the drone’s sound and obtain the BPF as well

as its harmonics, we may then estimate the rotation frequencies

𝑓𝑖 , and thus the forces exerted by each propeller. Using a model of

the drone’s physical dynamics, which is necessarily a function of

its mechanical structure, we may also estimate its direction and

motion. This is the essence of the frequency-based localization and

tracking in AIM.

3
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(a) Hovering motion. (b) Yaw motion. (c) Horizontal linear motion. (d) Vertical linear motion.

Figure 6: Force analysis of basic drone motions.
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(a) Hovering motion. (b) Yaw motion. (c) Horizontal linear motion. (d) Vertical linear motion.

Figure 7: Acoustic spectrum of basic drone motions.

3.2 Sound and Motion

We analyze here the inner relationship between the drone’s sound

and its physical motion.

We theoretically analyze the acoustic properties of four common

drone structures, shown in Fig. 5. Drone flights are composed of

four basic motions: hovering, yaw, horizontal linear motion and

vertical linear motion, as depicted in Fig. 6. Interestingly, we find

that these basic motions exhibit different acoustic properties in the

frequency domain because they are performed by changing each

motor’s rotation frequency 𝑓𝑖 differently. In the following, 𝑁 = 4, 6
or 8 depending on the drone structure among the ones in Fig. 5.

Hovering: in the absence of environmental effects requiring com-

pensation, all propellers rotate at the same frequency to

maintain the vertical and horizontal balance, so the drone

remains stationary. Therefore, we have 𝑓𝑖 = 𝑓𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 .

Yaw: propellers operate in pairs, shown by different colors in Fig. 5.

Each pair rotates at the same frequency, creating a rotational

momentum while maintaining the vertical balance, which

makes the drone rotate around the center. Thus, we have

𝑓2𝑖−1 = 𝑓2𝑗−1 ≠ 𝑓2𝑖 = 𝑓2𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁
2 .

Horizontal motion: propellers operate in pairs again, this time

to tilt the body while maintaining the vertical balance. Then

the drone moves horizontally. We use parentheses to indi-

cate equal frequencies for brevity. When the drone tilts for-

wards or backwards, that is, it pitches, we have (𝑓1 𝑓2) (𝑓3 𝑓4)
for quadcopters, (𝑓1 𝑓2) (𝑓3 𝑓6) (𝑓4 𝑓5) for hexacopters, (𝑓1 𝑓2)
(𝑓3 𝑓8) (𝑓4 𝑓7) (𝑓5 𝑓6) for octocopters and (𝑓3 𝑓4 𝑓5 𝑓6) (𝑓1 𝑓2) for
Y6 structures. Symmetric observations apply when the drone

tilts leftwards or rightwards, that is, it rolls.
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Figure 8: The full spectrogram of the sound during a complete flight.

Vertical motion: all propellers rotate at the same speed to make

the resulting thrusts greater or less than the force of gravity

on the drone. Accordingly, the drone moves upwards or

downwards, so we have 𝑓𝑖 = 𝑓𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 .

In the following, we illustrate how these observations may be a

stepping stone to achieving accurate drone localization and track-

ing.

4 MOTION DETECTION AND DRONE
IDENTIFICATION

We use the features of the sound signal in the frequency, spatial,

and time domains to estimate the drone’s motion and identify its

structure. These two components are the basis of our system.

4.1 Drone Motion Detection

Based on the analysis of Sec. 3, we conduct a proof-of-concept exper-

iment to check whether the four basic motions can be distinguished

4
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by the sound characteristics. In this experiment, we use a DJI Mini 2

quadcopter and a microphone to receive the acoustic signal.

Fig. 7 shows the spectrum of the acoustic signal corresponding

to the motions of Fig. 6 and conforms to our understanding of the

drone’s dynamics. Specifically, we observe two peak fundamental

frequencies in the case of yaw and horizontal motion. In compari-

son, there is only one peak fundamental frequency in the case of

hovering and vertical motions.

We show the spectrogram of the acoustic signal of a complete

flight in Fig. 8, as the drone sequentially performs different kinds

of motions. The single frequency band is rising up or down when

the drone takes off or lands, that is, in the case of vertical motion.

In contrast, the band is split when the drone performs horizontal

motion, including acceleration, uniform motion, and deceleration.

For hovering, a single band is present on the spectrogram. These

observations are consistent with our previous analysis.

Exclusively based on frequency domains, we can only classify

the four motions into two categories, depending on the number

of peak fundamental frequencies. To resolve this ambiguity, we

further leverage the spatial information of the sound. Crucially, we

note that the drone spatial coordinates are stable during hovering

or yaw, while they change during vertical or horizontal motion. The

change in position may be detected by the sound’s DoA, as further

elaborated in Sec. 5.1. By combining the information obtained from

the number of peak fundamental frequencies and DoA as shown in

Tab. 1, AIM can correctly discern the four basic motions.

