
ABSTRACT

We present MicNest: an acoustic localization system enabling pre-

cise landing of aerial drones. Drone landing is a crucial step in

a drone’s operation, especially as high-bandwidth wireless net-

works, such as 5G, enable beyond-line-of-sight operation in a shared

airspace and applications such as instant asset delivery with drones

gain traction. InMicNest, multiple microphones are deployed on a

landing platform in carefully devised configurations. The drone car-

ries a speaker transmitting purposefully-designed acoustic pulses.

The drone may be localized as long as the pulses are correctly de-

tected. Doing so is challenging: i) because of limited transmission

power, propagation attenuation, background noise, and propeller

interference, the Signal-to-Noise Ratio (SNR) of received pulses

is intrinsically low; ii) the pulses experience non-linear Doppler
distortion due to the physical drone dynamics while airborne; iii)
as location information is to be used during landing, the processing

latency must be reduced to effectively feed the flight control loop.

To tackle these issues, we design a novel pulse detector, Matched

Filter Tree (MFT), whose idea is to convert pulse detection to a

tree search problem. We further present three practical methods

to accelerate tree search jointly. Our real-world experiments show

that MicNest is able to localize a drone 120 m away with 0.53%

relative localization error at 20 Hz location update frequency.
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Figure 1: Two phases of drone landing.

1 INTRODUCTION

Aerial drone technology represents a new breed of computing plat-

form [30], enabling applications in a range of fields such as agri-

culture, search and rescue, film-making, impromptu networking,

and logistics. Landing is a key step in a drone’s operation [16], one

that is both delicate as the risk of damaging the drone itself or the

surroundings is highest [52], and an essential component in many

next-generation applications enabled by drone technology.

Target scenarios. With the roll-out of 5G networks, beyond-line-

of-sight operation becomes possible: a drone flies autonomously

over long distances without a physically co-located human pilot,

but connected to an Internet back-end that monitors its operation

in real time. This ability unlocks a range of potential applications,

such as long-range visual inspections executed by multiple drones

in a shared airspace [30] and instant asset delivery with drones.

Let us examine further the latter application. Compared to ground

couriers, drones can bypass the complex urban traffic and deliver

packages in a much shorter time. This is ideal for time-sensitive

deliveries, such as medical supplies [79] and food [23, 27, 46], and

also caters for contactless deliveries, which helps reduce the spread

of viral diseases. Many companies are exploring the commercial

feasibility of instant deliveries with drones; for example, Ama-

zon [7], Alphabet Project Wing [6], Wal-Mart [26, 71], JD.com [38],

Domino’s [23], UPS [67], Ele.me [27], and Meituan [46].

Instant delivery with a drone unfolds as follows. After the pack-

age is placed onboard, the drone takes off, climbs to cruising altitude,

and heads towards the destination. The latter is typically a self-

collection station
1
near the customer.When the drone is close to the

destination, a precise landing procedure is initiated, as pictorially

depicted in Fig. 1. The drone first approaches the landing platform

1
These self-collection stations are set up and operated by the drone delivery companies

on their own, and are shared with the nearby residents.
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horizontally to achieve vertical alignment, as in Fig. 1(a). Next, the

drone starts the descent, shown in Fig. 1(b). Once the drone safely

docks onto the landing platform, the package is dropped into the

self-collection station, where the customer fetches it.

The consequences of not landing precisely can only be underesti-

mated. Loss of the transported good is the most obvious. Should the

drone miss the landing platform even partly, it would quickly lose

control and crash, possibly damaging objects or hurting people [64].

There are the key requirements to avoid similar mishaps: i) cm-level
positioning accuracy ii) at 100+m altitude, with positioning accuracy
improving as the altitude decreases, and iii) low-latency location
updates to feed the flight control loop. These requirements form

the essence of our research problem.

State of the art. During the horizontal approach, shown in Fig. 1,

the flight control loop mainly relies on Global Positioning System

(GPS) or Real-Time Kinematic Positioning (RTK) [76]. During the

descent, the flight control loop must keep the drone horizontally

centered over the landing platform. As we further articulate in

Sec. 2, settings exist, such as urban canyons, where the accuracy of

GPS or RTK degrades with decreasing altitude up to making either

system essentially unusable [18, 32, 34]. Auxiliary anchor-based

systems may assist the drone during the descent such as visual

markers [29, 40, 49, 70, 73], laser stations [13], ultra-wide band

(UWB) stations [15, 22], or motion capture cameras [14].

Few of these systems, however, fulfill the requirements men-

tioned earlier. The only technique that may potentially do so is

visual markers, read by downward-facing cameras the drone must

be equipped with. According to our real-world experiences, we find

that these techniques, however, exhibit key limitations:

1) They are sensitive to lighting variations; visual markers are diffi-

cult to detect in the fog or at night; equipping the drone with a

light source may partly ameliorate the problem, however limit-

ing the operational range to 20-30m and only obtaining unstable

performance.

2) They are constrained in horizontal coverage; depending on the

camera field of view and the drone’s vertical alignment with

the marker, the camera may not completely capture the marker,

resulting in a localization failure [8].

3) They limit system throughput; as visual markers require line of

sight between the camera and the marker, drones necessarily

need to land one by one; otherwise, the first drone that com-

mences the descent visually blocks the marker for all others.

MicNest.We presentMicNest, an acoustic localization system to

assist drones in precise landing, summarized in Sec. 3. A speaker

carried by a drone broadcasts purposefully-designed acoustic pulses.

Multiple microphones are deployed on the landing platform in

carefully devised configurations. By localizing the speaker from the

microphone signals, we localize the drone during the descent.

MicNest is rooted in the unique features of acoustic signals.

The spatial resolution of a signal is proportional to its speed and

inversely proportional to its bandwidth [59]. Thus, the slower a

signal is, the finer spatial resolution it can provide. Acoustic signals

with a limited bandwidth, say 24 kHz, can provide a fine-grained

spatial resolution, around 0.71 cm when the sampling rate is 48

kHz. In comparison, the spatial resolutions of RF signals like UWB

with a 1.3 GHz bandwidth or mmWave with a 4 GHz bandwidth

are 10 cm [3] and 3.75 cm [37], respectively.

Compared to the visual techniques, using acoustic signals further

allowsMicNest to i) operate obliviously to lighting conditions and

ii) provide much larger horizontal coverage. Further, we adopt

Pseudo-Random Noise (PRN) to modulate acoustic pulses emitted

by a drone. Because PRN pulses are orthogonal as long as they

are statistically independent of each other, we can detect these

pulses separately from the collided signal and identify which drone

each pulse corresponds to. This makesMicNest able to iii) provide
concurrent detection and localization of multiple drones.

MicNest provides, nonetheless, additional benefits. The use

of PRN pulses makes MicNest friendly to human ear. As drones

may operate in populated areas, pulses should not cause acoustic

discomfort, yet PRN has the same acoustic characteristics as white

noise and is almost imperceptible to human ears [48, 60, 72]. Finally,

MicNest is resistant to impersonation attack, because pulses are

(pseudo) randomly generated and it is difficult for third parties to

generate the same pulse and impersonate a drone.

We want to point out that MicNest is a complement, not a re-

placement, to the existing localization solutions. The safety of com-

mercial drones can not be overemphasized. To assist drones in

precise landing, MicNest will not work alone but will cooperate

with RTK and the visual marker to provide a more reliable and

accurate localization service.

Challenges and contribution. Localizing drones via acoustics

must tackle three fundamental challenges.
First, the SNR of acoustic pulses is inherently low. The trans-

mission power of the speaker must be limited to avoid acoustic

discomfort.MicNest needs to achieve long-range localization, thus

acoustic pulses experience significant attenuation. Further, back-

ground noise in many cities is intrinsically strong, around 40-75 dB

SPL [51], and when airborne, drone propellers generate much acous-

tic interference [10], possibly up to 104 dB SPL[57].

