
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

A Survey of mmWave-based Human Sensing:
Technology, Platforms and Applications

Jia Zhang, Student Member, IEEE, Rui Xi, Member, IEEE, Yuan He, Senior Member, IEEE,
Yimiao Sun, Student Member, IEEE, Xiuzhen Guo, Member, IEEE, Weiguo Wang, Student Member, IEEE,

Xin Na, Student Member, IEEE, Yunhao Liu, Fellow, IEEE, Zhenguo Shi, Member, IEEE,
Tao Gu, Senior Member, IEEE

Abstract—With the rapid development of the Internet of
Things (IoT) and the rise of 5G communication networks
and automatic driving, millimeter wave (mmWave) sensing is
emerging and starts impacting our life and workspace. mmWave
sensing can sense humans and objects in a contactless way,
providing fine-grained sensing ability. In the past few years, many
mmWave sensing techniques have been proposed and applied
in various human sensing applications (e.g., human localization,
gesture recognition, and vital monitoring). We discover the
need of a comprehensive survey to summarize the technology,
platforms and applications of mmWave-based human sensing.
In this survey, we first present the mmWave hardware platforms
and some key techniques of mmWave sensing. We then provide a
comprehensive review of existing mmWave-based human sensing
works. Specifically, we divide existing works into four categories
according to the sensing granularity: human tracking and local-
ization, motion recognition, biometric measurement and human
imaging. Finally, we discuss the potential research challenges and
present future directions in this area.

Index Terms—Millimeter wave, human sensing, mmWave sens-
ing, mmWave radar.

I. INTRODUCTION

Wireless sensing (e.g., Wi-Fi, Zigbee, RFID, and acoustic)
offers contactless sensing, and it has become a new human
sensing paradigm in the last decade. As the propagation of
wireless signals is affected by the sensing target, the received
signals contain target-related information. By analyzing the
characteristic changes of wireless signals (i.e., phase, ampli-
tude, and frequency), the target-related information, such as
human gesture or respiration, can be captured and analyzed.

In recent years, millimeter wave (mmWave) sensors have
been developed rapidly and attracted extensive attention,
which catalyze the emergence of mmWave sensing technology.
mmWave signals operate at a high frequency (30-300 GHz)
with a large bandwidth. Hence it can provide high sensing
sensitivity and precision. The short wavelength of mmWave
signals further enables the antennas to be highly integrated,
enabling beamforming and other techniques that support di-
rectional sensing capabilities. As a result, mmWave sensing
has great advantages in human sensing over low-frequency
sensing technologies such as Wi-Fi, UWB, and LoRa.

In addition, mmWave sensing offers many advantages over
sensor-based techniques (i.e., camera, Lidar, and ultrasonic

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received April 19, 2021; revised August 16, 2021.

sensor), including a wide sensing range, fine-grained and
directional sensing capability, and resistance to weather and
illumination conditions. Camera-based sensing techniques pro-
vide high-resolution imaging results under good illumination
conditions, thereby supporting the sensing of human status
such as gesture and gait. However, camera-based sensing
techniques are limited by illumination conditions and concerns
about privacy. In addition, a low-resolution camera may not
be able to capture micro motions. Lidar-based sensing can
measure micro motions but it has a narrow sensing range. They
are likely to be affected by weather conditions so that their
application scenarios are limited. Ultrasonic-based sensing can
resist different weather conditions but may suffer from severe
signal attenuation and non-directional sensing, hence it may
perform poorly in multipath scenarios.

mmWave sensing has been widely explored to “see, listen,
inquire and touch” the human body to provide accurate and
ubiquitous human sensing capability. It can enable various
human sensing tasks such as human tracking and localization,
activity recognition, vital sign monitoring, sound recovery,
and human imaging. For example, in 2016 Google [1], [2]
designed a tiny mmWave sensing module Soli that supports
finger gesture recognition, which has been integrated into its
Nest Hub and Pixel 4 smartphone. Texas Instruments (TI)
[3]–[7] has developed a series of mmWave radar products for
human sensing. In the field of autonomous driving, mmWave
radars have been widely used in object detection and classifica-
tion and are being explored in human imaging. Furthermore,
considering the rapid large-scale deployment of 5G and the
indispensable application of mmWave signals in 5G, mmWave
sensing in 5G scenarios can play a vital role in Integration
Sensing and Communication (ISAC), digital twins and so on.
mmWave-based human sensing is being continuously explored
and deployed by researchers and application developers, and
its applications range from human-computer interaction, smart
medical, smart home to smart city.

mmWave-based human sensing presents unique technical
challenges compared to non-human sensing. Firstly, the mo-
bility of the human body needs to be considered. Compared
with other static objects, the human’s position and posture have
greater variation and uncertainties, which are important factors
that affect the human sensing result. Secondly, The human vital
signal usually has a low signal-to-noise ratio (SNR) and is
uncertain, resulting in higher noise cancellation requirements.
Compared with the micro-motion of non-human objects, the
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Fig. 1. Article organization.

human vital signal is more complex and easily buried by the
movement-related noise. Furthermore, human vital signals are
affected by various factors such as physiology, psychology, and
the surrounding environment, making it difficult to analyze.
Last but not least, the differences among individuals are
significant. The contours, gestures, vital signals, and vocal
habits of different individuals are very diverse. How to over-
come these differences between individuals to achieve accurate
human sensing has become a critical problem. To achieve
accurate human sensing, people must carefully address these
unique challenges. It is worth noting that many human sensing
techniques can be extended to non-human sensing scenarios
due to their attractive sensing capabilities, but this is not the
focus of this article.

Existing mmWave-based human sensing works have at-
tempted to overcome these technical challenges. However,
there is still a significant gap between the performance of
these works and the accurate and ubiquitous sensing capability
we expect, in terms of sensing range, sensing granularity,
sensing accuracy, human body constraints, etc. We wonder
what factors prevent mmWave-based human sensing from this
vision. To this end, we need to study the existing works so that
we can summarize the common core challenges and figure out
their limitations. Moreover, it is critical to point out the key
challenges and development trends of mmWave-based human
sensing technology so as to illuminate potential directions and
improve sensing capability. Therefore, we find that there is a
strong need for a comprehensive survey in mmWave-based
human sensing technology, platforms, and applications.

This paper fills the gap by providing a comprehensive
review of mmWave-based human sensing. The main contri-
butions of this paper are summarized as follows:

• This paper presents a complete picture of the literature in
the area of mmWave-based human sensing.

• The hardware platform and key techniques of mmWave-
based human sensing are summarized in detail. Specifically,
we summarize the human sensing pipeline. Then the related
techniques in each module are compared and summarized.

• We comprehensively compare and summarize existing
mmWave-based human sensing works into four categories
according to the sensing granularity. Furthermore, we point out
the core challenges and alternative solutions for each category
of sensing tasks. Finally, the lessons learned about mmWave-
based human sensing are given to provide readers with our

suggestions.
• Following an elaborated discussion of the literature, we

comprehensively discuss the key challenges and future di-
rections related to mmWave-based human sensing, including
hardware and platforms, enhancing the applicability, novel
sensing schemes, and integration with new mediums. We also
give a detailed discussion on the potential sensing techniques,
including ISAC, THz sensing and so on.

There have been some related surveys that provide a sum-
mary of particular scopes, such as mmWave-based commu-
nication [8], [9], application scenarios [10], [11] and sensing
techniques [12]–[14]. We compare and summarize them in
detail in the next section. We find that none of the current
surveys focuses on summarizing the existing mmWave-based
human sensing works and analyzing their key challenges.
As we mentioned, a comprehensive survey is necessary and
important for researchers and application developers. This
survey is expected to inspire researchers and developers to
conduct further research in mmWave sensing and build various
applications to realize accurate, ubiquitous and stable human
sensing in real life.

As shown in Fig. 1, the structure of the survey is orga-
nized as follows. Sec. II summarizes the related surveys and
points out the salient novelties of our paper. Sec.III discusses
the mmWave hardware platform and datasets, which provide
reliable data sources for subsequent sensing techniques and
tasks. Sec.IV briefly introduces the key techniques of mmWave
sensing from data capture to sensing model. These techniques
further process the obtained data and extract corresponding
human-related information for task-related analysis. Sec.V
elaborates on the various mmWave-based sensing tasks from
tracking and localization to human imaging. These various
sensing tasks can be applied to many practical application
scenarios, which are introduced in Sec.VI. Sec.V and Sec.VI
together form a detailed discussion of mmWave-based human
sensing applications. Based on the analysis and summary of
these works, Sec.VII discusses the potential challenges and
future directions. We conclude this survey in Sec.VIII.

II. RELATED WORK

There have been some related surveys that provide a
mmWave-related summary of particular scopes, such as
mmWave-based communication, application and sensing tech-
niques. In this section, we first introduce these related surveys
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TABLE I
SUMMARY OF RELATED SURVEYS ON MMWAVE-BASED HUMAN SENSING

Reference Signal Sources Application Scenarios Sensing Tasks Taxonomy

Wang et al. [15]
RF, Acoustic, Motion,

Biometric, Optical
Wearable Application

Movement Tracking,
Human-machine-interface,

Vital Monitoring, Smart Hearth,
Mental State Monitoring,

User Authentication

Wearables’ Usages within
the Scope of Cross-sensing

Abdu et al. [13] mmWave Radar Signals Autonomous Driving Object Detection, Classification
Learning-based Radar Data Processing
for Object Detection and Classification

Shastri et al. [12]
mmWave AP Signals,

mmWave Radar Signals
Indoor Localization

and Sensing

Localization,
Human Activity Recognition,

Object Detection, Health Monitoring

Device-based Localization
and Device-free Sensing

Singh et al. [10] Radar Signals
Non-Contact Vital
Sign Monitoring

Heart Rate and Respiration
Rate Measurement

Research Challenges Associated with
Hardware and Signal Processing

Venon et al. [14] mmWave Radar Signals Automotive

Motion Estimation, SLAM,
Place Recognition,

Detection and Recognition,
Semantic Segmentation

Algorithms for Automotive

Kebe et al. [11] Radar Signals Vital Sign Detection
Cardio-pulmonary Signals’
Detection and Monitoring

Radar Categories Used
in Vital Signs Detection

This Survey mmWave Radar Signals Human Sensing

Tracking and Localization,
Activity Recognition,
Gesture Recognition,

Handwriting Tracking,
Gait Recognition, Vital Sensing,

Sound Recognition, Human Imaging

Human Sensing Applications
w.r.t. the Sensing Granularity

and summarize them in Table. I. Then we discuss the differ-
ences between the most related work and our work in detail.
Finally, we point out the salient novelties of our work.

Wang et al. [15] provided a review on the cross-sensing
technologies towards wearable applications. It includes sens-
ing techniques based on multiple wireless signals, such as
WiFi, mmWave and RFID, but the analysis of mmWave
sensing is not enough. Abdu et al. [13] wrote a survey of
deep learning approaches processing mmWave radar signals
in autonomous driving applications, but their focus is on
deep learning rather than on mmWave sensing. Busari et al.
[8] summarized the research on mmWave massive MIMO
communication and discussed research issues and future direc-
tions on mmWave massive MIMO. Although its discussions
about mmWave massive MIMO communication, such as chan-
nel model and channel estimation, may be further used for
mmWave sensing, the related analysis is not presented. Zhou
et al. [9] conducted a review on the IEEE 802.11ay-based
medium access control (MAC) layer related issues. Similarly,
it mainly discussed the technical challenges, design issues and
beamforming training in the IEEE 802.11ay, rather than the
mmWave-based sensing issues.