Detecting the four basic motions is vastly sufficient to localize

and track drones in a multitude of indoor drone applications, in-

cluding most of those we mention in the Introduction. In indoor

settings, for example, warehouses or smart factories, planning of

robot movements—not just drones—is most often achieved by se-

quentially combining the four basic motions. This is beneficial

in at least two respects: i) it matches the regular physical layout

of the target deployment scenarios; in a warehouse, for example,

shelves are side-by-side horizontally laid and goods are stacked ver-

tically [18, 53]; and ii) it greatly simplifies path planning, yielding

much more scalable systems [30].

To further improve the accuracy in detecting the four basic drone

motions, we further observe that high-frequency harmonics share

similar characteristics with the fundamental frequencies. Because

the noise in the low-frequency band is usually stronger than that in

the high-frequency band, the harmonics may experience less noise

than the original BPF. Thus, we estimate the BPF from the weighted

average of both the fundamental frequencies and the harmonics,

which are weighted by their amplitudes. For hovering, a single band

is present on the spectrogram.

Table 1: Classification scheme of the four motions.
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Figure 9: MFCC of different drones.

4.2 Drone Structure Identification

Several types of drones may be employed to perform different

functions simultaneously, for example, assigning drones with large

load capacity to carry cargoes and drones with long battery life to

monitor the environment. Generally, every type of drone is assigned

a specific task and a predefined route. AIMmust identify the specific

drone structure correctly once it is captured by the microphone

array.

We observe that the sound characteristics of a drone can be

represented by Mel-Frequency Cepstral Coefficients (MFCC) in

the frequency and time domain. We can use this information to

distinguish one drone from the others. For example, Fig. 9 shows the

MFCC features of two different drones, whose energy distributions

are different amongMFCC vectors. Thus, AIM extracts the MFCC of

a drone’s sound and borrows the method proposed by Kolamunna et

al. [25] to train a Long Short-Term Memory (LSTM) neural network

for drone identification.

The profiles of drones serving a warehouse are pre-stored in the

database. Once the drone is identified, the corresponding profile

will be fed to dynamics equations for position estimation, which

will be introduced next.

5 DRONE TRAJECTORY TRACKING

We articulate here how to combine information from the drone

dynamics with the input from acoustic signals to achieve accurate

drone localization and tracking. We further illustrate our system’s

operation in NLoS settings and how we use a dedicated Kalman

filter to tame tracking errors.

5.1 Tracking Model

We first derive a dynamic drone model, which we use as a basis

for tracking. We consider a quadcopter as an example for intuitive

analysis, but the analytical process would be exactly the same for

other drone structures.

Yaw. In this case, (𝑇ℎ1 + 𝑇ℎ3 ) − (𝑇ℎ2 + 𝑇ℎ4 ) ≠ 0, which causes the

rotation of the fuselage, as shown in Fig. 6(b), and two BPF peaks.

During the rotation process, the moment of inertia 𝐼 reflects the
magnitude of inertia and is regarded as a constant. We can thus

obtain the angular acceleration 𝛽𝑡 at time 𝑡 by solving the equation:

𝑘ℎ

𝑛2

������
𝑁 /2∑
𝑖=1

(𝑓 𝐵𝑃𝐹2𝑖−1 )
2 −

𝑁 /2∑
𝑖=1

(𝑓 𝐵𝑃𝐹2𝑖 )2

������ = 𝐼 𝛽𝑡 (1)
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Figure 10: DoA estimation results in LoS and NLoS.

Thus, in a known time interval 𝜏 , the rotation angle Δ𝜓 =∫ 𝜏
0
𝛽𝑡 𝑡 𝑑𝑡 . However, as mentioned in Sec. 4.1, ambiguity exists if we

only rely on the frequency characteristics. To solve this ambiguity,

we regard the drone as a mobile sound source and leverage the

microphone array to obtain spatial information. Due to the limited

resolution of commercial microphone arrays, the drone is always

in the far-field [51], so that we can hardly obtain accurate location

information but only a DoA, including azimuth 𝛼 and elevation 𝜙 .
Even in this case, DoA information is sufficient for AIM to function.

For instance, DoA information captured by a uniform 4-microphone

array in a squared configuration is

⎧⎪⎪⎨
⎪⎪⎩
tan𝛼 =

𝜏∗42
𝜏∗31

sin𝜙 = 𝑐
2𝑑

√
𝜏∗42

2 + 𝜏∗31
2

(2)

where 𝑐 is the sound velocity and 𝜏∗𝑖 𝑗 is the time delay between

microphones 𝑀𝑖 and 𝑀𝑗 . We calculate the latter with the GCC-

PHAT algorithm [23].