Second, acoustic signals experience non-linear signal distortions
due to Doppler effects. The severity of this effect is inversely pro-

portional to signal speed. Compared to RF signals, the sound speed

is much lower. It can be expected that acoustic pulses experience

serious distortion when drones are airborne. Modern flight control

loops take flight decisions at 400+ Hz, rapidly changing the drone

velocity. An acoustic pulse thus experiences various degrees of

Doppler effect, ultimately undergoing non-linear distortions.

Third, signal processing must withstand the latency constraint

imposed by the nature of flight control loops. The latter consumes

location information as one of their most critical inputs. Evidence

shows that increasing the latency of location updates may represent

a source of system instability [52]. To make things worse,MicNest

must provide low-latency location information at a time when the

system dependability is most important: during landing.

The key enabling technology behind MicNest is a novel pulse
detector: Matched Filter Tree (MFT), presented in Sec. 4. The key

idea is to model pulse detection as a tree search problem. We cut

one pulse into multiple short segments. The time span of each

segment is short enough that the drone velocity in the three dimen-

sions can be considered as constant. Therefore, Doppler distortion

within each segment is linear. We then build a search tree, where

2
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each level’s nodes correspond to each segment’s candidate drone

velocities. For each segment, we check all possible velocities to

compensate its distortion. If all segments are compensated with

the right velocities, the problem of non-linear distortion is thus

addressed. In addition, MFT allows us to increase pulse length on

demand to further address the low-SNR problem. MFT addresses

the first and second challenges above.

To enable low-latency localization, we present three techniques

to accelerate tree search: i) tree pruning for reducing the search

space by reducing the branching factor of the search tree; ii) cor-
relation acceleration for reducing the time cost of each search by

accelerating correlation; and iii) heuristic search for reducing the

number of searches by exploiting past history to quickly dive to-

wards the solution. The three techniques, presented in Sec. 5, are

used jointly to address the third challenge above.

We report on the performance of MicNest in Sec. 6. Using a

custom foldable landing platform we build, based on a total of 40

hours of real-world experiments with multiple drones, we provide

evidence of how MicNest fulfills the requirements at stake. We

demonstrate, for example, thatMicNest provides a median error of

just 0.043 m below 20 m altitude, that is, where accuracy matters the

most for precise landing. In an experiment covering altitudes up to

120 m, nonetheless, the absolute localization error over the distance

to the landing platform is only 0.53%. The mean latency to obtain a

location update at the drone is 29.7 ms, which is compatible with

use in flight control loops [17, 52]. We also show how MicNest

is only marginally affected by factors it cannot control, such as

background noise, and can localize multiple drones with limited

degradation of accuracy.

2 RELATEDWORK

Our work lies at the intersection of localization in mobile robotics

and localization using acoustic signals.

Localization in mobile robotics. GPS is by far the most popular

technique providing meter-level accuracy in outdoor settings. RTK

is an improved but more expensive version of GPS and can achieve

cm-level accuracy. Satellite-based systems become inaccurate or pre-

vented from operating in urban canyons, because the surrounding

buildings may reflect or block the GPS signals [18, 32, 34], resulting

in the serious multipath issue or NLOS reception, respectively.

Because of these issues, several auxiliary techniques exist to local-

ize mobile robots and especially aerial drones. AprilTags [40, 49, 73]

may be used to localize drones by using a downward-facing camera

to detect visual markers on the ground. Similar techniques also exist

that are customized for testbed operation [4]. These systems can

achieve cm-level accuracy. However, they are sensitive to lighting

conditions and have a limited horizontal coverage depending on

the camera field of view and distance to the marker.

Optics-based systems such as Lighthouse [13] and motion cap-

ture systems [14] can also localize drones with cm-level accuracy.

However, their localization range is limited to a few meters, which

makes them unsuited to enable precise landing. TrackIO [22] uses

UWB tags for localizing drones. The median error is 1+ m, which

may not be sufficient to support precise landing. Finally, similar

to MicNest, Rabbit [45] deploys a speaker on the drone to emit

frequency-modulated continuous wave (FMCW) signals and uses a
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Figure 2:MicNest system architecture.

mobile phone to track the drone. Although the localization error is

less than 3 cm, the range is limited to 1.5 m.

In summary, no existing localization system for mobile robots

can simultaneously fulfill the three requirements outlined in the

Introduction, thus enabling precise drone landing.

Localization with acoustic signals. Acoustic signals may be used

for localization indoor [5, 20, 33, 35, 41, 43, 44, 58, 63, 66, 75] or

outdoor [31, 42, 53, 78]. Many works utilize audible acoustic signals

or actively transmit acoustic signals for indoor localization. For

example, GuoGuo [20] proposes a fine-grained adaptive ToA (Time

of Arrival) estimation approach to improve the location update

frequency. VoLoc [58], Symphony [75], and MAVL [74] use a single

microphone array to localize sources via wall reflections. Lin et

al. [43] transmit the ultrasonic sound and exploit the non-linearity

effect to localize devices. Some of these techniques achieve m-level

accuracy, with a range limited to less than 20 m.

In outdoor localization, works exist that present the design of

wireless acoustic sensor networks to achieve localization in vast

areas with m-level accuracy [31, 53]. Li et al. [42] also present a

machine learning technique to detect cars via acoustics and exploit

the geometric information of roads to localize cars. These works

deploy microphones across a vast area, while our deployment is

limited to a landing platform not much larger than the drone.

Here again, the conclusion is that no existing technique can

simultaneously fulfill the requirements at stake, either because of

limited accuracy or coverage, or due to deployment constraints

dictated by the target scenario.

3 MICNEST IN A NUTSHELL

Fig. 2 shows the system architecture of MicNest. The drone car-

ries a speaker that transmits acoustic pulses continuously. Four

distributed microphones are deployed at the corners of the landing

platform to capture these pulses.MicNest localizes the drone by

localizing the speaker.

PRN modulation. We adopt Pseudo-Random Noise (PRN) modu-

lation to generate the pulses. Specifically, let

𝒔 = [𝑠0, 𝑠1, . . . , 𝑠𝑛, . . . , 𝑠𝑁−1]𝑇 (1)

indicate the acoustic pulse for a drone, where 𝑠𝑛 denotes the PRN

code of a pulse, and 𝑁 is the pulse length. We take a drone’s iden-

tifier as a random seed and generate a sequence of 𝑁 Gaussian

random variables as the 𝑁 codes of the pulse. By doing so, the

pulses transmitted by different drones are independent and thus

orthogonal to each other. InMicNest, the code rate equals the sam-

pling rate of the microphones, that is, 48 kHz. The corresponding

3
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frequency band of pulses is 0-24 kHz. For continuously localizing

the drone, pulses are transmitted repeatedly.

Pulse detection and TDoA estimation. First, we need to detect

the pulses from the signals recorded by the microphones. Matched

filters are a standard method to detect acoustic pulses. The idea is

to consider the transmitted pulse as a template and to correlate it

with the received signal. The signal received by a microphone is

𝒙 = 𝛼𝒔 +𝒘, (2)

where 𝛼 is the attenuation factor
2
, and 𝒘 = [𝑤0,𝑤1, . . . ,𝑤𝑁−1]𝑇

denotes a vector of Gaussian white noise. To detect the pulse 𝒔, the
matched filter correlates 𝒔 with the received signal 𝒙 . The output is

𝑦 = 𝒔𝑇 𝒙 = 𝛼𝒔𝑇 𝒔 + 𝒔𝑇𝒘 . (3)

By feeding a stream of 𝒙 into the matched filter, we obtain a stream

of correlations 𝑦. Upon observing a correlation peak in the output,

we consider a pulse to be detected.