The most related to our paper is [12], which summarized
the state-of-the-art in device-based localization and device-
free sensing using mmWave communication and radar devices.
In the device-free sensing section, that paper concentrates
on the relevant signal processing techniques and learning
techniques. Then the application and performance of these

techniques are described in terms of some sensing applications
including human activity recognition, object detection and
health monitoring. Compared with that work, we analyze the
key techniques related to human sensing and summarize them
based on the human sensing pipeline. We focus on mmWave-
based human sensing tasks and the corresponding application
scenarios. Furthermore, we discuss the lessons learned, key
challenges and future directions of mmWave-based human
sensing in detail.

There are also some related surveys that provide an analysis
of particular narrow scopes, such as application scenarios [10],
[11] and sensing techniques [13], [14]. We summarize these
surveys in Table. I. Specifically, Wang et al. [15] provided
a review on the cross-sensing techniques towards wearable
applications and summarized the applied signal processing
and machine learning algorithms. Abdu et al. [13] presented
a survey of deep learning approaches processing radar signals
to accomplish some sensing tasks in autonomous driving
applications. Shastri et al. [12] focused on indoor mmWave
device-based localization and device-free sensing, and pro-
vided a review of indoor localization approaches, technologies,
schemes and algorithms. Singh et al. [10] focused on the
research challenges of non-contact vital sign monitoring in
multi-resident environments. Venon et al. [14] introduced the
perception, recognition and localization techniques in auto-
motive applications and described algorithms and applications
adapted or developed for mmWave radars. Kebe et al. [11]
presented a review on contactless radar-based vital signs detec-
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tion and highlighted the challenges in biomedical applications.
However, none of the current surveys particularly summarizes
and compares existing mmWave-based human sensing works.
As mmWave-based human sensing is increasingly researched
in the industry and academia, a comprehensive survey is neces-
sary and important for researchers and application developers.

Compared with these works, our paper presents new results
in the following aspects: (1) Our paper is more inclusive and
contains the latest advances in the field of mmWave-based
human sensing. (2) We propose a comprehensive taxonomy
of mmWave-based human sensing. According to the sensing
granularity, our paper classifies the existing works into four
categories: human tracking and localization, motion recog-
nition, biometric measurement and human imaging. (3) We
conduct a comprehensive comparison and summary of the
existing works. Specifically, the hardware platform, signal
form, and performance of these works are compared in detail.
(4) The scope of study in our paper is broader. Besides
introducing the specific mmWave-based human sensing works,
we also discuss the key challenges and future directions, which
may motivate more follow-up research in mmWave sensing.

III. PLATFORM & DATASETS

To meet the needs of different sensing tasks, various kinds of
hardware devices have been set up to perform mmWave sens-
ing experiments, such as commercial FMCW radars, 60GHz
probes, and customized devices. In the following, we briefly
introduce three hardware platforms and compare different
products. Furthermore, we list some public datasets containing
mmWave signals for sensing different human statuses, such as
activity, vital, and 3D pose.

A. FMCW Radar

As Fig. 2 illustrates, a mmWave radar system is mainly
consisting of four components: transmit (Tx)/receive (Rx),
radio frequency (RF), analog components, and digital com-
ponents. The mmWave signal is generated by a voltage-
controlled oscillator (like LO Gen. in Fig. 2), a part of which
is additionally amplified by the power amplifier (PA) and fed
to the transmitting antenna, and the other part is coupled to
the mixer, mixed with the received echo. The transmitter can
use different types of waveforms, such as pulsed, FSK (Fre-
quency Shift Keying), CW (Continuous Wave), and FMCW
(Frequency Modulated Continuous Waveform). In this paper,
we mainly focus on the FMCW radar. The transmission signal
is modulated in frequency, linear changing over a defined
time. The received signals by Rx are processed by LNA (Low
noise amplifier) and then mixed with the transmitted signals
to obtain the intermediate frequency (IF) signals, whose fre-
quencies are equal to the frequency differences between the
transmitted signals and the received signals. After analog-to-
digital conversion (ADC), they are sent to the signal processor
for further processing. Radar systems can either generate
complex signals (i.e., I/Q signals) using I/Q quadrature mixing,
or real ones (i.e., I-channel signals) by I single-channel mixing.
As Fig. 2 illustrates, the complex signals contain I and Q
components that have the same amplitude and frequency but

       PA

 LNA

LO Gen.

90
o

IF

IF

ADC

ADC

DSP

cos( (t))T

sin( (t))T

Mixer

I

Q

Tx

Rx

Fig. 2. The block diagram of mmWave radar system.

are shifted a quarter cycle relative to each other, which can be
generated by adding a 90° phase shift difference between the
two mixers. Contrarily, the I single-channel mixing only uses
a mixer that provides the absolute frequency shift.

Actually, a complete radar system is much more compli-
cated and highly integrated. Besides the above components,
the manufacturer will integrate some additional subsystems in
an extremely small form-factor by leveraging some advanced
techniques, such as Monolithic Microwave Integrated Circuits
(MMICs), Antenna in Package (AiP), Silicon-Germanium-
Technology (SiGe), RFCMOS process, etc. For example, TI
IWR1843 is a self-contained solution that includes a mono-
lithic implementation of a 3TX, 4RX system with built-in PLL
and ADC. It also integrates a DSP subsystem, an ARM Cortex-
R4F-based processor subsystem, and a hardware accelerator
(HWA), built with the low-power 45nm RFCOMS process.
More details of the commercial mmWave radars can be found
in TABLE II.

B. 60GHz Probe

Benefiting from the high bandwidth, high directivity, and
low latency of mmWave signals, mmWave networks have
enabled new applications for businesses and consumers, in-
cluding enhanced telehealth and education, industrial automa-
tion, VR/AR, etc. At the 2019 World Radiocommunication
Conference (WRC-19), delegates identified several mmWave
frequency bands that could be used for 5G networks, including
24.25-27.5 GHz, 37-43.5 GHz, 45.5-47 GHz, 47.2-48.2 and
66-71 GHz. On the other hand, WiGig, alternatively known
as 60 GHz Wi-Fi, has been promoted and released by Wire-
less Gigabit Alliance to support wireless communication at
multi-gigabit speed. It includes the current IEEE 802.11ad
standard and 802.11ay standard. These network protocols have
promoted the development of mmWave-based communication
probes [20], [21]. These probes can not only achieve high
throughput communication with mmWave signals but also
have the potential of mmWave sensing.

There are a few probe-based mmWave sensing works in the
current literature. Most of them [22]–[24] utilize the Qual-
comm chipset to obtain the sensing information. Qualcomm
has provided a series of 60GHz WiFi solutions with the IEEE
802.11ad standard [20]. The commodity Qualcomm 802.11ad
chipsets have 32 antennas assembled in a 6 × 6 layout with
a size factor of 1.8 cm × 1.8 cm for both the transmitter
and the receiver. The receiver hardware further implements
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TABLE II
COMPARISON OF MMWAVE HARDWARE DEVICES

Products Freq. Antenna size
(Tx × Rx)

ADC sampling
rate (max)

(MSPS)

TX power
(dBm)

Package Size
mm2:(W × L) Manufacturer Image

AWR1xx
IWR1xx

76 GHz
∼

81 GHz

3 × 4;
2 × 4

(xWR1642)

12.5 (xWR162,
AWR1443);

25 (xWR1843);
37.5 (AWR1243,

IWR1443)

12
10.4 × 10.4;

15 × 15
(AWR1843AOP)

TI

AWR6xx
IWR6xx

60 GHz
∼

64 GHz
3 × 4 25

12;
10

(A/IWR6843AOP)

10.4 × 10.4;
15 × 15

(A/IWR6843AOP)
TI

AWR2xx
76 GHz

∼
81 GHz

3 × 4;
4 × 4

(AWR2944)

45 (AWR2243);
37.5 (AWR29xx)

13(AWR2243);
12(AWR29xx)

10.4 × 10.4
(AWR2243);

12 × 12
(AWR29xx)

TI

TINYRAD24G
24 GHz

∼
24.25 GHz

2 × 4 8 85 × 85 Analog Device

TRX 024
21.5 GHz

∼
28.7 GHz

1 × 1 2.5 6 3 × 3 Silicon Radar

TRX 120
TRA 120

119.3 GHz
∼

125.8 GHz
4 × 4 2.5 -3 8 × 8

5 × 5 Silicon Radar

BGT60LTR11AIP
61 GHz

∼
61.5 GHz

1 × 1 - 10 3.3 × 6.7 Infineon

TEF82xx
76 GHz

∼
81 GHz

3 × 4 40 13.5 7.5 × 7.5 NXP

a Golay correlator to obtain the sensing information, i.e.,
channel impulse response (CIR). With this information, many
human sensing applications can be achieved, such as human
tracking and localization, vital sensing, human imaging, etc.

C. Customized Hardware

Furthermore, many researchers intend to open up new
directions for mmWave sensing and protocol development
and support system-oriented research by building customized
experimental platforms, such as mmWave software radio,
mmWave radar, etc. We list them in TABLE III.

WiMi [35] is the first 60GHz testbed with a reconfig-
urable RF front-end and software-defined baseband processing
modules. Based on this platform, Openmili [16], a software-
defined mmWave network stack, is designed to span PHY layer
signal processing to applications. OpenMili’s most outstanding
feature is a reconfigurable phased-array antenna that can
switch between 16 beam patterns at microsecond granular-
ity. The designed phased-array specifically fits the WR-15
waveguide (a standard antenna interface on 60GHz radios),
ensuring it can retrofit both OpenMili’s RF front-end and other
commercial mmWave radios that are typically equipped with
WR-15 horn antennas RF front-end.

M3 [17] is the first mmWave massive MIMO software ra-
dio. It provides up to eight 32-element phased-arrays, at a cost
that is an order of magnitude lower than existing commercial
mmWave SDR solutions. The baseband module (BM or 11ad
NIC) and phased array module (PM) are commercial multi-
array 802.11ad nodes. The IF bridge board is a customized
PCB. The baseband processing unit (BPU) can be an FPGA or
an SDR, such as a WARP board or a USRP. The control FPGA
is a Cmod A7 module with an adapter board. It can hijack
commercial mmWave radios for any waveform transmission
and real-time phased array reconfiguration.

mm-FLEX [18] supports a bandwidth of 2 GHz and is
compatible with mmwave standard requirements. Moreover, it
integrates a powerful FPGA-based baseband processor with
full-duplex capabilities together with mm-wave RF front-ends
and phased antenna arrays that are fully configurable from the
processor in real time.

In [19], a customized light mmWave platform consisting of
the RF board, the baseband board, and the MCU board, is also
proposed. For the RF board, Rogers RT/duroid 5880, which
can provide a thickness lower to 0.0096 in, is used as the
substrate. Furthermore, both Tx and Rx consist of 16 antennas
following the 4 × 4 layouts and the size of the microstrip patch
antenna is 5 mm × 3.7 mm. The distance between Tx and Rx
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TABLE III
COMPARISON OF THE CUSTOMIZED HARDWARE.