Horizontal motion. The rotation frequencies of two motors on

the same side increase simultaneously to generate a lift force, for ex-

ample𝑇 𝑣
1 and𝑇 𝑣

4 in Fig. 6(c), so that the sound contains two groups

of BPF peaks, 𝑓 𝐵𝑃𝐹1 = 𝑓 𝐵𝑃𝐹4 and 𝑓 𝐵𝑃𝐹2 = 𝑓 𝐵𝑃𝐹3 . Then the drone tilts

with an angle 𝛾 , as shown in Fig. 6(c), so that we can decompose𝑇 𝑣
𝑖

into vertical and horizontal directions. The vertical component of

𝑇 𝑣
𝑖 is balanced with the drone’s gravity, so we can solve 𝛾 with the

knowledge of the drone’s mass𝑚 and the acceleration of gravity 𝑔,
which are known. The horizontal component of 𝑇 𝑣

𝑖 works against

the resistance 𝐹𝑓 = 𝜆ℎ (𝑣ℎ𝑡 )
2 to make the drone move horizontally,

where 𝜆ℎ can be regarded as a constant related to 𝛾 . We solve the

horizontal velocity 𝑣ℎ𝑡 and acceleration 𝑎ℎ𝑡 at time 𝑡 with the 𝛾 by

the following dynamics equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑘𝑣

𝑛2

∑𝑁
𝑖=1 (𝑓

𝐵𝑃𝐹
𝑖 )2 sin𝛾 =𝑚𝑔

𝑘𝑣

𝑛2

∑𝑁
𝑖=1 (𝑓

𝐵𝑃𝐹
𝑖 )2 cos𝛾 − 𝜆ℎ (𝑣ℎ𝑡 )

2 =𝑚𝑎ℎ𝑡

(3)

Vertical motion. Consider the case of climbing as an example:

𝑓𝑖 , 𝑖 = 1, 2, 3, 4 increase simultaneously to work against the gravity

and downward resistance 𝐹𝑓 = 𝜆𝑣 (𝑣𝑣𝑡 )
2, where 𝜆𝑣 can be regarded

as a constant, illustrated in Fig. 6(d). Thus, only one BPF peak is

captured. Vertical velocity 𝑣𝑣𝑡 and acceleration 𝑎𝑣𝑡 at time 𝑡 can be

determined by solving the equation:

𝑘𝑣

𝑛2

𝑁∑
𝑖=1

(𝑓 𝐵𝑃𝐹𝑖 )2 −𝑚𝑔 − 𝜆𝑣 (𝑣𝑣𝑡 )
2 =𝑚𝑎𝑣𝑡 (4)

Finding coordinates. Let us return to Fig. 3. The drone’s coor-

dinates at time 𝑡 are 𝑆𝑡 (ℎ𝑡 tan𝜙𝑡 cos𝛼𝑡 , ℎ𝑡 tan𝜙𝑡 sin𝛼𝑡 , ℎ𝑡 ), where
the height ℎ𝑡 is now the only unknown quantity. Fortunately, de-

termining ℎ𝑡 is not difficult. For two adjacent coordinates 𝑆𝑡 and
𝑆𝑡+1, in the case of horizontal motion, ℎ𝑡 = ℎ𝑡+1 ,so that

|ℎ𝑡+1 tan𝜙𝑡+1 − ℎ𝑡 tan𝜙𝑡 | = 𝑣
ℎ
𝑡 𝜏 +

1

2
𝑎ℎ𝑡 𝜏

2 (5)

where 𝜏 is a predefined interval for location updating. In the case

of vertical motion, we have

|ℎ𝑡+1 − ℎ𝑡 | = 𝑣
𝑣
𝑡 𝜏 +

1

2
𝑎𝑣𝑡 𝜏

2 (6)

We solve these equations in ℎ𝑡 and determine the complete

coordinates of the drone during the flight.

5.2 Tracking in NLoS

Indoor scenarios likely include objects that create NLoS settings, for

example, in busy warehouses. Here, the DoA information captured

by the microphone array may be deviated. For instance, the yellow

dashed curves in Fig. 10 depicts the estimated DoA information

in NLoS settings. The severe deviation occurs in NLoS no matter

whether the dronemoves. In this case, traditional triangulation with

distributed microphone arrays cannot work, yet alternative indoor

localization systems such as UWB- and infrared-based systems may

be equally prevented from working altogether in such settings.

In contrast to the state of the art, AIM can recognize if the LoS

is blocked and continue to track the drone in NLoS. Despite a

few outliers, the dominated diffraction or reflection path with the

highest signal energy is stable when the location of the drone is

unchanged, while it is irregular when the drone moves. Thus, we

employ the Interquartile Range rule (IQR) [3] to eliminate outliers

and smooth the estimated DoA information in a sliding window.

When the drone is hovering or yawing, the estimated DoA is

smooth, as in Fig. 10(a) and Fig. 10(c), even if the observations

slightly deviate from the ground truth. Instead, the smoothed DoA

information is erratic when the drone is moving, as in Fig. 10(b)
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and Fig. 10(d). As described in Tab. 1, we use the stability of DoA in-

formation rather than the absolute values to determine the kind of

drone motion in LoS. Fig. 10 provides evidence that we can employ

the same criteria for the NLoS case.