Once an acoustic pulse is detected, we calculate ToAs, that is, the

times when the pulse arrived at microphones, and time difference

of arrivals (TDoAs), that is, the differences in ToAs. InMicNest, we

compute TDoAs between opposite microphones on the landing plat-

form, that is, <Mic. 0, Mic. 2> and <Mic. 1, Mic. 3> in Fig. 2. This is

because opposite microphones have the largest inter-microphone

distance and therefore yield the largest aperture [59]. The two

TDoAs of pairs <Mic. 0, Mic. 2> and <Mic. 1, Mic. 3> are denoted

as 𝜏<0,2> and 𝜏<1,3> , respectively.

Localization. 𝜏<0,2> and 𝜏<1,3> , are transmitted to the drone, for

example, via WiFi. Based on these information, the drone can es-

tablish two hyperboloid equations.

Specifically, we build a 3D coordinate system and let the center of

the landing platform be the origin. The coordinates of microphones

are defined as 𝑀0 = (𝑑, 0, 0), 𝑀1 = (0,−𝑑, 0), 𝑀2 = (−𝑑, 0, 0), and
𝑀3 = (0, 𝑑, 0), respectively. Given these, the two-sheeted hyper-

boloids oriented along the x-axis and y-axis are given by:{
|𝑃𝑀0 − 𝑃𝑀2 |2 = 2𝑎0 = abs(𝜏<0,2> × 𝑐)
|𝑃𝑀1 − 𝑃𝑀3 |2 = 2𝑎1 = abs(𝜏<1,3> × 𝑐)

, (4)

where 𝑃 = (𝑃𝑥 , 𝑃𝑦, 𝑃𝑧) denotes the drone coordinate, | • |2 is the
Euclidean distance (2-norm), and 𝑐 is the speed of sound.

Note that Eq. (4) is undetermined, since it provides only two con-

straints while drone coordinates have three unknowns, that are, 𝑃𝑥 ,

𝑃𝑦 , and 𝑃𝑧 . It would be possible to introduce additional constraints

by using TDoAs of other microphone pairs. However, due to far-

field effect, the solution to this system of equations would likely lead

to oscillating behaviors, especially in the vertical direction, with the

increase of drone distance from the landing platform. Differently,

we estimate 𝑃𝑧 based on sensors found aboard modern drones, such

as barometers, ultrasound sensors, and downward-facing LIDARs.

Similar techniques are routinely used in drone testbeds [4]. By

determining 𝑃𝑧 , we can use Eq. (4) to determine 𝑃𝑥 and 𝑃𝑦 .

4 TACKLING PULSE DETECTION

The low SNR of received pules and their non-linear Doppler distortion
concur to make pulse detection difficult. This section elaborates on

how we tackle these two challenges; then it introduces our novel

2
For simplicity, we assume all codes experience the same attenuation 𝛼 .

Table 1: Summary of mathematical symbols.

Term Description

𝑇𝑐 ,𝑇
′
𝑐 Code periods w/o and w/ Doppler effect

𝐺 ,𝐺
′

SNR gains w/o and w/ Doppler effect

𝑣 Drone radial velocity

𝑐 Sound Speed

Δ Doppler time shift experienced by PRN

𝑁 Number of PRN codes in a pulse

𝐿 Number of synchronized PRN codes

pulse detector: Matched Filter Tree (MFT). As a reference through

this section, Tab. 1 lists the mathematical symbols we use.

4.1 Low SNR

Because of limited transmission power, propagation attenuation,

background noise, and propeller interference, the SNR of received

pulses is intrinsically low.

An effective solution to address this problem is to increase pulse

length, thus improving the SNR gain of the matched filter. To un-

derstand the SNR gain as seen by the matched filter, we compare

the SNRs of the received signal 𝒙 and the output 𝑦. Considering

Eq. (2), the SNR of 𝒙 is

𝑆𝑁𝑅𝑥 =
𝐸

[
|𝛼𝒔 |2

]
𝐸

[
|𝒘 |2

] =
|𝛼 |2𝒔𝑇 𝒔

𝐸
[∑ |𝑤𝑛 |2

] =
|𝛼 |2𝒔𝑇 𝒔
𝑁𝜎2

, (5)

where 𝜎2 is the noise variance. Similarly, the SNR of 𝑦 is

𝑆𝑁𝑅𝑦 =
𝐸

[
|𝛼𝒔𝑇 𝒔 |2

]
𝐸

[
|𝒔𝑇𝒘 |2

] =
|𝛼 |2𝒔𝑇 𝒔 · 𝒔𝑇 𝒔
𝒔𝑇 𝐸

[
𝒘𝒘𝑇

]
𝒔
=

|𝛼 |2𝒔𝑇 𝒔
𝜎2

, (6)

where 𝐸
[
𝒘𝒘𝑇

]
is the covariance matrix of 𝒘 , which is 𝜎2𝑰 . The

SNR gain of the matched filter is thus given by

𝐺 =
𝑆𝑁𝑅𝑦

𝑆𝑁𝑅𝑥
= 𝑁 . (7)

Eq. (7) leads to a fundamental insight: the SNR gain 𝐺 equals the
pulse length 𝑁 . This means that, at least in principle, we may trade

time for a higher SNR. Unfortunately, doing so backfires in the

presence of non-linear Doppler distortion, as explained next.

4.2 Non-Linear Doppler Distortion

The Doppler effect introduced by drone dynamics may seriously

distort the acoustic pulses. The severity of Doppler effect is gener-

ally inversely proportional to signal speed. Due to the low speed of

acoustic pulses, they heavily suffer from such distortion.

Code desynchronization. Doppler effect gradually makes the

received pulses misaligned with the transmitted original pulses in

the time domain, and ultimately desynchronize the received codes

with the transmitted ones.

Consider the continuous-timewaveform of the transmitted pulse 𝒔
which is given by

3

𝑠 (𝑡) =
𝑁−1∑︁
𝑛=0

𝑠𝑛 · rect( 𝑡 − 𝑛𝑇𝑐
𝑇𝑐

), 0 ≤ 𝑡 ≤ 𝑁𝑇𝑐 . (8)

3
For simplicity, we use the Zero-Order Hold (ZOH) to model the Digital-to-Analog

Converter (DAC).

4
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Figure 3: Illustration of code desynchronization.

Here, rect(𝑡) is the rectangular function that is 0 outside the interval
[0, 1) and 1 inside of it, whereas 𝑇𝑐 denotes the code period, that is,

1/48𝑘𝐻𝑧 s in our implementation.

In the presence of Doppler effect, the codes of the received pulse

expand or compress in time. The period of these codes can be

calculated as [65]

𝑇
′
𝑐 =

(
1 − 𝑣

𝑐

)
𝑇𝑐 , (9)

where 𝑣 denotes the drone velocity4. Given this, the received pulse

distorted by Doppler effect is

𝑠
′
(𝑡) =

𝑁−1∑︁
𝑛=0

𝑠𝑛 · rect( 𝑡 − 𝑛𝑇
′
𝑐

𝑇
′
𝑐

), 0 ≤ 𝑡 ≤ 𝑁𝑇
′
𝑐 . (10)

However, the receiver simply samples the pulse with the original

code period𝑇𝑐 . The discrete-time waveform of the received pulse is

𝑠
′
𝑛 = 𝑠

′
(𝑡) · 𝛿 (𝑛𝑇𝑐 ), 𝑛 = 0, 1, . . . , (11)

where 𝛿 (𝑡) is the Dirac delta function. Note that the period of

received codes is 𝑇
′
𝑐 while the sampling period is 𝑇𝑐 . This means

that each sampled code is shifted in time by

Δ = 𝑇𝑐 −𝑇
′
𝑐 =

𝑣

𝑐
·𝑇𝑐 . (12)

To make things worse, the time shift accumulates over multiple

samples. Consider Fig. 3 as an example. It can be calculated that

when 𝑛 ≥ 𝐿 = ⌊𝑐/𝑣⌋, the accumulated time shift that 𝑠
′
𝑛 experiences

is larger than the original code period𝑇𝑐 . This means that the codes

received hereafter are desynchronized with the transmitted codes,

therefore the following holds:{
𝑠
′
𝑛 = 𝑠𝑛 if 𝑛 < 𝐿

𝑠
′
𝑛 ≠ 𝑠𝑛 if 𝑛 ≥ 𝐿

(13)

Impact of code desynchronization. The derivation of the SNR

gain in Eq. (7) assumes that the transmitted codes, that is, the tem-

plate, are synchronized with the received codes. This assumption

may not hold due to code desynchronization. In such a case, the

SNR gain of the matched filter can be re-written as

𝐺
′
=
𝑆𝑁𝑅

′
𝑦

𝑆𝑁𝑅
′
𝑥

=

(
|𝛼 |2𝒔𝑇 𝒔′ · 𝒔𝑇 𝒔′

𝜎2𝒔
′𝑇
𝒔
′

) / (
|𝛼 |2𝒔′𝑇 𝒔′

𝑁𝜎2

)
= 𝑁

(
𝒔𝑇 𝒔

′

𝒔
′𝑇
𝒔
′

)
2

,

(14)

where 𝒔
′

denotes the received pulse [𝑠′
0
, 𝑠

′
1
, . . . , 𝑠

′
𝑁−1]

𝑇
.