Reference Openmili [16] M3 [17] mm-Flex [18] [19] Soli [2]

Image

Baseband BW 1 GHz 4 GHz 2 GHz 450 MHz 7 GHz
Carries Freq. 57 ∼ 64 GHz 60 GHz 60 GHz 24 GHz 60 GHz
Antenna Horn/Phased-array Phased-array Phased-antenna Array Array
Cost $15K below $15K $40K below $100 -

TABLE IV
COMPARISONS OF THE OPEN MMWAVE DATASETS.

Dataset Sensors Data Format Setups Types of sensing Scenario # of
Subjects

# of
Activities

# of
Frames

mRI [25] RGB,Depth,IMU,
TI IWR1443

Images,
Point Cloud,

Inertial Signals

RGB:30 Hz,
Depth:30 Hz,
IMU:50 Hz,
mmWave:10 Hz

Rehabilitation Single 20 12 160K

MARS [26] Microsoft Kinect,
TI IWR1443 Point Cloud

mmWave:3.2 GHz
BW, 10 Hz
Camera: 30 Hz

Rehabilitation Single 4 10 40K

mmPose [27] TI AWR1642,
Microsoft Kinect Point Cloud mmWave: 3.072 GHz

BW, 10 Hz Walking, Swing Single 2 4 38K

mmBody [28] Azure Kinect,
mmWave radar

Point Clouds,
RGB(D) Images

Radar: 10-30 fps,
Camera: 30 fps Skeleton, Mesh - 20 100 200K

MMActivity [29] TI IWR1443 Point Cloud 3.19 GHz BW,
30 fps

Boxing, Jumping,
Squats, Walking Single 2 5 16k

mmMesh [30] TI AWR1843,
VICON Point Cloud

VICON:10 fps
mmWave:3.9 GHz
BW, 10 fps

Skeleton Single 20 8 480K

M-gesture [31] TI IWR1443
Raw signals,
Point Cloud,
Raw RDIs

4 GHz BW,
18.18 fps Gestures Single 144 5 56K

mmGait [32] TI IWR6843,
TI IWR 1443 Point Cloud

IWR6843: 3.75 GHz
BW, 10 fps,
IWR1443:4 GHz
BW, 10 fps

Gaits up to 5 95 - -

mHomeGes [33] TI IWR1443 Doppler Profiles 3.19 GHz BW,
10 fps Arm Gestures Single 25 10 22K

Pantomime [34] TI IWR1443 Point Cloud 3.19 GHz BW,
30 fps Mid-air Gestures Single 45 21 23K

of the probe is 40 mm. Besides, it also integrates a voltage
regulator, difference amplifier, on-chip 12-bit ADC and MCU
together. The total size reaches 4.65 in × 4.65 in × 0.59 in
with 45.4 g weights, and its power consumption is only 1.23
W.

Moreover, Google ATAP (Advanced Technologies and
Projects) also designs a radar chip, termed Soli [2], imple-
mented at mmWave RF frequencies. It can be integrated
into consumer electronic devices with minimal effort. The
antenna, RF front-end, baseband processing, VCO and se-
rial communication are integrated on the chip. Similar to
the commercial mmWave radar, it also operates in the 60
GHz band with 7 GHz bandwidth and requires only minor
hardware modifications to be compatible with 802.11ad and
Wi-Gig standards [36]. The chip uses an antenna-in-package

(AiP) patch array to form a wide 150◦ beam. At the same
time, beamforming is realized at the receiver. It uses digital
beamforming technology in SiGe-based FMCW chips instead
of the analog phase shifters used on CMOS chips.

D. Datasets

To advance mmwave-based research efforts, some re-
searchers have published their datasets covering several dif-
ferent types, such as gait, gesture, and rehabilitation. In the
following section, we will give a detailed description and list
them in TABLE IV.

MARS [26] is the first rehabilitation movement dataset
using mmWave point cloud with well-labeled joints. It uses
a TI IWR1443 Boost mmWave radar to collect mmWave data
and a Microsoft Kinect V2 sensor to generate its respective
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labels. During collections, a subject is required to perform
10 distinct rehabilitation movements. Each frame or image
will be processed to compute the 3D positions of 19 joints
covering the upper and lower body. Besides, mRI [25] also
builds a high-quality and large-scale dataset, consisting of
many complementary modalities, including mmWave point
clouds, RGB frames, depth frames and inertial signals.

MMActivity dataset [29] is the first dataset used for
human activity recognition through mmWave radars. TI
IWR1443BOOST, which works in the 76 GHz to 81 GHz fre-
quency range, is used for data collection. This dataset consists
of five different activities collected from two users, including
walking, jumping, jumping jacks, squats and boxing. The
captured point clouds contain spatial coordinates, velocities,
distances, intensities and bearing angles. The sampling rate of
the radar is 30 frames per second. In addition, mm-Pose [27]
uses two TI IWR1642, where one is rotated 90◦ counter-
clockwise with respect to the another, to collect mmWave
samples from four actions. The ground truth is obtained by
a Microsoft Kinect.

Furthermore, mmBody [28] builds a data acquisition plat-
form using the Phoenix mmWave radar by Arbe Robotics,
and two depth cameras, where the master one is right under
the mmWave radar and the slave one is located on one side
of the radar-body line. The subject is at a distance of 3-5
m away from the radar and the slave one is 1.5-2.3 m from
the body. Furthermore, it requires 20 volunteers with different
weights and heights to perform 100 motions. Additionally, it
conducts the experiments under different conditions, such as
poor lighting, rain, smoke, and occlusion with different materi-
als. Similarly, mmMesh [30] chooses TI AWR1843BOOST to
collect mmWave data reflected from 8 daily activities. VICON
motion capture system [37] with a sampling rate of 10 fps is
used to obtain high-precision dynamic pose information of
the subject, which can be utilized to generate the ground truth
human mesh.

M-gesture [31] builds the first dataset to collect mmWave
radar data for gesture recognition. A total of 1357 minutes
of data are collected, involving 144 people (including 64
males and 80 females). The dataset contains not merely direct
sensing, but also sensing with certain blockages (e.g., paper,
corrugated paper, metal board). Moreover, mHomeGes [33]
and Pantomime [34] also use TI-IWR1443 to collect gesture
datasets in smart home scenarios.

mmGait [32] builds the first mmWave dataset, collecting
gait data from 95 volunteers (including 45 males and 50 fe-
males) using two mmWave radars, TI IWR6843 and IWR1443.
their locations are 1 m away from each other. During collec-
tions, volunteers are required to walk in two modes, fixed route
and freely, and it is up to 5 people for the multiple scenarios. In
data processing, it further converts the point clouds, collected
by two devices with different rectangular coordinate systems,
into the same coordinate system.

E. Summary

To sum up, there are already many COTS mmWave devices
or customized platforms to provide reliable data sources to

support various sensing tasks. While different mmWave hard-
ware and platforms have different signal bandwidths, carrier
frequencies, antenna arrangements and transmission powers,
which can provide different sensing ranges, sensing granulari-
ties and sensing dimensions, how to choose a suitable platform
is a prerequisite for achieving a particular task. For example,
vital-related motion is very tiny and its sensing requires
sensing accuracy to be even as high as sub-millimeters. There-
fore, the vital sensing task should use mmWave devices with
high carrier frequency and large bandwidth. Moreover, human
imaging requires the two-dimensional spatial information of
the target, which requires the radar to provide corresponding
two-dimensional sensing capabilities. In this case, these radars
with the linear arrangement of the receiving antenna cannot
meet the requirements.

In terms of FMCW radar, although various radars have been
used for different sensing tasks, most of them are limited in the
number of antennas. This leads to limited angular resolution
and insufficient point cloud outputs, resulting in fragile robust-
ness for practical applications. Therefore, developers should
pay attention to these indicators in the design of future radars.
More details about hardware development are discussed in
Sec. VII-A.

In terms of 60GHz probe, the 60GHz devices used for sens-
ing are still limited. With the continuous development of ISAC
in 5G communication, 60GHz probes may become popular
for sensing. The designers may need to pay more attention to
the sensing range of the 60GHz probe due to its directivity
and high attenuation. The design of the interplay between
communication and sensing also needs to be considered. Sec.
VII-D further discusses the challenges and opportunities of
sensing combined with communication.

Moreover, customized hardware potentially provides more
tailored designs that COTS devices generally do not provide,
including antennas with adjustable polarization directions, cus-
tomized antenna array arrangement, scene-adapted denoising
hardware, etc. These customized designs can greatly help
researchers to explore novel mmWave-based human sensing
techniques.

Furthermore, there are some public datasets listed in this
section, and different parameters of each dataset are shown.
Researchers can find appropriate datasets quickly, so as to pro-
pose advanced information processing techniques and models,
and promote the development of the field.

IV. KEY TECHNIQUES

In this section, we briefly introduce some key techniques
related to mmWave-based human sensing. We first introduce
the general working pipeline of human sensing, including
data capture, signal preprocessing, feature extraction, sensing
model and sensing task. Then we state the key techniques in
each module separately. The sensing task will be elaborated
on in the next section.

A. Human Sensing Pipeline

The general flowchart of mmWave-based human sensing
is as follows: The mmWave transceiver always periodically
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Fig. 3. Illustration of data capture based on FMCW radar.

transmits the mmWave signal and continuously receives the
reflected signal. The received signal is downconverted by
the mixer and sampled by the ADC. Then these samples
can be captured and converted to the raw data (Data cap-
ture). The raw data is further processed into various signal
forms to complete different sensing tasks. Some denoising
techniques are performed to resist environmental interference
(Signal preprocessing). To obtain human-related information
from mmWave signals, various features can be extracted and
analyzed (Feature extraction). Furthermore, according to
different sensing tasks, the task-related features need to be fed
into different models for accurate sensing (Sensing model).
Finally, the sensing task can be achieved (Sensing task).

We first introduce some details of data capture in Sec. IV-B.
Then we discuss the key techniques of signal preprocessing
in Sec. IV-C. A brief introduction to feature extraction is
presented in Sec. IV-D. Sec. IV-E described the classification
of the sensing model. Finally, we elaborate on the details of
the sensing task in Sec. V.

B. Data Capture

To achieve accurate mmWave-based human sensing, the raw
data must be carefully captured and processed. According to
the differences in data sources, we divide data capture into two
categories, namely data capture based on FMCW radars and
data capture based on 24/60GHz probes. We introduce them
separately in the following.