To detect the NLoS setting in the first place, AIM sets a threshold

to evaluate the variance of smoothed azimuth information in a time

window. If the variance is beyond the threshold, we consider the

LoS to be blocked, because even if smoothed, the DoA in NLoS is

still unstable, which is especially evident in azimuth estimation, as

shown by the green curve in Fig. 10(b).

5.3 Error Calibration

We employ a dedicated Kalman filter, illustrated in Algorithm 1, to

tame the inaccuracies in the estimation of orientation after yawing

and in absolute localization following horizontal or vertical motion.

The drone location is described by a state vector𝐴𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ]
𝑇 ,

with 𝐴0 being initialized with the first few points at the beginning

of the flight (line 1). Then processing unfolds as follows:

1) We predict the subsequent state vector 𝐴𝑡
−
, that is, the a priori

state estimate, according to the state transition matrix (line 3);

2) We estimate the drone’s current motion following the rules in

Tab. 1 as well as the current coordinate according to the dynamic

equations and identified motion (line 4 − 5);

3) Based on the variance of the smoothed azimuth, we identify

whether the LoS exists (line 6). If not, the estimated DoA infor-

mation is discarded;

4) With yawmotion, possible trajectories caused by the ambiguous

orientations are tracked (line 7 − 12) until the LoS is regained.

If the LoS exists now, the current coordinates can be updated

with DoA, eliminating the ambiguity (line 13 − 15)

5) No matter whether in LoS or NLoS, the measured coordinates

are fused with 𝐴𝑡
−
to output the optimal estimate 𝐴𝑡 , that is,

the a posteriori state estimate.

We proceed with describing the prototype implementation we

use to gain insights on the performance of AIM in varied settings.

6 EVALUATION

We report evaluation results of AIM using off-the-shelf microphone

arrays and a commercial drone. We describe first the implemen-

tation and evaluation settings in Sec. 6.1. Next, our investigation

of AIM performance is two-pronged: Sec. 6.2 compares our system

with the state-of-the-art indoor drone tracking systems and reports

on their performance under different scenarios; in Sec. 6.3, we dis-

sect the impact on tracking accuracy of environment noise, the

flight range and velocity, and the number of microphones.

Our results indicate that:

1) The mean localization error of AIM in NLoS settings, arguably

most realistic for indoor drone applications, is 46% lower than a

UWB-based baseline;

2) Unlike an infrared-based baseline, AIM constantly provides

location updates, even in NLoS settings;

3) AIM is robust to moderate noise sources in the environment,

such as someone speaking;

Algorithm 1: Error reduction using Kalman filter.

1 Initialize state vector 𝐴0 with the first few points;

2 for 𝑡 = 1, 2, 3, ... do
3 Predict the next state 𝐴𝑡

−
;

4 Determine current motion 𝐶𝑢𝑟_𝑀𝑜𝑡 ;

5 Calculate current coordinate 𝑆𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) using

dynamic equations;

6 Calculate the variance 𝑉𝑎𝑟 of the smoothed azimuth in

the nearest time window;

7 if 𝑉𝑎𝑟 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

8 if 𝐶𝑢𝑟_𝑀𝑜𝑡 == yaw then

9 Cache possible orientations ±Δ𝜓 ;

10 Track possible trajectories further;

11 end

12 end

13 else if 𝑉𝑎𝑟 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

14 Update 𝑆𝑡 with the measured DoA;

15 end

16 Fuse new estimated coordinate in 𝑆𝑡 with predicted

results in 𝐴𝑡
−
;

17 Output the optimal state 𝐴𝑡 ;

18 end

4) Flight range and velocity of the drone influence AIM’s perfor-

mance differently, yet the absolute accuracy never degrades

drastically.

6.1 Implementation and Settings

AIM works with any layout of bidimensional microphone array to

track drones of various structures. Without loss of generality, here

we consider a quadcopter and two types of microphone arrays.

Drones and microphone arrays. We use a DJI Mini 2 quad-

copter [17], shown in Fig. 11(a). The DJI Mini 2 weighs 249 g; as

such, flying the DJI Mini 2 in most countries does not require a

professional drone piloting license, which makes it ideal for indoor

use. Each propeller is equipped with two blades. When the drone

is hovering, the sound pressure level measured at a 1 m distance is

empirically determined to be around 77 dB and motors run at 164

Hz, so the BPF is around 328 Hz. By default, the DJI Mini utilizes

the built-in GPS for horizontal localization and an infrared time of

flight (ToF) sensor to obtain vertical altitude. However, in the indoor

experimental environment we use, shown in Fig. 11(b), GPS cannot

work and only the ToF sensor provides useful altitude information.

We use two types of commercial off-the-shelf microphone arrays

for our AIM prototype: a Seeed Studio ReSpeaker 6-mic circular

array [47] and Seeed Studio ReSpeaker 4-mic array [46], shown on

the upper left of Fig. 11. The inter-distance between two single mi-

crophones is 5 cm and 6.5 cm, respectively. Each microphone array

is set on a Raspberry Pi 4 Model B, using a 48 KHz sampling rate.