Based on Eq. (13), if the number of codes 𝑛 is less than 𝐿, then

𝒔
′

= 𝒔. In this case, there is no code desynchronization, and 𝐺
′
=

4
Unless otherwise specified, drone velocity refers to radial velocity of drone with

respect to the ground port. The velocity is negative if the drone moves towards the

ground port.

Figure 4: A drone’s radial velocity during landing.

𝐺 = 𝑁 . Instead, if 𝑛 ≥ 𝐿, then only the first 𝐿 codes of 𝒔
′

equals

those of 𝒔 and the remaining codes are desynchronized. Therefore,

𝐺
′
= 𝑁

(∑𝐿−1
𝑛=0 (𝑠

′
𝑛)2 +

∑𝑁−1
𝑛=𝐿

𝑠𝑛𝑠
′
𝑛∑𝑁−1

𝑛=0 (𝑠′)2

)
2

= 𝑁

( ∑𝐿−1
𝑛=0 (𝑠

′
𝑛)2∑𝑁−1

𝑛=0 (𝑠′𝑛)2

)
2

≈ 𝑁 ( 𝐿
𝑁
)2 = 𝐿2

𝑁
, 𝑁 > 𝐿. (15)

Here, the reason for

∑𝑁−1
𝑛=𝐿

𝑠𝑛𝑠
′
𝑛 = 0 and for the approximation

in the second line is that codes in our pulse are a sequence of

independent pseudo-random Gaussian variables [28]. As a result,

once the pulse length 𝑁 exceeds 𝐿, the SNR gain degrades with the

increase of pulse length.

We are now facing a catch-22 situation. Eq. (7) suggests that a

long pulse length helps mitigate the low-SNR problem. Conversely,

Eq. (15) indicates that the maximum pulse length that can improve

SNR gain is 𝐿 = ⌊𝑐/𝑣⌋, whose value is upper-limited by the (low)

speed of acoustic signals 𝑐 . Let us consider a concrete example to

illustrate the problem. Suppose the sound speed is 343 m/s and the

drone speed is 6 m/s. Thus, a complete code desynchronization will

occur after 𝐿 = ⌊343/6⌋ = 57 codes, as per Eq. (13). On the other

hand, as we indicate in Sec. 6, the pulse duration should be at least

50 ms so as to localize a long-range drone, thus the corresponding

pulse length 𝑁 is 2400 at a sampling rate 48 kHz. The huge gap

between 𝑁 = 2400 and 𝐿 = 57 indicates that Doppler distortion

significantly hinders addressing the low-SNR problem by increasing

the pulse length.

Physical drone dynamics. Should the drone velocity be constant,

the corresponding Doppler distortion would be linear. If we were

in this situation, we might simply determine what drone velocity

compensates the Doppler effect. This is precisely the idea of the

matched filter bank [19, 36].

In practice, however, the drone velocity is not constant, leading to

non-linear distortion. As an example, Fig. 4 plots the radial velocity

of a drone when it is landing automatically from a 50 m altitude,

based on location and velocity information obtained by an RTK

system in an open area and the on-board IMU. The drone velocity

fluctuates rapidly during landing in response to commands from

the on-board flight control loops [17], which rapidly change the

drone motion to maintain stable flight on a predetermined route.

Flight control loops operate at 100Hz-32kHz [1, 2, 56]. This

means that a drone may change its velocity at sub-10-ms scales.

On the other hand, Eq. (7) shows that in order to take advantage

of the SNR gain of the matched filter, we should increase pulse

length. Our real-world experimental evaluation, reported in Sec. 6,

indicates pulse duration should be no less than 50 ms to localize the

drone robustly. We may thus expect that multiple motions occur

5
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Figure 5: Illustration of a search tree.

within the duration of one pulse. Therefore, pulses undergo non-

linear distortion and different codes experience different degrees of

Doppler effect, hindering detection.

4.3 Matched Filter Tree

We present a novel pulse detector, Matched Filter Tree (MFT), to

detect a low-SNR pulse subject to non-linear distortion. The key

idea is to model pulse detection as a tree search.

Intuition. Fig. 5 illustrates the idea. We split one pulse into𝑀 equal

segments denoted as Seg. 0, 1, ... with segment length 𝑁𝑠𝑒𝑔 = 𝑁 /𝑀 .

The segments are short enough that the drone velocity can be

considered constant within the duration of a segment. Therefore,

each segment experiences a linear Doppler distortion.
We build a search tree where the nodes at each level correspond

to the possible drone velocities during the transmission of a seg-

ment. For each segment, we consider the 𝐾 possible velocities to

compensate the Doppler shift it experiences. Ideally, if all segments

are compensated with the correct velocities, the new pulse spliced

by the compensated segments restores its code synchronization

with the received pulse, eliminating the non-linear distortion. Sec. 5

discusses the setting of the parameters at hand, including the choice

of𝑀 , and the search resolution for velocity.

Searching the solution. Let velocities <𝑣 (0) , 𝑣 (1) , . . . , 𝑣 (𝑀−1)
> be

one possible combination of candidate velocities, for example, cor-

responding to path 𝑖 in Fig. 5, where 𝑣 (𝑚)
denotes the candidate ve-

locity for Seg.𝑚. We perform the following steps to check whether

the candidate velocities compensate the non-linear distortion:

• S1 (compensation): for each velocity 𝑣 (𝑚)
, we estimate the

Doppler shift that Seg.𝑚 suffers as (𝑣 (𝑚)/𝑐) ·𝑇𝑐 , according to
Eq. (12)); we compensate this Doppler shift by resampling this

segment with spacing (𝑐 − 𝑣 (𝑚) )/𝑐 .
• S2 (concatenation): we concatenate the resampled versions of

𝑀 segments into a new pulse, denoted as 𝑠
′
𝑖
.

• S3 (correlation): we take the new pulse 𝑠
′
𝑖
as a new template

and correlate it with the received signal.

If velocities <𝑣 (0) , 𝑣 (1) , . . . , 𝑣 (𝑀−1)
> along path 𝑖 match the actual

drone velocities, the new pulse 𝑠
′
𝑖
is again synchronized with the

received pulse; thus it has maximum correlation with the received

signal because the non-linear distortion is minimized. Therefore,

the problem of detecting pulses corresponds to finding a solution

path in the search tree that can minimize the non-linear distortion.
A straightforward solution is exhaustive search, that is, visit-

ing every path of the search tree. For each such path, we use the

velocities along the path to compensate the Doppler shift of the

pulse, as per S1 and S2, and to calculate the correlation, as per S3.

After visiting all paths, we select the path whose corresponding

v1

Root

vk vK-1v0 Seg. 0

Root

 Seg. 0

Seg. 1

Seg. 2

v1 vk vK-1v0 v1 vk vK-1v0
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(a) Detecting linearly distorted pulses.

(b) Detecting high SNR pulses.