1) Data capture based on FMCW radar: The mmWave
radar usually periodically sends FMCW chirp signals for
distance and velocity measurement. As shown in Fig. 3, the
frequency difference between the transmitted signal and the
received signal corresponds to the signal propagation time and
can be utilized to determine the object distance. Denoting the
distance between the radar and the sensing target by R(t), the
transmitted and the received signal can be represented as:

STx(t) = exp[j(2πfct+ πKt2)]

SRx(t) = αSTx[t− 2R(t)/c]
(1)

where α is the path loss. fc and K are the chirp start frequency
and the chirp slope of the FMCW signal, respectively. By

mixing the transmitted signal and the received signal, the beat
frequency signal s(t), namely IF signals, can be obtained as:

s(t) = STx(t)SRx(t)
∗ ≈ α exp[j4π(fc +Kt)R(t)/c] (2)

whose phase values indicate the distance information R(t). To
separate received signal components reflected from different
ranges, a Range-FFT [38] operation is performed on the
samples of s(t) within a chirp for signal separation. As shown
in Fig. 3, this operation maps the frequency spectrum of s(t)
to the range spectrum. To further measure the velocity of the
target, the samples in the corresponding range bin are selected
from the Range-FFT results and combined to form the reflected
signal, which can be obtained as:

s(t)
Range-FFT−−−−−−−−−−→

at object range bin
S(t) = α exp[j4πfcR(t)/c] (3)

Then the velocity of the object can be estimated by perform-
ing another FFT operation called Doppler-FFT [38] on S(t).
With Range-Doppler-FFT, the radar can obtain the Range-
Doppler spectrum and detect the existence of the object.

To further depict the position of the object, multiple receive
antennas of the mmWave radar are utilized to derive the angle
between the radar and the object. By performing the third
FFT, Angle-FFT [38], on these received signals, the radar can
obtain the Range-Angle spectrum and detect the exact position
of the object. To further improve the angular resolution, the
beamforming technology [39], [40] instead of Angle-FFT can
be utilized. By calculating the optimal aggregation weights of
the transmit/receive antennas, they can be concentrated in the
desired direction to obtain a much higher resolution.

2) Data capture based on 24/60GHz probe: Unlike the
mmWave radar, which utilizes the beat frequency signal to
locate sensing targets, the mmWave probe exploits the chan-
nel impulse responses (CIRs) between transmit antennas and
receive antennas to determine the target’s location. The time
delay of the CIR indicates the signal propagation time and
can be used to determine the object distance. Denoting the
traveling distance of the mmWave signal reflected by the target
as d(t), the CIR between transmit antenna m and receive
antenna n can be expressed as:

hm,n(t) = αm,n exp(−j2πdm,n(t)/λc) (4)

where αm,n and λc represent the complex channel gain and
the carrier wavelength, respectively. If the reflected signal falls
into a certain CIR tap, the distance between the probe and
the target can be determined by mapping the CIR spectrum
into the range spectrum. Furthermore, by adjusting the coef-
ficients of the transmitter/receiver antennas in sequence, the
mmWave probe can perform beamforming at both transmitter
and receiver to obtain the reflected signal from each angle and
determine the exact position of the object.

C. Signal Preprocessing

After the data capture module, the raw data needs to be
processed into various signal forms to complete different
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sensing tasks. We first introduce each signal form for further
human sensing. Then some denoising techniques are discussed
to resist environmental interference.

1) Signal form: The signal forms of the mmWave data
include the Range-Angle spectrum, Range-Doppler spectrum,
phase waveform, point cloud, etc. People can choose the suit-
able signal form according to their sensing tasks. For example,
the Range-Angle spectrum is suitable for human tracking
while the phase waveform can be utilized for vital sensing.
Following, we will introduce each signal form separately.

a) Range-Angle spectrum & Range-Doppler spectrum:
As we introduced in Sec. IV-B, the Range-Angle spectrum
can be obtained by either Range-Angle-FFT from the FMCW
radar or CIR mapping and beamforming from the mmWave
probe. The complex value in each Range-Angle bin in the
Range-Angle spectrum indicates the reflected signal from the
corresponding spatial position. The intensities can be utilized
to detect the existence of objects, and the phases can further
represent the micro displacement of the object.

Similarly, the Range-Doppler spectrum can be obtained by
either Range-Doppler FFT from the FMCW radar or CIR
mapping and phase differencing from the mmWave probe. The
value in each Range-Doppler bin indicates the moving objects
and their corresponding velocities. Therefore, the Range-
Doppler spectrum can be utilized to separate these objects
with different velocities in the same range.

b) Phase waveform: To further characterize the micro
displacement of the human body, a series of phase values can
be extracted from the Range-Angle spectrum or directly from
the Range-FFT result to form the phase waveform. As the
phases of the reflected signal indicate the reflector’s micro
displacement, the phase waveform can be utilized for fine-
grained human sensing, such as vital sensing.

c) Point cloud: A point cloud refers to a collection of
the reflection points representing the object’s surface, which
has been widely used in various sensing tasks such as human
imaging. Similar to LiDAR and vision, mmWave radars can
obtain sparse point clouds from the raw data through a series
of operations. Recently, the point cloud generation method
proposed by Texas Instrument Technology has been widely
used. As shown in Fig. 4, the generation pipeline includes
Range-FFT, Moving Target Indication (MTI) method [41]
and Minimum Variance Distortionless Response algorithm
(MVDR) [42]. Then the Range Angle Image (RAI) can be
obtained, and the peak points can be further detected by
Constant False Alarm Rate algorithm (CFAR) [43]. It is worth
noting that due to the limited hardware capability, the point
number in each point cloud is usually limited.

2) Signal denoise: In this section, we discuss some signal
denoising techniques for each signal form mentioned before

to resist environmental interference.
a) CFAR & Spectrum subtraction: For the Range-Angle

spectrum and the Range-Doppler spectrum, there is a lot of
background noise from static objects and multipath interfer-
ence existing in the area without humans. These noise confuses
the localization of the human body and needs to be prop-
erly removed. There are many background noise elimination
techniques, such as CFAR and spectrum subtraction. CFAR
is a classical adaptive algorithm used to detect targets against
environmental noise. It adaptively selects a noise threshold
level to detect the bins with objects. Spectrum subtraction
algorithm [44] is another effective method to eliminate the
background noise. The main idea is to subtract the estimation
of the average background noise from the noisy measurement.

b) Fitting & Filter: For the phase waveform, as the
reflected signal from the area with humans includes not only
the human-reflected signal but also the signal reflected from
other objects in the same area, the phase values extracted from
such reflected signals are distorted. Researchers have proposed
some solutions to handle this problem, such as performing the
circle fitting algorithm [45], [46] or the line fitting algorithm
[47] on the reflected signal, applying the FIR filter or the
bandpass filter to the phase waveform, and so on.

c) Clustering: For the point cloud, the sparse point
clouds generated from the mmWave radar are dispersed and
the noise can be significant. Some data clustering algorithms
have been employed to determine which points are caused by
reflections from humans. For example, DBSCAN clustering
algorithm [48] and K-mean clustering algorithm [49] have
been exploited to merge these points into clusters to separate
these human-related points from noise.

3) Comparison: As different signal preprocessing tech-
niques are suitable for different sensing tasks, we compare
these techniques according to their applicable sensing tasks.
In human localization and motion recognition, Range-Angle
spectrums and point clouds are commonly used as they
indicate the environment reflection, including the position
and posture of the human. In this case, CFAR, spectrum
subtraction and clustering can help remove background noise
from static objects and multipath interference, thereby helping
us to focus on the reflected signal from the human body.
Whereas in biometric measurement, phase waveforms are
chosen due to their unique ability to characterize the micro-
motions. Compared with CFAR and clustering, fitting and
filtering are more suitable for time series data. In human
imaging, point clouds and Range-Angle spectrums can be
selected. The former is more visible and the latter contains
more spatial information. On the contrary, phase waveforms
are rarely considered because there is less attention to tiny
movements in human imaging.

D. Feature Extraction

According to the different sensing tasks, the various features
need to be extracted from the denoised signals. Time-domain
analysis and frequency-domain analysis are two categories of
feature extraction methods widely used in mmWave-based hu-
man sensing. The former focuses on analyzing the periodicity,
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duration, amplitude and other features of signals in the time
domain, while the latter mainly extracts the frequency features,
including spectrum, periodicity, power spectrum, etc.

1) Time-domain analysis: Some time-domain analysis tech-
niques have been exploited to obtain the signal period or
separate the superposition of multiple signals. For example,
the template matching algorithm has been utilized in sensing
human vital to obtain the heart rate and the breathing rate.
Some signal decomposition techniques, such as variational
modal decomposition algorithm (VMD) and empirical mode
decomposition algorithm (EMD), have been exploited to sep-
arate the vital sign waveforms from the reflected signal. For
example, mmHRV [50] regards the chest motion derived from
the reflected mmWave signal as the linear superposition of the
respiration signal, heartbeat signals and other motion signals.
By taking each signal as an intrinsic mode function (IMF)
component, mmHRV utilizes the VMD algorithm to realize
signal decomposition and extracts a pure heartbeat signal.

2) Frequency-domain analysis: Compared with time-
domain features, frequency-domain features are often more
stable and distinguishable. Many feature-domain analysis tech-
niques have been utilized to resist various noises and extract
distinguishing features. For example, researchers have utilized
the Fourier transform and wavelet transform techniques [51]
to precisely extract the vital sign features. Furthermore, Short-
time Fourier transform (STFT) [52] and some frequency-
domain features, such as residual phase Cepstrum coefficients
(RPCC) [53] and Mel frequency cepstral coefficient (MFCC)
[54]), have been exploited to achieve sound recognition or
motion recognition. For example, SPARCS [55] employs the
STFT algorithm to extract the micro-Doppler spectrum of
human motion. By dividing a longer reflected signal into
shorter segments and computing their Fourier transform sepa-
rately, SPARCS can simultaneously extract the time-frequency
features and achieve accurate activity recognition.

E. Sensing Model

While the sensing tasks are application-dependent, re-
searchers need to build a suitable model to obtain sensing
results with the extracted features or mmWave signals as
inputs. For simplicity, the commonly used models can be
divided into two categories: domain knowledge-based and
deep learning-based. The former is strongly dependent on the
expert’s experience. On the contrary, the latter is data-intensive
and requires a large amount of data. Both of them will be
described in detail below.

1) Domain knowledge-based model: For some periodic or
simple predefined motions, each exhibits specific physical
characteristics. Researchers can easily build task-specific mod-
els that cast above-extracted features to different motions by
analyzing signals or bringing in domain-specific knowledge,
such as anthropology and physics. For example, gait is a
repetitive motion whose cycle can be divided into eight phases
(e.g., heel strike, foot flat, midstance, mid-swing, and so on).
The features of the gait, such as speed, step time, step length,
etc., can be computed by peak finding, pattern matching,
and other techniques. Furthermore, based on the built model,

researchers can exploit traditional machine learning techniques
(e.g., random forest [56], decision tree [57] and support
vector machine (SVM) [58]). However, this method has poor
generalization ability and can only be used for simple or
specific tasks. Moreover, its performance is limited by the
researcher’s domain knowledge.