Unless stated otherwise, the results we discuss next are obtained

with the 6-mic circular microphone array.
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Figure 11: Experiment settings.

Baselines. To obtain ground-truth information, we take the read-

ings of the built-in ToF sensor on the DJI Mini 2 as vertical altitude.

As for the horizontal coordinates, we employ a method often used

in indoor drone testbeds [1]: we lay down distance markers on the

ground at intervals of 10 cm, as shown in Fig. 11(b) and Fig. 11(c).

Using the downward-facing camera of the drone, we examine its

view of the ground-level markers during the flight. Fig. 11(c) shows

an example image captured by the drone during the experiments.

Once the tick of the marker matches the centerline of the image,

this reading of the corresponding maker is regarded as the real-time

horizontal coordinates.

We compare AIM with LinkTrack [40], an UWB-based indoor

localization system, and OptiTrack [41], an infrared-based motion

tracking system, both of which are shown on the upper right of

Fig. 11. LinkTrack localizes the target via triangulation. We fix a

UWB tag on the drone and four UWB anchors on four tripods, then

record the tracking results on a base station. OptiTrack localizes the

target by converting the drone positions in bidimensional photos

captured at high frequency by multiple infrared cameras to three-

dimensional coordinates. We fix reflective markers on the drone and

four infrared cameras on four tripods, and also record the tracking

results on a base station. Whenever the drone carries a UWB tag or

reflective markers, we accordingly update its tracking model and

dynamic parameters.

Note that the OptiTrack system is vastly considered as state-of-

the-art in indoor drone testbeds. Because of its cost, difficulty in

installation, and inability to work in NLoS settings, however, it is

rarely employed for real applications [1].

Scenarios and drone mobility.We select three scenarios for eval-

uation and comparison. In Line-of-Sight (LoS), nothing is deployed

in the middle of the experiment area shown in Fig. 11(b) and every

device involved in localization can establish LoS with each other

and with the drone. Note how this scenario, while common in in-

door drone testbeds that are in fact designed to isolate drones from

their surroundings, is quite unlikely in real applications. In Partial

Line-of-Sight (PLoS), several steel shelves stacked with various ob-

jects such as books and bricks are deployed in the middle of the

experiment area. Depending on the relative position of the drone

with respect to the rest of the experiment area, the LoS is blocked

at times. In None-Line-of-Sight (NLoS), the shelves are deployed in

front of every tripod hosting infrastructure node for localization.

Every LoS path is thus blocked. No matter where the drone flies

in the experiment field, it can not establish LoS connection to any

device on any of the tripods.

We tested varied combinations of drone motions. For horizontal

motions, we control the drone to fly along the distancemaker, shown

in Fig. 11(c), and keep vertical coordinates unchanged. For vertical

motions, once the drone is hovering, we control the drone to climb

or descent to a certain height, while keeping horizontal coordinates

unchanged.

6.2 General Performance

The drone flies a 10 m × 10 m squared trajectory. We compare AIM

with LinkTrack and OptiTrack in LoS, PLoS and NLoS scenarios.

Fig. 12 reports the performance of three systems. Fig. 12(a) in-

dicates that in LoS scenarios, the mean error of AIM is 1.43 m

while those of LinkTrack and OptiTrack are 0.37 m and 0.03 m,

respectively 1. AIM is, therefore, the least accurate system in LoS

scenarios, which are, however, arguably rare in real applications.

Fig. 12(b) illustrates the performance in PLoS scenarios. Here

AIM outperforms LinkTrack with a mean error of 1.89 m, which

1Note that for OptiTrack, we note a difference between the error measured in our
experiments and what is advertised by the manufacturer, which is below mm. The
reason for this is that OptiTrack sometimes temporarily recognizes LEDs on the drones
as the markers, affecting the measurements. We cannot turn off or cover these LEDs,
as the drone would refuse to take off, raising exceptions in the control software.
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Figure 12: Performance comparison.
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Figure 13: Impact of environment noise on accuracy.

is 46% less than that of LinkTrack. The increase of error is caused

by the lack of DoA calibration for AIM and by signal attenuation

for LinkTrack. In that case, AIM can only calibrate the estimated

location by the opportunistic clean DoA.

Fig. 12(c) offers a closer view on this specific experiment by show-

ing an accuracy comparison during a 10-sec flight, including about

2 seconds of NLoS. LinkTrack is heavily influenced by the obstacles,

which absorb UWB signals. When the LoS is obstructed, OptiTrack

simply does not work and produces no output. Thus, although its

mean error does not increase in PLoS scenarios, OptiTrack is plainly

inapplicable as completely losing the drone position even for a short

among of time would be unacceptable for safe and dependable op-

eration. Instead, the localization error of AIM suddenly increases

at the beginning of the NLoS sting, but gradually decreases later,

without ever losing the target.