Figure 6: Two specific cases that MFT can be narrowed down to.

correlation has the maximum value; the maximum correlation value

means that the non-linear distortion is minimized.

The processing overhead of an exhaustive search is, however,

unacceptable forMicNest, because of the low-latency requirement

discussed earlier. The search space indeed grows exponentially with

the number of segments 𝑀 . Given the computational complexity

of the correlation operation in S3, it is nearly impossible to visit

every path and return a solution at low latency. Note that it is also

infeasible to search for the solution path incrementally or greedily,

that is, choose the candidate velocity that can maximize the corre-

lation at each level of the tree. This is because the length of each

segment is so short that the SNR gain of segment-audio correlation

is immaterial. The noise typically dominates the correlation. Sec. 5

explains how we accelerate the tree search.

With the help of MFT, we can compensate for the non-linear

distortion in the received pulses. This means that the problem

of code desynchronization can be tackled, and we can avoid the

dilemma that a long pulse length can undermine the SNR gain. In

other words, it is safe for us to choose a longer pulse on demand to

boost the SNR of the MFT’s outputs (see Eq. (7)). In Sec. 6, we study

the pulse length that MicNest demands.

4.4 Other MFT Uses

Above, we show that MFT is feasible to detect pulses suffering

from both low SNR and non-linear distortion, which is indeed a

challenging task. In fact, MFT can also be used for detecting pulses

in other cases, as shown in Fig. 6:

• Detecting linearly distorted pulses: Fig. 6(a) showns this case.

When the received pulses suffer from linear distortion
5
, all seg-

ments experience the same degree of distortion. Given this, we

can remove the unfeasible search paths and prune the search

space from an exponential one to a linear one. This kind of MFT

is equivalent to matched filter bank [19, 36], which is widely

used in GPS receivers.

• Detecting high SNR pulses: A high SNR of received pulses

can lower the requirement for the SNR gain of MFT. This means

that the pulse length can be reduced, and correspondingly the

depth of the search tree can be reduced. As illustrated by Fig. 6(b),

when the SNR is sufficiently high, the search tree can be chopped

to a single layer, reducing the search space.

5
In addition to Doppler effect, many hardware imperfections can also introduce linear

distortion, such as carrier frequency offset (CFO) and sampling frequency offset (SFO).

6
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Figure 7: To prune the search space, the branching factor of the

search tree is aggressively reduced to three.

MFT therefore enjoys the flexibility to adapt to detection tasks

according to signal quality. Meanwhile, MFT is an extension to a

matched filter. By replacing the template of MFT, MFT can detect

not only PRN pulses used by MicNest, but also other types of

signals, such as FMCW signals and OFDM signals. We believe MFT

is a general detection tool and may be equally applied to other

signal processing tasks.

5 TACKLING THE LATENCY CHALLENGE

We present three methods to accelerate the tree search.

5.1 Tree Pruning

We note that the drone velocity does not change abruptly: the

velocity of the next segment is unlikely to considerably deviate from

that of the current segment. This observation allows us to reduce

the branching factor of the tree, that is, the number 𝐾 of candidate

velocities. We expect this to abate the processing overhead.

In our design, we aggressively reduce the branching factor to

three, as illustrated in Fig. 7. Suppose 𝑣𝑘 is chosen as the velocity of

the𝑚-th segment. There are only three candidate velocities for the

next segment, that is 𝑣𝑘 − Δ𝑣 , 𝑣𝑘 , and 𝑣𝑘 + Δ𝑣 , where Δ𝑣 denotes
the search resolution of velocity. By doing so, the search space is

significantly reduced.

However, in order to safely prune the tree, we have to satisfy

the following two constraints.

• C1: ensure that the solution path is within the pruned search

space. That is

Δ𝑣 ≥ 𝑁seg ·𝑇𝑐 · 𝑎max, (16)

where 𝑎max denotes the maximum drone acceleration. Intu-

itively, this requirement expects a large Δ𝑣 so that the candidate
velocities along the considered paths can catch up with the rapid

change of drone velocity.

• C2: ensure that the search resolution Δ𝑣 is fine enough that

the Doppler shift of each segment can be compensated. In fact,

each candidate velocity is a numerical representation of the

actual velocity with resolution Δ𝑣 . Due to numerical error, the

Doppler shift may not be completely compensated. Accord-

ing to Eq. (12), the accumulated Doppler shift of segment with

length 𝑁seg can be calculated as

∑𝑁seg−1
𝑛=0

𝑣 [𝑛]
𝑐 ·𝑇𝑐 , where 𝑣 [𝑛]

denotes the drone velocity during code 𝑠𝑛 . After compensating

the Doppler shift with 𝑣𝑘 , the residual Doppler shift 𝛿𝑠ℎ𝑖 𝑓 𝑡 is

𝛿𝑠ℎ𝑖 𝑓 𝑡 =
∑𝑁seg−1
𝑛=0

𝑣 [𝑛]−𝑣𝑘
𝑐 ·𝑇𝑐 . Given the resolution Δ𝑣 , the up-

per bound of 𝛿𝑠ℎ𝑖 𝑓 𝑡 is 𝑁seg · Δ𝑣
2𝑐 ·𝑇𝑐 . To avoid introducing code

asynchronization additionally, the residual Doppler shift 𝛿𝑠ℎ𝑖 𝑓 𝑡
should be less than 𝑇𝑐 :

𝑁seg ·
Δ𝑣

2𝑐
·𝑇𝑐 < 𝑇𝑐 . (17)

Obviously, constraints C1 and C2 are conflicting since C1 ex-

pects a larger Δ𝑣 while C2 expects a smaller one.

We notice that segment length 𝑁seg plays a key role in fulfilling

both C1 and C2. 𝑁seg needs to be small enough that during each

segment the drone velocity can be assumed as constant. This as-

sumption also contributes to the residual Doppler shift because the

actual velocity is not constant. The resulting maximum possible

deviation between the actual velocity and the candidate velocity is

𝑁seg ·𝑇𝑐 · 𝑎max + Δ𝑣 . Therefore, Eq. (17) should be modified as

𝑁seg ·
𝑁seg ·𝑇𝑐 · 𝑎max + Δ𝑣

2𝑐
·𝑇𝑐 < 𝑇𝑐 . (18)

In a nutshell, we should satisfy the constraints of Eq. (16) and

Eq. (18) before aggressively pruning the tree to three branches. In

our implementation, 𝑇𝑐 = 1/48𝑘 s. The maximum acceleration of

our drones 𝑎max is 8 𝑚/𝑠2. Given these, we set 𝑁seg to 240 and

Δ𝑣 to 0.1𝑚/𝑠 , ensuring a sufficient search space and providing a

promising search resolution.

5.2 Correlation Acceleration

Correlation is the most time-consuming operation during tree

search (S3 in Sec. 4.3). Here, we reduce its time cost.

Let us define 𝐶𝑜𝑟<𝒗0,𝒗1> [𝜏] as the correlation function between

vectors 𝒗0 and 𝒗1, and 𝒔 (𝑚)
seg

as the compensated version of Seg.𝑚,

and 𝑁
(𝑚)
seg

as the length of 𝒔 (𝑚)
seg

.