2) Deep learning-based model: As opposed to the domain
knowledge-based model relying on handcrafted features, due
to the powerful feature representation capability, the deep
learning-based model can automatically extract features di-
rectly from mmWave signals (e.g., spectrogram, point clouds)
for different tasks. Amongst, Convolutional Neural Networks
(CNNs) [59] and Recurrent Neural Networks (RNNs) [60] are
usually exploited to learn the spatial relationship and temporal
dependencies, respectively. For example, RF-SCG [61] applies
a CNN-based architecture to recover SCG waveform from
the reflected signals. However, these methods require a large
amount of high-quality data to obtain an accurate model. To
tackle it, many works choose Generative Adversarial Networks
(GANs) [62] to enhance the samples by relying on the signal
propagation model or task-related physical models. For exam-
ple, MILLIEAR [63] directly employs a conditional generative
adversarial network (cGAN) to enhance the audio components
and reduce noise. Furthermore, MilliPose [64] leverages a
cGAN architecture to generate a high-resolution 2D full-body
silhouette image from the low-resolution 3D mmWave signals.

3) Comparison: We compare these two approaches as fol-
lows: (1) Domain knowledge-based methods can use domain
knowledge and mathematical principles to derive and imple-
ment signal representations. Furthermore, they can also predict
the performance limitations and robustness of the processing
techniques. However, they may have difficulty dealing with
non-linear, noisy, or uncertain signals that require advanced
mathematical tools or assumptions, resulting in less flexibility
or scalability. (2) Deep learning-based methods can learn from
data and adapt to changing situations, optimize system perfor-
mance, and intelligently filter signals. Moreover, they can han-
dle complex and high-dimensional data that may be difficult
for the former methods. Even though, deep learning requires
large amounts of labeled data, computational resources, and
human expertise to train and deploy effective models. Besides,
they may also suffer from overfitting, underfitting, or bias
issues if the data is not representative or sufficient.

F. Summary

As mentioned in this section, there are already many well-
performing signal processing techniques from data capture
to sensing models. Therefore, how to choose the appropriate
techniques for each step in the sensing pipeline becomes
critical to achieve a preset sensing task. Roughly speaking,
point clouds and deep learning-based sensing models are often
chosen when performing contour-related sensing tasks such as
human imaging and gesture recognition. The reason is that
deep learning-based sensing models are often used to achieve
super-resolution detection or accurate multi-class classifica-
tion. Furthermore, point clouds are suitable for imaging tasks
due to their 3D discrete point characteristics. When performing
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micro-motion-related sensing tasks such as vital sensing and
sound recognition, phase waveform and frequency-domain
analysis are often considered. The reason lies in the ability
of phase waveform to represent tiny displacements and the
requirement for frequency domain features in these sensing
tasks. In summary, people are recommended to take advantage
of the most suitable techniques to obtain better sensing results.

Moreover, existing sensing techniques may not meet the
requirements of specific sensing tasks due to the diversity
and complexity of these tasks. This prompts researchers to
continuously explore novel sensing techniques, including cus-
tomized data capture and signal preprocessing techniques,
novel feature extraction techniques and compound sensing
models. For example, mHomeGes [33] proposes a novel signal
form namely Concentrated Position-Doppler Profile (CPDP)
to avoid both signal noise and ambiguous angular resolution,
thereby enabling accurate arm gesture recognition. mmFace
[65] reconstructs the mmWave signals into 3D facial images
and then extracts distance-resistant facial structure features
for accurate face authentication. Such spatial features are
more suitable for human imaging, compared with time-domain
features or frequency-domain features. AmbiEar [66] proposes
an indirect voice sensing model from surrounding objects
and incorporates a deep learning model to achieve voice
recognition in non-line-of-sight (NLoS) scenarios. This can
inspire researchers to combine the domain knowledge-based
model and deep learning-based model in a complementary
manner, which may improve the interpretability and accuracy
of the sensing pipeline simultaneously. These techniques can
help researchers overcome specific challenges and achieve
better sensing performance.

V. SENSING TASK

According to the sensing granularity of the human sensing
task, we divide the mmWave-based human sensing works
into four categories: human tracking and localization, motion
recognition, biometric measurement and human imaging. As
shown in Fig. 5, the motion recognition works are further
divided into three categories, including activity recognition,
gesture recognition and handwriting tracking for better sum-
mary and comparison. The biometric measurement works are
also divided into gait recognition, vital sensing and sound
recognition according to the sensing task. We will introduce
these works in the following. Finally, we summarize the
lessons learned to help readers conduct their research more
smoothly.

A. Tracking & Localization

Human tracking and localization is the critical task for
ubiquitous human sensing. With human position and trajec-
tory, various applications can be developed. Besides, tracking
and localization are cornerstones of further human sensing,
including motion recognition, biometric measurement and so
on. We summarize the related works in TABLE V.

The core challenge of human tracking and localization lies
in how to distinguish the human from surrounding static
objects. As the reflected signal of the human body is likely to

Sensing Task

A: Tracking & Localization 

B: Motion Recognition

C. Biometric Measurement

D. Human Imaging

E. Lessons Learned

Activity Recognition

Gesture Recognition

Handwriting Tracking

Gait Recognition

Vital Sensing

Sound Recognition

Fig. 5. The structure of sensing task.

be confused with that of other objects, specific human-related
features need to be mined to distinguish people. Furthermore,
when multi-person localization is required, continuous track-
ing is also a fundamental problem.

Most of the existing works mainly detect humans by mining
the dynamics of the human body. Some works focus on human
motion dynamics and utilize the signal variance to detect
humans, while other works achieve human recognition by
observing the dynamics of the vital signs. There are also
some works that utilize the human body contour to enable
human detection. For multi-person tracking and localization,
researchers usually consider it as the association between the
detection results and existing trajectories. It can be translated
into a bipartite graph-matching problem and can be well-
solved by many classical algorithms, such as the Hungarian
algorithm.

mmSense [67] enables a multi-person detection and iden-
tification system with a single 60GHz mmWave radio. It is
implemented based on a customized 60GHz sensing platform,
which contains a Keysight signal generator equipped with the
Vubiq 60GHz front-end [70]. mmSense first segments the
detection region into multiple areas and constructs the RSS
fingerprints with and without human presence. It then utilizes
a human detection model based on long short term memory
(LSTM) to determine whether there are people in each area.
In this way, mmSense can detect the presence of humans
and localize their positions. mmSense further utilizes multiple
features to identify humans, including body surface boundary,
body surface curvature and vital signs. Results show that
mmSense achieves a human presence classification accuracy
of 98.75% and a human identification accuracy of 93%.

Different from mmSense, mmTrack [23] utilizes the spatial
spectrum rather than the RSS fingerprints to achieve multi-
person localization. mmTrack is implemented based on a
Qualcomm 60GHz 802.11ad chipset with an additional an-
tenna array. The co-located transmitter and receiver arrays are
both equipped with 32 elements. As illustrated in Fig. 6, it
first extracts the CIR measurements from the received signal
and employs the beamforming algorithm to obtain the spatial
spectrum. Considering the human motion dynamics, mmTrack
calculates the variation of the energy distribution of the spatial
spectrum at each range to detect targets. After transforming
the points in the Spherical coordinate system to 3D locations
in Euclidean space, mmTrack clusters these points via K-
means clustering algorithms [71] to estimate the human lo-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE V
COMPARISON OF TRACKING & LOCALIZATION WORKS

Method Signal Form Algorithm Hardware Platform Identify Accuracy Localization Error

mmSense [67]
RSS

Fingerprint
LSTM Customized

60GHz Platform 93% -

mmTrack [23] CSI
Beamforming, K-means

Clustering, Weighted Bipartite
Graph Matching

Qualcomm 60GHz
802.11ad Chipset 97.8% 16.24 cm

mID [68] Point Cloud
DBSCAN Clustering,
Hungarian Algorithm,

BiLSTM
TI IWR1443boost 89% 16 cm

PALMAR [69] Point Cloud
Adaptive Order Hidden

Markov Model, Crossover Path
Disambiguation

TI 79-81GHz
mmWave Sensor -

6.9 cm of Single Person
11.5 cm of Multiple Persons

Fig. 6. The overview of mmTrack.

cations. mmTrack further leverages the geometric properties
of the detected targets to design post-validation techniques for
clustering robustness improvement. Finally, mmTrack models
continuous human tracking as a weighted bipartite graph
matching problem to perform the association between the
detection results and existing trajectories. It achieves a median
location error of 16.24 cm with moving and static users.

The spatial distribution of point clouds indicates the contour
of the human body, which can also be used for human
detection. mID [68] demonstrates the feasibility of human
tracking and identifying with mmWave radars. It utilizes the
sparse point clouds generated from mmWave radars to track
and identify multiple people. The sparse point clouds show
the 3D location of the reflection points and indicate the
people’s information. mID first merges the point clouds into
clusters by DBSCAN [48] clustering algorithm. Considering
that the distribution of the people’s point cloud on the z-axis
is more dispersed than that on the x-axis and y-axis, mID
modifies the Euclidean distance to place less weight on the
contribution from the z-axis. After that, mID employs the
Hungarian algorithm [72] to associate between each cluster
at the current timestamp and the track obtained before, which
is a classic many-to-many assignment problem. mID further
utilizes a Kalman filter [73] to correct tracking errors. Finally,
the points of potential human objects are voxelized by a fixed-
size bounding box to form an occupancy grid. mID passes
it into a bi-directional LSTM network [74] for final people
identification. mID is developed on top of a COTS mmWave

radar, TI IWR1443boost [3]. The experimental results show
that mID achieves a median position error of 0.16 m and
identification accuracy of 89% for 12 people.

When people are too close to be distinguished by mmWave
radar, the trajectory crossover problem arises and degrades
the tracking accuracy. Some works have attempted to handle
this problem. PALMAR [69] applies the Adaptive Order
Hidden Markov Model (AO-HMM) and the Crossover Path
Disambiguation Algorithm (CPDA) to handle multiperson path
ambiguity and trajectory crossover [75]. It achieves an overall
error of 11.5 cm in tracking multiple persons and outperforms
mID with an overall 57.4% improvement.

In addition to tracking and locating the human body, there
are also some works to locate the human parts directly.
WaveEar [76] utilizes a customized 24GHz mmWave probe
with 16 antennas to scan in all directions. It extracts all the
time domain features to detect the throat’s location. RadioMic
[47] leverages the symmetry of the Doppler shift caused by
sound vibration to locate the sound source directly. RF-SCG
[61] estimates the optimal 3D location of the heart by com-
bining the estimated heart rate with the time-domain spectral
properties extracted by FFT and beamforming techniques.

B. Motion Recognition

Human motion recognition plays an important role in a wide
range of real-world applications. As the reflected mmWave
signals usually carry substantial information about the human
object, human motion can be well recognized with mmWave
sensing. Not only can human activities or gestures be distin-
guished, but the handwriting can be accurately tracked. We
summarize the related works in TABLE VI.

1) Activity recognition: Human activity recognition (HAR)
has received continuous attention due to its wide applicability
in actual scenes. Based on the high spatial resolution of
mmWave signals, many researchers have begun to explore
mmWave-based human activity recognition.