In NLoS scenarios, shown in Fig. 12(d), we only compare AIM

with LinkTrack because OptiTrack produces no output for the entire

duration of the experiments, because of the aforementioned reasons.

The mean error of AIM increases to 2.08 m but it is still lower than

that of LinkTrack, which is almost twice as much at around 4 m.

Note how the progression through different scenarios in our

discussion, from LoS in Fig. 12(a) to NLoS in Fig. 12(d), reflects in-

creased realism in indoor drone applications. NLoS settings are

indeed expected to abound when drones fly in complex physical

environments. These settings are precisely where AIM reaps the

greatest benefits compared to the baselines: its performance degra-

dation, indeed, is much less pronounced compared to LinkTrack,

wheres it can supply continuous location updates, unlike OptiTrack.

6.3 Factors Influencing Accuracy

We analyze the impact of three different factors on localization

accuracy, that is, noise in the environment, the flight range and

velocity, and the number of microphones.

Environment noise.We examine the performance of AIM in noisy

conditions. We place a noise source 2 m away from the microphone

array. To study different degrees of interference, we set the volume

of the noise source to 50 dB, 55 dB, 60 dB and 65 dB, respectively.

We broadcast noise with three different center frequencies, that is,

at 300 Hz, 600 Hz and 900 Hz, to simulate interference on the BPF

and its harmonic frequency.

The results in Fig. 13 indicate that, as expected, the localization

accuracy degrades as the frequency of the noise or the SPL of

the noise increases. This is because AIM weights the BPF and its

harmonics according to their amplitude and sums them up to obtain

the final frequency, which is the input of dynamic equations. In

general, BPF and lower harmonics exhibit higher energy and thus

are given higher weights. However, if the noise is at high frequency,

peaks in this frequency band gain much higher weights. Therefore,

the results are polluted.

Importantly, results show that AIM still maintains relatively

stable performance under noisy conditions, which is sufficient to

deal with common noise environments such as someone speaking,

which generates ≈ 53.7 dB at 1 m distance. Further, multiple options

exist to resist noise in practice. We may introduce a band-pass filter

to filter out the noise band and continue tracking using the uncon-

taminated frequency band. AIM is also flexible in the deployment

of the microphone array, in that no specific requirements must be
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fulfilled to determine where to install the array. We may simply

alter its position to lessen the impact of nearby noise sources.

Flight range and velocity. First, we investigate the performance

of AIM depending on the distance between the drone and the

microphone array. We specifically test three flight paths, composed

of 5 m × 5 m, 10 m × 10 m, and 15 m × 15 m square trajectories.

Fig. 14 shows the results.

When the drone flies along the 5 m × 5 m square, the mean

errors are 0.95 m in LoS and 1.52 m in PLoS. When the drone flies

along the 10 m × 10 m square, the mean errors are 1.43 m in LoS

and 1.89 m in PLoS. If the drone flies over a larger area, the signal

attenuation worsens so the error increases. Thus, the results show

that the mean errors in both LoS and PLoS are over 2 m as the drone

flies along a 15 m × 15 m field.

Based on these results, we define 10 m as the operational range

for the pair DJI Mini 2/ReSpeaker 6-mic. The operational range is an

empirical value, which sets a limit on the acceptable tracking error.

Note that this value may be different between different drones and

microphone arrays, as it is mainly determined by the SPL of the

sound produced by the drone’s propellers and the sensitivity of

the microphone array. The higher the drone’s SPL and the array’s

sensitivity, the lower the tracking error in a given field and the

larger the operational range.

We also perform experiments to evaluate if the drone’s velocity

has an impact on accuracy. The results are shown in Fig. 15. For

horizontal motion, the drone’s velocity influences the accuracy

in that the mean error decreases as the velocity increases, while

for vertical motion, the change of velocity does not significantly

impact accuracy. The reason is two-fold. On the one hand, two

frequency peaks must be captured for horizontal motion. Higher

velocity results in larger intervals between the two frequency peaks,

hence they are easier to separate out. In contrast, only one peak

must be captured during vertical motion. On the other hand, every

two propellers contribute to the energy of one frequency peak with

horizontal motion, while all propellers generate the signal at the

same frequency with vertical motion. The energy of the frequency

peak in vertical motion is higher than that in horizontal motion

and, therefore, results in more stable performance.

Number of microphones. Typical microphone arrays used for

three-dimensional DoA estimation are 4-mic and 6-mic arrays.

Fig. 16 compares the performance of these two types of arrays

using the commercial off-the-shelf devices mentioned in Sec. 6.1.

The mean errors of the 6-mic array in LoS and PLoS are 1.43 m

and 1.89 m, while those of the 4-mic array are 1.77 m and 2.16 m. Al-

though with smaller inter-distance between adjacent microphones,
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Figure 18: Layout of the ware-

house.
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the 6-mic array achieves more accurate results than the 4-mic array.