We find that the correlation between the compensated pulse

𝒔 and the received audio 𝒚 can be calculated by summing the 𝑀

compensated segment’s correlation with the received audio 𝒚:

𝐶𝑜𝑟<�̃�,𝒚> [𝜏] =
𝑀−1∑︁
𝑚=0

𝐶𝑜𝑟
<�̃� (𝑚)

seg
,𝒚>

[𝜏 + 𝐿 (𝑚−1) ], (19)

where 𝐿 (𝑚)
is defined as

∑𝑚
𝑘=0

�̃�
(𝑘)
seg

. We can rewrite the compen-

sated pulse 𝑠 as a concatenation of𝑀 compensated segments:

𝒔 [𝑛] =
𝑀−1∑︁
𝑚=0

bool[𝐿 (𝑚−1) ≤ 𝑛 < 𝐿 (𝑚) ] · 𝒔 (𝑚)
seg

[𝑛 − 𝐿 (𝑚−1) ], (20)

where bool[condition] is a boolean function that equals 1 if condition
is true and 0 otherwise. Substituting Eq. (20) into the definition of

correlation leads to Eq. (19):

𝐶𝑜𝑟<𝑠,𝑦> [𝜏] =
�̃�−1∑︁
𝑛=0

𝑦 [𝑛 + 𝜏]𝑠 [𝑛]

=

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑦 [𝑛 + 𝜏]1[𝐿 (𝑚−1) ≤ 𝑛 < 𝐿 (𝑚) ] · 𝑠 (𝑚)
𝑠𝑒𝑔 [𝑛 − 𝐿 (𝑚−1) ]

=

𝑀−1∑︁
𝑚=0

𝐿𝑚∑︁
𝑛=𝐿𝑚−1

𝑦 [𝑛 + 𝜏] · 𝑠 (𝑚)
𝑠𝑒𝑔 [𝑛 − 𝐿 (𝑚−1) ]

=

𝑀−1∑︁
𝑚=0

�̃�
(𝑚)
𝑠𝑒𝑔∑︁
𝑛=0

𝑦 [𝑛 + 𝜏 + 𝐿 (𝑚−1) ] · 𝑠 (𝑚)
𝑠𝑒𝑔 [𝑛]

=

𝑀−1∑︁
𝑚=0

𝐶𝑜𝑟
<𝑠

(𝑚)
𝑠𝑒𝑔 ,𝑦>

[𝜏 + 𝐿 (𝑚−1) ] . (21)
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Figure 8: To accelerate the operation of correlation, we take two stages to do so: We first calculate and cache all possible segment-audio

correlations. During the tree search, we efficiently compute one pulse-audio correlation by shifting and adding up the segment-audio correlations

elementwisely.

Eq. (19) reveals a key fact that can be exploited to accelerate

correlation operation. That is, the pulse-audio correlation𝐶𝑜𝑟<𝑠,𝑦>
can be decomposed into multiple segment-audio correlations. In

other words, if segment-audio correlations are available, pulse-

audio correlation can be calculated by adding𝑀 vectors, that is,𝑀

segment-audio correlations.

Given this, we apply a two-step process, as shown in Fig. 8:

• Stage 1: this stage is performed before the tree search. We cal-

culate and cache all possible segment-audio correlations. Specif-

ically, for each Seg.𝑚 and for each candidate velocity 𝑣 (𝑚)
, we

resample this segment with 𝑣 (𝑚)
and then correlate it with a

window of received signals. The resulting segment-audio corre-

lation is then saved to a lookup table with key <𝑚, 𝑣 (𝑚)
>.

• Stage 2: this stage is performed during the tree search. For one

search path, we retrieve all required segment-audio correlations

from the lookup table. For each Seg.𝑚, we shift its segment-

audio correlation by 𝐿𝑚−1
. We then add up𝑀 shifted segment-

audio correlations elementwisely.

Note that the total number of segment-audio correlations is not

an exponential function of segment number𝑀 , but a linear function,

that is,

∑𝑀−1
𝑚=0 (2𝑚 + 3). This is because after reducing the branching

factor to three (see Sec. 5.1), Seg. 𝑚 has only 2𝑚 + 3 candidate

velocities. So Stage 1 can be finished in a short time (about 3.1 ms)

Also note that, the vector add in Stage 2 can be efficiently par-

allelized. We take advantage of native NVIDIA CUDA kernel
6
to

further accelerate Stage 2. In our implementation, searching one

tree path takes only 5.3 `s on the NVIDIA RTX 3070, on average.

5.3 Heuristic Search

Instead of visiting all tree paths in a brute-force way, we adopt a

heuristic method to reduce the total visit count.

Our method is similar to Monte-Carlo Tree Search (MCTS) [21,

39, 62]. Our insight is: for each search path, its corresponding max-

imum correlation values contain the useful information, which can

be exploited to guide towards the solution path in the search tree.

The path that has a larger correlation value is more likely to be

closer to the solution path, and thus the nodes along this path are

more promising to be the nodes of the solution path. Therefore, we

pay more attention to nodes that look promising, so as to avoid

traversing the search tree exhaustively.

6
Native CUDA kernel also allows us to perform shift operation efficiently. This is

because by passing different memory offsets of vectors to the CUDA kernel, we can

implicitly perform shift operation without memory copy.

Our method consists of repeated rounds. For each round, we

perform three procedures:

• Batch path selection: we first generate a batch of tree paths

in the search tree. The batch size is denoted as 𝐵. During the

generation of each path, we start from the root node and choose

the next child with the highest Upper Confidence Bound (UCB)

value [39], defined as

UCB(node 𝑗) = score
𝑗 + 𝐾𝑢𝑐𝑏

√︄
log𝑁vis

𝑁
𝑗

vis

, (22)

where score
𝑖
denotes the score of node 𝑗 , explained later, 𝑁vis is

the total number of paths that has been visited, 𝑁
𝑗

vis
denotes the

number of times that node 𝑗 have been selected, and 𝐾𝑢𝑐𝑏 is an

empirical parameter that used to trade off between exploration
and exploitation [62].

• Batch path evaluation: For each path from the 𝐵 generated

tree paths, we compute its corresponding correlation using the

accelerated method introduced in Sec. 5.2. We treat each path

as a comparison game. The paths whose correlations are top 𝐵0
largest are regarded as win (𝐵0 < 𝐵), and other paths as lose.

• Backpropagation: we then use the game results of 𝐵 paths to

update the score of nodes. The score of node 𝑗 is simply defined

as the winning rate of paths that pass through it: score
𝑗 =

𝑁
𝑗
𝑤𝑖𝑛

/𝑁 𝑗

vis
, where 𝑁

𝑗
𝑤𝑖𝑛

denotes the winning times of paths

passing through node 𝑗 .

It can be expected that, as the number of rounds grows, the nodes

of the solution path will be visited more and more frequently as

their node score
𝑗
are gradually growing. Therefore, our method

will converge to the solution path. In our implementation, the batch

size 𝐵 is empirically set to 20, 𝐵0 is 1, and 𝐾𝑢𝑠𝑏 is 0.4. The total visit

count is limited to 5000 (see Sec. 6.3). By doing so, the time cost of

detecting one pulse is less than 30 ms.

6 EVALUATION

Our evaluation of MicNest is four-pronged and entirely based on

real-world experiments. Following a description of the implementa-

tion we use and of the experimental setting in Sec. 6.1, we report in

Sec. 6.2 on the crucial performance metrics we target: localization

accuracy and processing latency. We proceed by investigating the

influence of key system parameters in Sec. 6.3. Further, we study in

Sec. 6.4 the impact onMicNest of external factors, such as drone

speed, background noise, and ambient temperature. We conclude in

Sec. 6.5 by demonstratingMicNest’s ability to concurrently localize

multiple drones.
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configuration and would be present anyways on any professional-

grade drone platform.
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Figure 10: Experimental setting. Our website [47] presents a vivid

demonstration.

The results we collect across a total of 40 flight hours lead us to

five key conclusions:

1) MicNest provides a range up to 120 m and attains cm-level
accuracy as the drone approaches the platform;

2) The rate of location updates returned byMicNest is compatible
with use in flight control loops;

3) The performance of MicNest improves as the drone approaches
the platform, that is, where it matters the most;

4) MicNest ismarginally affected by factors it cannot control, such
as drone speed, noise, and temperature;

5) MicNest can localize multiple drones with a limited degradation

of the localization accuracy.

The rest of this section provides experimental evidence.

6.1 Implementation and Setting

We use drone equipment and a deployment setting that closely

mimic actual applications.