The core challenge of activity recognition is to find ap-
propriate and environmental-independent features to represent
activity-related information in reflected signals. The CIR fre-
quency response, micro-Doppler spectrum and voxelized point
clouds have been exploited as activity-related features in the
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TABLE VI
COMPARISON OF MOTION RECOGNITION WORKS

Category Method Signal Form Algorithm Hardware Platform Performance

Activity
Recognition

EI [77] CIR
CNN, Unsupervised Domain

Adversarial Training
COTS 60GHz

mmWave Transceiver 65% Accuracy

SPARCS [55] CIR
Joint Probabilistic Data

Association Filter,
Iterative Hard Thresholding

mm-FLEX Platform 90% Accuracy

RadHAR [29] Point Cloud
Time-distributed CNN,

BiLSTM
TI IWR1443BOOST 90.47% Accuracy

m-Activity [78] Point Cloud
Fast-calculation CNN,
Less-parameter RNN

TI IWR1443BOOST
93.25% of Off-line

91.52% of Real-time

PALMAR [69] Point Cloud

DBSCAN and BIRCH
Clustering, Adaptive Order

Hidden Markov Model,
Variational Autoencoder

79GHz mmWave Radar 91.88% Accuracy

Gesture
Recognition

Soli [2]
Range-Doppler,

Spectrum
Bayesian Filter Soli Chip 92.1% Accuracy

RFWash [79]
Range-Doppler,

Spectrum
BiLSTM TI IWR1443BOOST 92.59% Accuracy

mmASL [80] Doppler Spectrum
STFT and Log Normalization,

CNN, Multitask Learning
NI+SiBeam 60GHz

FPGA Software Radio 87% Accuracy

mmPose [27] Point Cloud
3D Heatmap Conversion

Forked CNN
TI AWR1642BOOST

3.2 cm,7.5 cm,2.7 cm Error in
Depth, Elevation and Azimuth

mHomeGes [33] Point Cloud
CNN, Ghost Image Separation,
Hidden Markov Model-based

Voting Mechanism
TI IWR1443BOOST 97.96% Accuracy

Pantomime [34] Point Cloud Pointnet++, LSTM TI IWR1443BOOST 95% Accuracy

Handwriting
Tracking

mTrack [35] RSS/Phase
Discrete Beam Steering,

Dual-differential Background
Removal

Customized 60GHz
Software-radio Testbed

90-percentile Tracking
Error below 8 mm

mmWrite [81] CIR
Background Subtraction,

Discrete Cosine Transform
Qualcomm 60GHz
802.11ad Chipset 2.8 mm Median Error

mmKey [82] CIR
Adaptive Background
Cancellation, MUSIC

Qualcomm 60GHz
802.11ad Chipset

95% Accuracy for Single-key
90% Accuracy for Multi-key

existing works. Moreover, learning-based techniques such as
domain adversarial technique and domain adaptation technique
have been applied to resist the impact of the environment in
feature extraction and classification.

EI [77] proposes an environment-independent activity
recognition framework. It utilizes a COTS 60GHz mmWave
transceiver system equipped with a 24-element phased an-
tenna array to collect multi-user activity data from different
environments. EI first obtains the CIR measurements and
transforms each CIR measurement into a frequency response
sample. These frequency responses in a period of time then
form an input matrix. EI employs CNN to extract activity
features from the input matrix. After that, a fully-connected
layer and a softmax layer are used to obtain the activity
probability vector. In particular, EI adopts the unsupervised
domain adversarial training technique [83] with unlabeled
data to produce environmental-independent activity features.
It further proposes three constraints to tackle the overfitting
problem and improve the recognition performance, including
confident control constraint, smoothing constraint and balance
constraint. The experimental results show that EI achieves a

recognition accuracy of about 65% in different environments.
When people move, the different movements of the body

parts cause different frequency modulation on the reflected
signal, called the micro-Doppler effect. This feature is highly
related to human movement and can be exploited to recognize
the human activity. SPARCS [55] explores the micro-Doppler
spectrum extracted from CIR samples for activity recognition.
It reuses existing communication traffic and provides an inte-
grated human sensing and communication (ISAC) solution.

After obtaining the CIR estimation from communication
traffic, SPARCS first tracks each person’s distance and an-
gular position by performing peak detection, angle of arrival
(AoA) estimation and Joint Probabilistic Data Association
Filter (JPDAF) [84]. Due to the bursty and irregular traffic
pattern, the CIR samples are sparse and irregular. In this case,
the micro-Doppler spectrum can not be directly obtained by
performing STFT, which needs uniform samples. To recover
the micro-Doppler spectrum from such irregular and sparse
CIR samples, SPARCS resamples the random CIR samples to
obtain the regularly spaced samples and missing values with
a fixed interval. Then the recovery of the micro-Doppler spec-
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Fig. 7. Comparison between the traditional CIR-based human sensing and
SPARCS.

trum from such incomplete CIR samples can be formulated
as a sparse recovery problem and solved with the Iterative
Hard Thresholding (IHT) algorithm [85]. Furthermore, when
the communication traffic is too sparse to recover the accurate
micro-Doppler spectrum, SPARSE injects short sensing units
to provide enough CIR measurement. SPARSE is developed on
top of the open-source mm-FLEX platform [18] with 60GHz
mmWave RF front-ends. The experimental results show that
SPARCS reaches over 0.9 F1 scores on all four activities.

In addition to the frequency response and the micro-Doppler
spectrum, point clouds are also exploited to achieve activity
recognition. RadHAR [29] explores how to perform accurate
HAR using point clouds generated through a mmWave radar.
RadHAR first captures the point clouds which contain spatial
coordinates, velocities, ranges, intensities and angles. The
point clouds are then converted into 3D voxels to tackle the
non-uniformity of points number in each frame. The value of
each voxel is the number of data points within its boundaries.
After that, RadHAR utilizes a sliding time window to accumu-
late point clouds to overcome the sparsity of points number.
Finally, RadHAR evaluates different classifiers and selects the
time-distributed convolutional neural network (CNN) + bi-
directional LSTM classifier as the best-performing classifier.
The experimental results show that RadHAR achieves a recog-
nition accuracy of 90.47% with five different activities.

Considering the applicability of activity recognition in the
real world, m-Activity [78] enables a real-time activity recog-
nition system in noisy environments. It removes the noise
points based on the density of point clouds and extracts
the point clouds of human activity. Then the 3D data is
accumulated as an integral temporal flow to reduce recognition
cost. m-Activity further combines a fast-calculation CNN with
a less-parameter recurrent neural network (RNN) to classify
different activities. It achieves an off-line activity accuracy of
93.25% and real-time activity accuracy of 91.52%.

PALMAR [69] further exploits the point clouds to track
and recognize multi-person activities simultaneously. It first
collects the point clouds generated from a 79GHz mmWave
radar and represents them in voxel format. Then PALMAR
employs DBSCAN and BIRCH [86] clustering algorithm to
cluster these voxels of each people. PALMAR further applies
the Adaptive Order Hidden Markov Model (AO-HMM) to
track multiple targets and the Crossover Path Disambiguation
Algorithm (CPDA) to handle multiperson path ambiguity and

Gesture Chip Raw Signal
Signal 

Transformation

Gesture

Classification

Detected

Gesture

Fig. 8. Soli: the first mmWave radar gesture sensing system.

trajectory crossover [75]. Finally, PALMAR proposes a deep
domain adaptation model based on a variational autoencoder to
improve activity recognition accuracy and domain adaptation.
It achieves a recognition accuracy of 91.88% with domain
adaptation in multi-user scenarios.

2) Gesture recognition: “In air” gesture recognition using
mmWave signals has shown its potential in human-computer
interaction and health monitoring. Various gesture recognition-
based applications have been developed, including fine gesture
interaction, hand hygiene monitoring, sign language commu-
nication, skeletal posture estimation and so on.

Similar to activity recognition, gesture recognition requires
extracting appropriate features from the received signals. To do
so, researchers have explored the potential of Range-Doppler
spectrums, Doppler spreads, point clouds and concentrated
position-Doppler profiles. Furthermore, as gesture recognition
requires more fine-grained analysis and sensing, compared
with activity recognition, various feature extraction algorithms
and classification approaches have been proposed, including
bidirectional LSTM, forked CNN, hidden Markov model-
based voting mechanism and so on.

Soli [2] is the first mmWave radar gesture recognition
system developed by Google. As shown in Fig. 8, it achieves
ubiquitous fine gesture interaction and has been integrated into
smart devices such as Google Pixel 4 [1]. Soli customizes its
own radar chips in 12 × 12 mm and 9 × 9 mm scales. Each
chip operates at the 60 GHz band with 7 GHz bandwidth. It
also has two transmit and four receive antenna elements to
support digital beamforming.

To enable ubiquitous gesture recognition, Soli first proposes
the scattering center model of the human hand. It models the
RF response of the hand as a superposition of the response
of discrete scattering centers on the hand. Then Soli performs
slow-time processing and fast-time processing on the received
signal to produce the Range-Doppler spectrum. It further
projects the Range-Doppler spectrum into the range profile and
the Doppler profile for feature extraction. In the feature extrac-
tion phase, Soli extracts a variety of features, including explicit
scattering center tracking features, low-level descriptors of
physical RF measurement and data-centric machine learning
features. Finally, different machine learning classifiers can be
used to identify the user’s gesture. The experimental results
demonstrate that Soli can achieve a recognition accuracy of
92.1% with a Bayesian filter.

RFWash [79] proposes a mmWave-based gesture sensing
approach to monitor the nine-step Alcohol-Based Hand Rub
technique. As shown in Fig. 9, unlike popular gesture recog-
nition approaches which contain the detection/segmentation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

G1 G2 G3 G4 G5 G6 G7 G8 G9

Conventional RFWashConventional RFWash

Pause Gesture w/o PausesSingle Gesture

Segmentation

Classification

G3

G3

G4

{G3,G4}

Nine-step Alcohol-Based Hand Rub

End-to-End Sequence Leaning

Fig. 9. Gesture sequence recognition of RFWash.

step and the recognition step, RFWash demonstrates that data
segmentation is a tough task and seriously affects gesture
classification accuracy. Inspired by speech and handwriting
recognition approaches, RFWash proposes a segmentation-
free approach to accurately recognize hand hygiene gestures
without segmentation.

RFWash mounts the mmWave radar on a soap dispenser and
extracts the Range-Doppler spectrum at each time instant. It
further limits the range to less than 1m to remove interference
from other people. To predict the gesture sequence from the
Range-Doppler spectrums, RFWash first employs bidirectional
recurrent layers with LSTM cell type (BiLSTM) [87] to
extract the gesture-related spatiotemporal features. Then it
adopts temporal alignment learning [88] to map the output
of BiLSTM to the corresponding gesture sequence. RFWash
further employs order-preserving concatenation to augment
training data and extends the data size quadratically. The
results show that RFWash achieves a gesture error rate of less
than 8% and reduces manual labeling overhead by about 67%.