The reason is that we always calculate the time difference of arrival

(TDoA) between diagonal microphones rather than adjacent ones.

The inter-distances of diagonal microphones of the two arrays are

approximately 9.26 cm for the 6-mic array and 9.19 cm for the 4-mic

array, but the 6-mic array provides higher redundancy because of

the higher number of microphones. Thus, it produces lower errors.

Note that although AIM mainly relies on the variability of DoA

information rather than the accurate DoA estimation, a more accu-

rate DoA measurement may help obtain a more accurate analysis

of the DoA variability.

Optimization algorithms. Kalman filter and IQR method are used

for error reduction in our system. Fig. 17 shows the improvement

in accuracy after applying these algorithms.

If neither is used, the error of raw measurements reaches 3.19 m.

If only one algorithm is employed, the error is lower when using the

Kalman filter. The reason is that estimations may be wrong in some

time slots without the IQR method, but they can be corrected by

the Kalman filter in the long term, as most estimations are accurate.

However, without the Kalman filter, the error in the whole process

would not be eliminated.

Both algorithms are employed during AIM’s operation, where

the error reduces by 55.17% compared to raw measurements. In this

setting, the mean computation delay is 34.76 ms with a standard

deviation of 0.92 ms, for 50 ms signals. This latency is sufficient to

update the drone’s location [10].

7 DEPLOYMENT

We elaborate on the scalability and real-world applicability of AIM.

The instrument we use to this end is a real deployment of AIM in a

warehouse. The deployment is the opportunity to explore the use of
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Figure 20: Motion recognition accuracy in LoS and NLoS.
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multiple microphone arrays to eliminate dead zones and extend the

tracking range. We also investigate the use of AIM across indoor

and outdoor scenarios, assessing AIM’s ability to track drones in

open spaces compared to the built-in drone GPS.

7.1 Eliminating Dead Zones

The tracking ability of a single microphone array is limited, in

that it can only localize and track the drone in a small range and

may introduce ambiguity when the drone is blocked in a dead

zone. However, AIM can be extended easily to employ multiple

microphone arrays working cooperatively.

We control the drone to fly on a 30-sec cycle to simulate working

in the warehouse, whose layout is shown in Fig. 18, and Fig. 19

shows the CDF of duration when the drone is in NLoS. We deploy

three microphone arrays, indicated with MIC 1, 2, and 3 to cover

region A and B, leaving region C as a dead zone: the obstacle at

the boundary of region C blocks the LoS between the drone and all

microphone arrays. The average duration of time with the drone in

NLoS conditions (i.e., Region C) is 7.44 seconds. In some situations,

the duration in NLoS may be observed to be as much as half its

operational time. Region C is not only a large area, but it also

borders a shelf. Thus, drones operate in this region for a long time.

During those times, once the drone completes a yaw, the orientation

ambiguity doubles.

We compare the performance of AIM when the drone works

in region B or C, depending on the type of microphone array in

use. Fig. 20 shows the results. When the drone operates in region B,

AIM can exactly tell which kind of motion the drone is currently

performing as it operates in LoS compared to themicrophone arrays.

Fig. 20(a) and Fig. 20(c) demonstrate these results. The LoS is blocked

in region C, thus, the drone’s motions are sometimes misidentified.

Although the 6-mic array is more accurate than the 4-mic array,

we still hope to eliminate the adverse effects of NLoS to localize

the drone more accurately. To this end, we opt to deploy another

microphone array at point X in Fig. 18.

Using four microphone arrays in the deployment, we compare

the localization accuracy of AIM with triangulation using the same

microphone arrays and LinkTrack at three regions. Fig. 21 reports

the results. In region A, triangulation achieves a fair accuracy with

a mean error of 0.85 m. In comparison, AIM reports more accurate

results with a mean error of 0.46 m. The reason is that AIM can

fuse the results from distributed microphone arrays to output more

precise and stable results. When the drone enters region B and

region C, triangulation becomes inapplicable, as it returns an error

above 5 m, but AIM’s performance is not affected. This is because

our system only requires one LoS to disambiguate or not even that,

whenever the drone does not perform yaw motion in NLoS. In

contrast, for triangulation to work, LoS from all microphone arrays

is essentially a strict requirement.

As for LinkTrack, we set the four UWB anchors at the corners of

the area to cover the whole warehouse, as shown in Fig. 18. In such

a deployment configuration, LinkTrack performs poorly in all three

regions because of the signal loss caused by the obstacles in the

warehouse. One possible solution would be to place three or four

additional UWB anchors in each region to ensure a good signal

quality. However, the coordination required as the number of UWB

anchors increases would require very tight time synchronization

across the entire system [48], thus drastically increasing complexity.

Meanwhile, the net deployment cost of this methodwould definitely

be higher than AIM.

7.2 Extending Tracking Range

Some warehouses are very long and narrow. These layouts are

simple and fewer dead zones likely exist. However, a single mi-

crophone array may not suffice for the whole area because of the

limited pick-up range.