Drone. As shown in Fig. 9, we use a custom drone manufactured

by Meituan that are currently exploring the feasibility of instant

deliveries with drones. The drone is equipped with six propellers

each hooked to a brushless TMotor and is steered by the PX4 [9]

flight controller, running at 400 Hz. The drone has a payload ca-

pacity up to 2.6 kg at liftoff, which is the maximum load that local

regulations allow. The altitude is jointly estimated by an on-board

barometer and a Benewake downward-facing LIDAR.

The only additional equipement on the drone, other than what

would normally be present on any professional-grade drone, are the

speakers. They are attached to the bottom of the drone and should

be as light as possible not to negatively impact the payload capacity.

We use a VISTEON speaker weighing a mere 47 g. The applied

voltage and operating current are 12.6 V and 45 mA. According to

our measurements, the speaker draws less than 0.1% of the total

battery power. The speaker volume is empirically set to 70-75 dB

SPL (measured at 1 m distance), which is arguably moderate.

Landing platform and software. We build a squared foldable

landing platform, shown in Fig. 10, measuring 1m x 1m and 1.41m x

1.41 m when folded or unfolded, respectively. Four omni-directional

SPK0641HT4H digital microphones are installed at the corners of

the platform. The distance between two microphones along the

diagonal is 1.86 m.

We use an XMOS XU216 data acquisition board to drive and

sample the microphones, so that the four signals are synchronized.

The sampling rate is 48 KHz. The board then streams the audio

signals to a laptop via USB UAC 2.0 with a latency lower than 0.5

ms. We use a high-pass filter with a cutoff frequency of 500 Hz to

pre-process the audio signals.

MFT is implemented in C++ with the CUDA 11.0 library, running

on a machine with an Intel i9-11900H CPU, 32 GB memory, and an

NVIDIA RTX 3070 GPU.

Ground truth. We conduct the experiments in a secluded area

on the roof of a building, where the reception of GPS signals is

of very high quality. We deploy an RTK base station close to the

experimental site, as shown in Fig. 10, which keeps rebroadcasting

the phase of the GPS signal it observes.

In such a setting, the RTK processing on the drone works at high

fidelity, especially because it does not experience the performance

degradation or outage problems that occur in an operational site,

for example, in a urban canyon, as mentioned in Sec. 2. Therefore,

we use the localization results of RTK as ground truth. We compare

the performance of MicNest with ArUco markers [50], a state-of-

the-art visual localization system. We place an ArUco marker of 1.5

m × 1.5 m on top of the landing platform, as shown in Fig. 10.

Flight trajectories. The drone operates automatically during the

experiments, exactly as it would in an actual application. We use

QGroundControl [25] as ground station control software to plan

the flight trajectories. In addition to a hovering mode that keeps the

drone stable at a given position, we consider three possible flight

trajectories:

• In vertical flight, the drone takes off and vertically climbs to a

given altitude; next, it lands back onto the platform by following

the same trajectory in the opposite way.

• In a squared spiral, the drone takes off vertically, climbs to a

given altitude, and flies twice along a squared spiral trajectory

at constant altitude; next, it flies horizontally back to the starting

point and lands vertically.

• In a dense squared spiral, the trajectory is the same as the squared

spiral above, yet the side length of the square is increased by

2 m every two turns, instead of 10 m; the drone flies for ten

rounds in total, rather than two.

6.2 Accuracy and Latency Performance

Localization accuracy is a function of several factors.

Impact of altitude.We program the drone to perform a vertical
flight up to 120 m. We plot the cumulative distribution function

(CDF) of the localization error, compared to RTK that represents

ground truth, at different altitude intervals in Fig. 11(a)-(d). Note

that MicNest calculates the horizontal coordinates of the drone

9
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Figure 11: Localization error compared to altitude.
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Figure 12: Heatmaps of localization error on the horizontal plane at different altitudes.

at a given altitude. The scattered plot in each figure shows all the

localization biases of MicNestwithin the specified altitude interval.

When the altitude is below (above) 20 m (80 m), the median

error is 0.043 m (0.339 m). On average, the relative error, that is,

the absolute localization error over the distance to the platform, is

only 0.53%. The plots also demonstrate that the localization error

decreases as the drone approaches the platform. This is indeed a

desired characteristic for a localization system enabling precise

landing, that is, the performance improves when it matters the most.
In MicNest, this is due to: i) the far-field effect: when the drone

flies low, its slight movements may result in a notable fluctuation in

TDoA, whereas at higher altitudes, the TDoA fluctuations become

less and less distinguishable; and ii) signal attenuation: acoustic
signals experience more attenuation at longer distances and appear

to be noisier, this also explains why there aremore andmore outliers

as the altitude increases.

Impact of horizontal distance. We program the drone to fly a

dense square spiral. Fig. 12 shows a heatmap representation of the

distribution of the localization error across the bidimensional plane

at four different altitudes.

Generally,MicNest ’s localization error tends to decrease as the

drone is horizontally close to the platform. MicNest enjoys the

highest localization resolution when the drone horizontally aligns

with the center of the platform. The reasons for this behavior are

similar to the ones explaining the performance at different altitudes,

discussed above.

An interesting observation is the visible "X" pattern in the heatmaps,

which corresponds to the higher localization accuracy. This pattern

corresponds to the two vertical bisectors of the diagonal micro-

phones. TDoA-based localization has indeed the highest spatial

resolution in these conditions.

Localization trajectory. As an example, Fig. 13(a)-(c) show the

localization results as the drone flies a squared spiral trajectory at

50 m altitude. An illustrative video is available [47].

(a) MicNest (b) RTK (c) Visual marker

Figure 13: Drone trajectories localized by MicNest, RTK, and using

the visual marker. We provide a illustrative video of this experiment

as well as the results at other altitudes on our website [47].

The plots demonstrate howMicNest and RTK successfully lo-

calize the drone throughout the whole flight. In contrast, the visual

marker works intermittently, because it is difficult for the camera

on the drone to capture the visual marker, especially at higher al-

titudes. Results at different altitudes are nonetheless available on

our website [47].

Latency. We measure the localization latency as the time between

the moment a PRN pulse is transmitted and the moment the cor-

responding localization result is obtained. Four components con-

tribute to this quantity: i) the propagation delay, that is, the time

needed for acoustic signal to reach the microphones; ii) the trans-
mission delay that equals the PRN pulse length (50 ms); iii) the
processing delay that is dominated by the time for MFT to detect

pulses, which we examine later; and iv) the communication delay,
that is, the time for TDoAs to be sent back to the drone via WiFi.

Fig. 14 plots the aggregated latency of localization using Mic-

Nest at different altitudes. As expected, the only varying latency

component is the propagation delay. Our measurements indicate

that the mean processing delay is 29.7 ms with a standard deviation

of 0.6 ms, whereas the mean WiFi delay is 11 ms. The transmission
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Figure 14: Aggregated latency.
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Figure 15: Visit count of MFT.

delay is also fixed. The plot, however, shows that the aggregated

latency changes with the distance linearly. Since the sound speed

is relatively slow, the aggregated latency is dominated by the prop-

agation delay when the drone is far from the platform. As a whole,

however, MicNest can provide localization updates at a rate more

than sufficient to feed the flight control loop [17, 52].

6.3 Ablation Study

Two system parameters are crucial in determining the latency. We

focus on each of them in turn.

Maximum MFT visit count. The processing delay of MFT is

determined by the number of tree paths that are visited looking for

the solution. Intuitively, the more search paths we visit, the larger

correlation value the MFT outputs and thus the larger SNR gain

the MFT yields.

We execute an experiment flying a squared spiral at 120 m alti-

tude. Fig. 15 plots the correlation ratio
7
ofMFT outputs as a function

of the maximum visit count. In comparison, the results of a random

search, that is randomly picking a tree path that is not yet visited,

are also shown. Fig. 15 shows that when the visit count is 5000,

the correlation ratio of the MFT and if the random search is 0.92

and 0.72, respectively. In our implementation, we set the maximum

visit count of MFT to 5000, which ensures that pulse detection can

be completed in a deterministic period. The corresponding time

required for detecting a pulse is 26.5 ms.