Sign language communication is another major application
of gesture recognition. To serve the Deaf and Hard-of-Hearing
(DHH) community, mmASL [80] proposes a home assistant
system that can recognize American Sign Language (ASL)
using 60GHz mmWave signals. mmASL utilizes a sinusoid of
1MHz as the baseband signal and extracts the corresponding
Doppler spread of the received signal, which is caused by
the movements of the body parts. After obtaining the re-
ceived signal, a low-pass 1KHz filter and a high-pass 10Hz
filter are first applied to the received signal for denoising.
Then the spectrums are plotted by STFT and enhanced by
log normalization. mmASL then utilizes these spectrums to
achieve wake-word recognition and ASL sign recognition.
Specifically, mmASL employs beam scanning through a set of
beam sectors and performs STFT for each sector’s data. These
results are concatenated to form the spatial spectrograms.
Then mmASL employs a CNN-based machine learning model
to recognize the wake word quickly. It further leverages a
multitask learning network to extract and learn the ASL-related
features to achieve ASL recognition. mmASL is implemented
on NI+SiBeam 60GHz multi-FPGA software radio platform

[89] with a phased antenna array. The experimental results
demonstrate that mmASL can detect wake-word with an aver-
age accuracy of 94% and achieves an average sign recognition
accuracy of 87%.

mmPose [27] exploits the point clouds generated from
the mmWave signals to achieve real-time human skeletal
posture estimation. It uses TI AWR1642BOOST board [7]
to collect the reflected signal and build the 3D point clouds.
Then mmPose assigns an RGB weighted pixel value to each
point based on its reflection intensity, resulting in a 3D
heatmap. mmPose further compresses this heatmap into two
low-resolution planes, the depth-azimuth plane and the depth-
elevation plane, to overcome the sparsity of the heatmap and
reduce unnecessary computing costs. Finally, a forked CNN
architecture is used to output the skeletal joint coordinates of
the human. The experimental results show that it accurately
predicts human motion with four different gestures.

It is desirable to perform gesture recognition in smart home
scenarios. However, the surrounding interference can prevent
the mmWave radar from discovering users and thus make
gesture recognition unavailable. mHomeGes [33] attempts to
overcome this challenge and achieves a real-time arm gesture
recognition system. mHomeGes first captures a series of point
clouds with a fixed-length sliding window. Then it extracts the
concentrated position-Doppler profile (CPDP) that compresses
the intensity of each point into the distance dimension and the
Doppler dimension. It can be regarded as the sum in the time
dimension of the Range-Doppler spectrums. Then CPDP is
used as the input of a customized CNN recognition model to
recognize fine-grained gestures. To eliminate the multipath ef-
fect caused by the surrounding reflectors, mHomeGes proposes
a novel ghost image separation algorithm using the velocity
synchrony between the user and the corresponding ghost
image. Finally, mHomeGes employs a hidden Markov model-
based voting mechanism (HMM-VM) to achieve continuous
gesture recognition. mHomeGes is implemented based on a
commercial mmWave radar, TI IWR1443 board [5]. Results
show that mHomeGes achieves a recognition accuracy of
97.96% for 25 volunteers across five home scenes.

Another challenge of gesture recognition using point clouds
is the sparsity of the point clouds. It makes gesture-related
signals challenging to be distinguished. Pantomime [34] pro-
poses a novel hybrid model to achieve accurate gesture recog-
nition with sparse point clouds. Pantomime first aggregates the
point clouds of a gesture segment to obtain more points in a
single frame. Then the aggregated point cloud is resampled
to meet a fixed point number with upsampling and down-
sampling algorithms. To further extract the spatio-temporal
features from the aggregated point clouds, Pantomime employs
a hybrid architecture combining the Pointnet++ architecture
[90] and the LSTM modules. Pointnet++ is designed to extract
spatial features from 3D point clouds, and the LSTM modules
continue to extract temporal features from obtained features.
Finally, these two feature vectors are concatenated to form the
final feature vector and classified by a fully connected layer.
The experimental results show that Pantomime achieves 95%
accuracy and 99% the area under the ROC curve (AUC) with
21 gestures.
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3) Handwriting tracking: Passive handwriting tracking is a
critical task in performing ubiquitous human-computer interac-
tion. Benefiting from the short wavelength and large bandwidth
of mmWave signals, researchers have proposed mmWave-
based handwriting tracking approaches that can achieve mm-
level tracking accuracy.

Different from activity recognition and gesture recognition,
handwriting tracking requires accurate quantitative tracking
of the writing object, such as a finger or a pen. The micro
displacement measurement based on mmWave signals relies
heavily on the phase changes of the received signal. However,
the mmWave signals also suffer from background interference
that distorts the phases of the mmWave signals. How to extract
the phase changes caused by micro displacement becomes the
key to achieving accurate handwriting tracking. Researchers
have exploited beamforming algorithms and signal-denoising
techniques to eliminate background interference and extract
handwriting-related phase changes.

mTrack [35] proposes a high-precision handwriting track-
ing with 60GHz mmWave radios. The mTrack setup and
system components are shown in Fig. 10. The transmitter is
equipped with a quasi-omni beam pattern to illuminate the
tracking region, and the receiver adopts highly directional
antennas to boost the target-reflected signals. With three well-
designed modules, namely the anchor point acquisition mod-
ule, the phase tracking module and the touch detection module,
mTrack can achieve handwriting detection and tracking.

mTrack extracts the received signal strength (RSS) and
phase changes from each receiver antenna to locate and track
the writing object. It first performs discrete beam steering
techniques to obtain the discrete RSS samples and captures
the relative angle to each receiver antenna with the inter-
polated maximum RSS. Then mTrack continuously tracks
the writing object by extracting the phase changes. As the
phase changes of the received signals are distorted by back-
ground interference, directing the conversion of the phase
changes to moving distance will result in incorrect tracking re-
sults. mTrack proposes a dual-differential background removal
(DDBR) algorithm to remove such an impact. Specifically, it
differentiates the phase of three consecutive samples to obtain
a single-phase shift sample. mTrack also designs a phase
counting and regeneration algorithm to complement the DDBR
algorithm. Furthermore, mTrack utilizes the RSS measurement
and the phase variance to detect the touch events. mTrack is
implemented on a customized 60GHz software-radio testbed
with the Vubiq 60GHz RF front-end. Results show a 90-
percentile tracking error below 8 mm.

Instead of using multiple separate receiver antennas,
mmWrite [81] enables a high-precision handwriting tracking
system with a single mmWave radio. mmWrite is implemented
based on a Qualcomm 60GHz 802.11ad chipset with an
additional antenna array. mmWrite exploits the CIR measure-
ment from the receiver for handwriting tracking. Specifically,
mmWrite first employs the background subtraction algorithm
to the recorded CIRs to eliminate the impact of other static
objects. Then the digital beamforming technique is performed
to determine the range and direction of the reflected signals.
mmWrite further extracts the Doppler velocity by STFT and
performs 3D constant false alarm rate (CFAR) [43] target
detection based on the Doppler power. This series of tar-
get locations construct an estimated trajectory of the target.
Finally, mmWrite proposes a smoothing technique based on
Discrete Cosine Transform (DCT) to enhance the estimated
trajectory. The experimental results show that it achieves a
median tracking error of 2.8 mm.

Similarly to mmWrite, mmKey [82] enables a universal
virtual keyboard with a single mmWave radio. mmKey first
utilizes the differential amplitude of the CIR to detect the
presence of motions. Then mmKey employs a novel motion
filter and adaptive background cancelation to extract only
the finger-related reflections. It further performs the multiple
signal classification algorithm (MUSIC) [91] to enable precise
keystroke localization. Results show that mmKey can achieve
a keystroke recognition accuracy of more than 95% for single-
key cases and more than 90% for multi-key scenarios.

C. Biometric Measurement

Human biometric measurement is an important step to
achieve ubiquitous human sensing. Through mmWave-based
sensing of gait, vital signs or sounds, people can achieve
health monitoring, human-computer interaction and other ap-
plications. We summarize the related works in TABLE VII.

1) Gait recognition: Gait-based human identification is a
key requirement for secure and smart applications. Compared
with visual-based solutions, mmWave-based identification sys-
tems are more acceptable, as the concerns about privacy
security can be eliminated. With the strong directivity of
mmWave signal, they are capable of tracking and identifying
multiple targets simultaneously.

The key problem of gait recognition is to define appropriate
feature forms to effectively extract gait-related features from
the raw data. Considering that gait-related features include
the temporal, spatial and velocity variation from the reflected
signal. Point clouds and Range-Doppler spectrums are widely
used because they maintain rich gait-related information. Re-
cent works further propose to use the micro-Doppler spectrum
to detailedly describe the human gait.

mmGait [32] proposes a deep-learning driven method to
achieve mmWave gait recognition. mmGait uses two mmWave
devices, TI IWR1443 and IWR6843, to build a mmWave
gait dataset from 95 volunteers. It first employs DBSCAN
algorithm and Hungarian algorithm to obtain the point clouds
corresponding to every single human. it further proposes a
customized neural network structure, called mmGaitNet, to
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TABLE VII
COMPARISON OF BIOMETRIC MEASUREMENT WORKS

Category Method Signal Form Algorithm Hardware Platform Performance

Gait
Recognition

mmGait [32] Point Cloud DBSCAN Clustering
Hungarian Algorithm, DNN

TI IWR1443BOOST
TI IWR6843BOOST

90% Accuracy for Single-person
88% Accuracy for Five-person

MU-ID [92] range-Doppler
Spectrum CNN TI AWR1642BOOST 97% Accuracy for Single-person

92% Accuracy for Four-person

GaiCube [93] micro-Doppler
Spectrum

Log Spectrum Analysis
CNN TI IWR1443BOOST 98.3% Accuracy

Vital
Sensing

mmVital [94] RSS Band-pass Filters Vubiq Platform 0.43 Bpm Error
2.15 bpm Error

ViMo [22] CIR 2D-CFAR
Autocorrelation

Commercial
60-GHz WiFi

0.19 Bpm Error
0.92 bpm Error

mBeats [95] Phase
Waveform

Biquad Cascade IIR Filter
DNN TI IWR6843BOOST 95.26% Accuracy

RF-SCG [61] Phase
Waveform

4D Cardiac Beamformer
CNN

Translator
TI IWR1443BOOST 0.72 Correlation Coefficient

mmHRV [50] Phase
Waveform Modified VMD TI IWR1443BOOST 97.96% Accuracy

mmECG [96] Phase
Waveform

Hierarchy VMD
Template-based Optimization TI AWR1642BOOST 0.37 bpm Error

HeartPrint [97] Phase
Waveform WPT TI IWR1443BOOST 96.16% Accuracy

[98] Phase
Waveform LSTM TI AWR1243Boost 5.57 Bpm Error for Moving

3.32 bpm Error for Moving

Movi-Fi [99] Phase
Waveform

Deep Contrastive Learning
Encoder-decoder Model TI IWR1443BOOST about 2% Bpm Error

about 1% Bpm Error

VED [100] Phase
Waveform Variational Encoder-decoder TI IWR1843BOOST above 0.92 Similarity

CardiacWave [101] Phase
Waveform

Mask Filter
DNN TI IWR1443BOOST 97.96%

mmBP [102] Phase
Waveform Functional Link Adaptive Filter TI IWR1843BOOST 0.87 mmHg SBP Error

1.55 mmHg DBP Error

Sound
Recognition

WaveEar [76] Phase
Waveform

DNN
Griffin-Lim Phase Reconstruction

Customized 24GHz
mmWave Probe Lower than 6% WER

VocalPrint [103] Phase
Waveform Resilience-aware Clutter Removal TI AWR1642BOOST 96% Accuracy

mmPhone [104] Phase
Waveform

DNN
Training-free Harmonic Extension TI AWR1843BOOST 93% Accuracy

Wavedropper [105] Phase
Waveform

Wavelet-based Analysis
RNN TI IWR1642BOOST 91.3% Accuracy

MILLIEAR [63] Phase
Waveform Conditional GAN TI IWR1642BOOST 3.68 MCD

Wavoice [106] Phase
Waveform Multi-modal Signals Fusion TI IWR1642BOOST 0.69% CER

1.72 WER

AmbiEar [66] Phase
Waveform

Modified MVDR
End-to-end Network TI IWR1642BOOST 87.21% Accuracy for NLoS
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Fig. 11. The overview of mmGaitNet.

distinguish the point cloud. The network structure is shown
in Fig. 11. The inputs of mmGaitNet are point clouds’ five
attributes X , Y , Z, V and S, where X , Y , Z represent the
spatial location of each point, V and S denote the correspond-

ing radial speed and signal strength, respectively. The attribute
features are first extracted by the attribute network, then they
are input into the feature fusion network to fuse the features.
Finally, the final fully connected layer output the class score.
The experimental results show that mmGait achieves 90%
identification accuracy for single-person scenarios and 88%
accuracy for five co-existing persons.