We explore the feasibility of deploying distributed microphone

arrays in these scenarios to increase the tracking range. We line up

three equally-spaced microphone arrays so that they can capture

the acoustic signals of the drone once it flies in their vicinity. The

inter-distance 𝑑 between two arrays is set to 5 m, 10 m and 20 m.

This setup is instrumental to validate the viability of thi s technique
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in general; conclusions we draw next, indeed, apply to any number

of equally-spaced microphone arrays deployed linearly.

Fig. 22 shows the performance of AIM in these settings, depend-

ing on the distance 𝑑 between two adjacent microphone arrays

as well as the flight range of the drone, shown in different colors.

With a fixed 𝑑 , the localization accuracy is relatively stable and

does not decrease with the increase of flight range, which shows

the feasibility of distributed microphone array. However, when 𝑑
increases, the tracking error increases as well, especially when 𝑑
jumps from 10 m to 20 m. We hinted earlier that the operational

range for the pair of the drone and microphone array used in our

experiments is roughly 10 m. It is then expected that the accuracy

heavily decreases when the drone flies around the midpoint of ad-

jacent microphone arrays with 𝑑 set to 20 m, which is two times of

the operational range.

We can then conclude that 𝑑 should be limited within two times

of the operational range of the hardware employed to ensure the

accuracy at the boundary between two consecutive microphone ar-

rays. By doing so, the tracking range can be significantly extended

by deploying additional microphone arrays. Further, if the layout

of the long warehouse satisfies certain conditions, distributed mi-

crophone arrays can be configured as "ZigZag", where AIM can

combine the advantages of triangulation to achieve higher accuracy.

7.3 Transitioning Outdoor

We envision AIM can function not only indoors but outdoors. Con-

sider the following example that simply extends the warehouse

scenario. To avoid the transmission of viral diseases, some deliveries

may occur on the outdoor shelves where the environment is much

more ventilated. Drones may serve for inventory management in-

doors and perform non-contact delivery outdoors. Although the

built-in GPS of the drone may work outdoors, chances are that its

accuracy and stability may be barely satisfactory in this scenario, es-

pecially when location information is continuously required when

rapidly transitioning from indoor to outdoor settings and the other

way around. The time for the GPS to acquire a fix once the drone

performs outdoor missions may significantly exceed the time avail-

able for the delivery.

We compare the outdoor bi-dimensional localization accuracy

between AIM and the built-in GPS of DJI Mini 2 in an open space

without any obstruction. Similar to our indoor experiments, we

control the drone flying over a 10 m × 10 m field and set distance

markers on the ground to obtain the ground truth. Fig. 23 shows

the results obtained when the built-in GPS of the drone acquires

good signal quality. AIM outperforms GPS with a mean error of

1.21 m, which is 57% less than that of GPS. Given this performance

of GPS in the open space, it will show even lower accuracy or can

not work in a setting with obstacles and complex structures. In

contrast, AIM outputs more accurate and stable tracking results no

matter whether it performs outdoors or indoors.

8 DISCUSSION

We complete the discussion of AIM by articulating practical issues

of applicability and general use.

Operational range. As discussed before, the operational range de-

pends on the SPL of the drone’s sound and the pick-up ability of the

microphone array. However, even for small drones and microphone

arrays with short operational range, AIM can continuously report

the drone’s location by extending the deployment of distributed

microphone arrays. In practical deployments, the distance between

two microphone arrays must be controlled to ensure the drone with

the shortest operational range can be successfully tracked.

Multi-drone tracking.When multiple drones enter the same area,

AIM can still track them separately if their BPF are different. Oth-

erwise, frequency aliasing happens. We may handle this problem

by borrowing ideas from existing works to discriminate different

sound sources along different propagation paths [51] or to modulate

the unique acoustic signature in the drone motor sound [2].

Doppler effect. As the drone is a mobile sound source, one may

argue that the Doppler effect may represent a problem. In fact,

drones cannot fly at extremely high speeds to increase lifetime and

to reduce the chances of collisions [2], especially when functioning

indoors. Even by assuming that the maximum speed of the drone

is 5 m/s, there would be an error of less than 1.5% in the received

frequency, when the sound velocity is 343 m/s. This is negligible,

justifying the design choice in AIM of not compensating for the

frequency shift when tracking.

9 CONCLUSION

We presented AIM, the first-of-its-kind passive indoor drone track-

ing technique that works with a single microphone array, but may

also be extended to support spaces with any range and layout

by deploying distributed microphone arrays. AIM innovates the

acoustic tracking technique in that it fully exploits the dual acous-

tic channel from the drone to the microphone array, based on an

in-depth understanding of the drone’s dynamics and the charac-

teristics of its acoustic signal. Through extensive experiments, we

demonstrate that AIM offers strikingly better performance than

state-of-the-art solutions, especially in NLoS settings, and enjoys

stable performance across complex indoor environments.
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