Impact of pulse length. We study how pulse length impacts

pulse detection. We make the drone hover at 120 m altitude and

repeatedly transmit acoustic pulseswith 250ms length.We correlate

the received audio with pulse templates with varied lengths: 12.5

ms, 25 ms, 50 ms, and 100 ms.

Fig. 16 plots the pulse-audio correlations.We observe distinguish-

able correlation peaks when the pulse length is 50 ms or 100 ms.

When the pulse length is 12.5 ms, the correlation is almost over-

whelmed by the noise floor. Specifically, the missing rate of pulse

detection for lengths 12.5 ms, 25 ms, 50 ms, and 100 ms are 23.25%,

5.70%, 1.08%, and 0.77%, respectively. We set the pulse length to 50

ms, striking a balance between detection accuracy and transmission

delay. The resulting location update frequency is 20 Hz.

6.4 Impact of External Factors

Factors that are not under the direct control of MicNest may in-

fluence its performance, including drone speed, background noise,

and sound speed.

7
For visit count 𝑁𝑣𝑖𝑠 , the correlation ratio is defined as the ratio of the best correlation

values of the first 𝑁𝑣𝑖𝑠 paths to the maximum correlation value of the brute-force

search.
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Figure 16: Pulse-audio correlations with different pulse lengths at

120 m altitude.
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Figure 18: The impact of back-

ground noise.

Drone speed. The drone flies a squared spiral at 50 m altitude with

different speeds: 2 m/s, 4 m/s, 6 m/s, and 8 m/s
8
.

Since the whole trajectory consists of both vertical and horizon-

tal parts, Fig. 17 plots the localization errors in either dimension.

The error along the vertical parts appears lower than along the

horizontal ones. This is because the drone is horizontally aligned

to the center of the landing platform during the vertical parts. Most

importantly, the plot provides evidence that the drone speed has

a negligible impact on the accuracy performance of MicNest. In

turn, this demonstrates that the MFT can search for the correct

drone speed and compensate the Doppler effect effectively.

Background noise. We place a loudspeaker 1.5 m away from the

center of the landing platform to emulate a source of noise. The

speaker plays music continuously at a frequency between 200 Hz

and 3.5 kHz with two volumes: 50 dB and 65 dB. Note how the latter

setting is effectively close to the volume of theMicNest speaker

aboard the drone. The drone flies again a squared spiral at 50 m.

Fig. 18 illustrates the performance degradation with increasing

noise. The mean error of the horizontal flight is 1.13 m in the case

of no noise and increases to 1.73 m at 65 dB noise, which represents

a case of strong background noise. By adopting advanced noise

reduction techniques, its impact can be further mitigated [12, 68].

Sound speed. The speed of sound changes with temperature. As a

rule of thumb, a 1
◦
C increase corresponds to a 0.6 m/s increase in

sound speed [77]. To investigate this aspect, we program the drone

to perform a vertical flight up to 120 m altitude. We conduct the

flight when the sound speed is 342 m/s. Then we parameterize the

sound speed with different values: 336 m/s, 339 m/s, 342 m/s, 345

m/s, and 348 m/s. Fig. 19 shows the results in localization error at

different altitudes. The performance difference at different sounds

speeds is negligible, yet in real operations one can calibrate the

8
Note that the drone’s speed cannot be perfectly fixed during flight; these values

may be regarded as the maximum speed that the drone can reach while flying a

predetermined trajectory.
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Figure 20: The localization tra-

jectories of multiple drones.

parameter of sound speed in MicNest by measuring the sound

speed
9
to further refine the performance.

6.5 Localization of Multiple Drones

We conclude the evaluation by studying MicNest’s ability to con-

currently localize multiple drones. Two drones, denoted as A and

B, are involved in this experiment. Drone A flies along a squared
spiral at 40 m altitude, while drone B hovers at 20 m altitude. The

two drones play different PRN pulses.

Fig. 20 plots the localization results of the two drones during

the experiment.MicNest can detect both drones’ pulses from the

collided signal. The mean localization errors for drones A and B are

1.77 m and 0.38 m, respectively. Below 20 m altitude, this metric

for drone A is reduced to 0.17 m, that is, where accuracy is most

important for precise landing.

Compared to the single-drone localization performance, Mic-

Nest performance is marginally degraded because the presence

of multiple drones adds up the degree of background interference.

Besides the countermeasures mentioned in Sec. 6.4 to tame back-

ground noise, one may also improve the coding scheme of pulse

and adopt an adaptive power control scheme [54, 55, 69].

7 DISCUSSION

We elaborate next on the rationale behind some key design decisions

in MicNest design and implementation.

Why not using ultrasound? The attenuation of a signal increases

as the signal frequency increases. It can be expected that an ultra-

sound signal that spans the same bandwidth as an acoustic signal

experiences much more attenuation. This would inherently limit

the operating range of the system.

Is acoustic signal propagation a limitation? Fig. 14 shows that

the signal propagation becomes a limiting factor for latency only

at high altitudes. Here, the propagation delay can be tolerated to

some degree as long as it can be estimated and reported to the

navigation system [24]. As the drone approaches the platform,

that is, where the highest location update rate is required, the

contribution of signal propagation to processing latency becomes

increasingly immaterial.

What about the number of microphones? Our implementation

of MicNest uses four distributed microphones. We may further

improve localization performance by deploying more microphones

9
Measuring sound speed is simple for MicNest. We can put a speaker in line with two

diagonal microphones, and measure the TDoA of PRN pulses. The sound speed can be

calculated by dividing the microphone distance by the TDoA.

and, for example, using beamforming techniques to further enhance

the signal as received by the landing platform [11].

Why not using frequency-modulated continuous-wave

(FMCW) signals? FMCWsignals are resistant to Doppler effect [61].

However, it is linear Doppler effect that FMCW can resists to, not

non-linear one. In addition, FMCW signals cannot satisfy the prac-

tical requirements we outline in the Introduction, such as being

friendly to human ear or resistant to impersonation attacks.

What about the performance of multi-drone localization?

There exist methods to further improve the performance of multi-

drone localization. For example, each drone may adopt an adaptive

volume strategy: reducing the volume when the altitude decreases.

Therefore, the PRN pulses transmitted by high-altitude drones are

less interfered by the pulses of low-altitude drones. Another remedy

is to improve the orthogonality of PRN pulses.

Why not accelerating tree search using information from

drone IMU? Actually, it is the radial drone velocity with respect

to the microphones that MFT searches for, not the velocity with

respect to the Earth. Before converting the estimated velocity to

the radial one, we should know the location of the drone with

respect to the microphones. This actually leads to a “chicken-and-

egg” problem: tree-search acceleration and drone localization are a

prerequisite of each other.

Can we reversely deploy microphones on the drone and a

speaker on the ground? This may be feasible, but a practical issue

is that the drone size is limited, which sets an upper bound on the

inter-microphone distance (aperture), resulting in a lower localiza-

tion resolution. In addition, the computing resource of drones is

generally not sufficient to support real-time pulse detection.

How does multipath effect impact MicNest? In general,Mic-

Nest can tolerate multipath effect as long as there is a line-of-sight

(LOS) path between the microphones and the speaker. Thanks to

the low sound speed, a slight difference in path lengths will lead

to a distinguishable time difference of arrival. Therefore, the paths

reflected from, for example, the surrounding buildings will not

overlap with the LOS path in the time domain. Given that the LOS

path is the strongest, we can implicitly determine the LOS path by

choosing the most significant correlation peak.

8 CONCLUSION

MicNest enables precise landing of drones using acoustic signals.

The key enabling technologies we present are MFT, a novel pulse

detector that models the problem as a tree search problem, and

its efficient low-latency implementation. These allow MicNest to

localize a drone 120 m away with 0.53% relative localization error

at 20 Hz location update frequency.
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