In addition to using the distribution of point clouds to
recognize different humans, researchers also capture the signal
frequency changes caused by human motion to achieve gait
recognition. MU-ID [92] focuses on the gait feature from the
lower limb motion in the spatial-temporal domain to achieve
multi-user identification. MU-ID first converts the raw data
into the Range-Doppler spectrum and removes the stationary
interference. Then the Range-Doppler spectrum is compressed
along the velocity dimension. A sequence of the compressed
result is further arranged in the order of time to extract
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the lower limb motion features. When multiple users appear
simultaneously, their features are separated based on AoA
difference and segmented based on silhouette analysis. Finally,
MU-ID develops a deep CNN-based classifier to output the
classification probability distribution. The experimental results
show that MU-ID achieves 97% single-person identification
accuracy and over 92% accuracy for four people.

Compared with velocity analysis, micro-Doppler spectrum
indicates more detail local motion information and can be used
for gait recognition. Inspired by this observation, GaitCube
[93] proposes to extract a joint-feature representation of micro-
Doppler and micro-range signatures over time, called gait data
cube to embody the physical relative features of human gait.
Then GaitCube can achieve accurate gait classification with the
gait cubes. Specifically, GaitCube first obtains the time-range
spectrum from raw data and chooses the maximum-variance
trace to detect a subject. Then the human’s walking phase can
be detected with speed extraction and threshold comparison.
After that, GaitCube estimates the gait cycle by extracting the
Time-Doppler log spectrum energy and segments each gait
cycle. The micro-Doppler spectrums over the range in each
gait cycle are further downsampled and aligned to form the
gait cubes. Assisted by several additional features such as trace
length and cycle duration, the gait cube is fed into a CNN-
based classification for gait recognition. The experimental
results show that GaitCube achieves an accuracy of 96.1%
with a single gait cycle with one RX antenna and the accuracy
increases to 98.3% with all RX antennas.

2) Vital sensing: Non-contact continuous monitoring of
human vital signs is one of the important applications of
mmWave sensing. Through the continuous in-depth analysis
of the vital information contained in the mmWave reflected
signals, not only the vital feature can be extracted but also the
vital waveform can be recovered.

The core challenge of vital sensing lies in the fine-
grained characterization of the time-domain vital-related signal
changes and exact vital signal extraction from such signals.
When the sensing target is vital features such as breathing and
heart rate, frequency domain analysis or learning-based feature
extraction methods are widely adopted. When the sensing
target spreads to the vital waveform, learning-based waveform
extraction methods or signal decomposition technologies begin
to play an important role.

mmVital [94] first explores how to enable continuous
monitoring of human breathing and heart rates with 60GHz
mmWave signals. mmVital locates the users based on the
reflection loss of the human body, which is different from
other objects. Then mmVital adjusts Tx and Rx angles to
transmit the signal to the human body and extract the receiver
signal strength (RSS) of the reflected signal. The RSS signal
is sensitive to periodic movement of the human body, resulting
in a peak in the frequency domain. To achieve better accuracy,
mmVital detects the corresponding frequency peaks with band-
pass filters to estimate the breathing and heart rates. mmVital
utilizes a mmWave development platform provided by Vubiq
[70] for transceiver angle adjustment and RSS value collection.
The experimental results show that mmVital provides reliable
vital sensing with a mean estimation error of 0.43 breaths per

minute (Bpm) and 2.15 beats per minute (bpm).
As the channel impulse response (CIR) can obtain more

detailed vital-related information than the RSS, ViMo [22]
try to extract the vital features with the CIR time-series. It
enables multiperson vital sign monitoring using a commercial
60GHz WiFi. Due to the extremely high frequency and large
bandwidth of the mmWave signal, 60GHz WiFi can offer
high directionality with large phased arrays in small size.
When the mmWave signal is reflected by the human body,
the phase of the CIR measurement changes periodically due
to periodic human motions, i.e. breath and heartbeat. ViMo
first employs 1D-CFAR in range dimension and 2D-CFAR in
angle dimension to detect reflecting objects. Then humans can
be distinguished from the static reflecting objects according to
the variation of their corresponding phases. ViMo estimates
the breathing rate by applying the autocorrelation function
to the CIR phase and finding the peak location. After that,
ViMo adopts a smooth spline to estimate and eliminate the
breathing signal. Finally, the enhanced heartbeat signal is
utilized to continuously estimate the heart rate with dynamic
programming. ViMo is embedded in a commodity 60GHz
WiFi [20], which has 32 antennas assembled in a 6×6 layout.
The median errors are 0.19 Bpm and 0.92 bpm in the case of
a single user, and the mean accuracy of both breathing rate
and heart rate is over 92.8% in the case of 3 users.

Besides frequency domain analysis, learning-based feature
extraction methods are also applied to extract vital features.
mBeats [95] provides a heart rate monitoring system that is
insensitive to user orientation and position. mBeats utilizes
a domestic service robot equipped with a mmWave radar to
track the human’s orientation and position and perform vital
sensing. As the service robots are typically low in height,
mBeats measures the heart rate in a user’s leg. The measured
phase variation is caused by the micro displacement of the
user’s skin but filled with noise. To accurately estimate the
heart rate, mBeats first leverages a biquad cascade IIR filter
to extract heartbeat waveforms. Then the heart rate estimation
problem is formulated as a regression problem and solved by
a customized deep neural network (DNN) predictor. mBeats
utilize a commercial radar, TI IWR6843ISK board [4], to
send mmWave signals and extract the phase variation. The
experimental results show that mBeats provides a heart rate
estimation accuracy of 95.26% under 8 different user poses.

mmWave sensing can capture the subtle displacement of
the human chest, which is mainly caused by the superposition
of the heartbeat signal and respiration signal. Inspired by this
observation, researchers begin to explore how to recover the
vital waveform rather than just extract vital features based on
mmWave sensing.

RF-SCG [61] introduces how to utilize the reflection of
the mmWave radar signal to reconstruct the seimocardiogram
(SCG) waveform, which captures fine-grained cardiovascu-
lar events. To sense the cardiac micro-vibrations, RF-SCG
first needs to exactly capture the reflected mmWave signal
from the apex of the heart. RF-SCG designs a 4D Cardiac
Beamformer component to discover the 3D location of the
heart. The detailed architecture is shown in Fig. 12. RF-
SCG first formulates the heart rate estimation problem as
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Fig. 12. The architecture of 4D Cardiac Beamformer.

a 1D matching problem and solves it with a CNN-assisted
template matching technical. Then RF-SCG applies FFT and
beamforming techniques to the received signal to extract the
corresponding time-domain signals in 3D bins. Combining the
estimated heart rate with the time-domain spectral properties,
RF-SCG can estimate the optimal 3D location of the heart.

After obtaining the reflection signal from the heart, RF-
SCG learns a CNN-based RF-to-SCG translator to recover
SCG waveforms from the mmWave reflections. Moreover, RF-
SCG modifies the Unet architecture [107] to automatically
label five fiducial points, including aortic valve opening, aortic
valve closing, mitral valve opening, mitral valve closing, and
isovolumetric contraction. RF-SCG is implemented based on a
commercial mmWave radar, TI IWR1443BOOST board [3].
Results show that RF-SCG has more than 0.72 correlation co-
efficient between each subject’s ground truth and the recovered
waveform. It also can robustly time five key cardiovascular
events with a median error between 0.26%-1.29%.

In addition to directly recovering the vital waveform from
the reflected signal, researchers explore extracting the vi-
tal signals with different signal decomposition technologies.
mmHRV [50] utilizes a modified VMD algorithm to extract
the heartbeat signal from the reflected signal and monitor the
heart rate variability (HRV). Similarly, mmECG [96] designs
a hierarchy VMD approach to estimate the heart movement
in mmWave signals. It further leverages a template-based
optimization method to reconstruct the cardiac cycle in driving
environments. HeartPrint [97] analyzes the minor changes
in heartbeat waveform with a 3-level wavelet packet trans-
form (WPT), which can conduct multi-resolution analysis in
multiple frequency domains. [98] designs customized LSTM
models to estimate a baseline of heart rate and respiration rate
separately only when the human is static. It further predicts
these features on top of the baseline when the human moves.

The fundamental assumption of the signal decomposition al-
gorithm is the linear superposition of signals. However, MoVi-
Fi [99] states a different point of view: The reflected signals
caused by vital signs are composited with other motion-
incurred reflections in a nonlinear manner. To solve such a
nonlinear blind source separation problem, MoVi-Fi employs
deep contrastive learning to reverse the nonlinear composition
between body movement and vital signs. Then an encoder-
decoder model is utilized to recover the heartbeat waveform
and the breathing waveform. The experimental results show
that MoVi-Fi can recover fine-grained vital signs waveforms
under severe body movements. VED [100] also claims that the
composition between respiration and heartbeat can be highly

nonlinear. VED explores the ability of the variational encoder-
decoder, a novel deep neural network, to convert the raw data
to the heartbeat waveform. It achieves a heart rate estimation
median error less than 2.4% and a median waveform cosine
similarity higher than 0.92.

Different from these works, CardiacWave [101] recov-
ers vital signs by analyzing the electromagnetic (EM) field
changes rather than the chest movements brought by the heart.
CardiacWave presents a novel and interesting observation: the
electromagnetic field induced by cardiac electrical activity
will modulate the chest-scattered mmWave signals, called
Cardiac-mmWave scattering effect (CaSE). Specifically, the
frequency spectrums of the intermediate frequency (IF) signal
are different when the heat activity changes. CardiacWave
employs a mask filter with learnable coefficients to extract the
CaSE feature from the IF signal. Then a DNN-based profiler
is developed to obtain the ECG-like signals and perceive the
cardiac events. Results show that the recovered waveforms
have a high positive correlation with the ground truth and
contain high-fidelity heart clinical characteristics.

Apart from the aforementioned applications, mmWave sens-
ing also has great potential in blood pressure (BP) monitoring.
To measure BP values, mmWave reflections are processed to
reconstruct fine-grained pulse waves which contain unique BP-
related features, e.g., minimum value, peak value, and first in-
flection. However, due to high frequency and short wavelength,
mmWave signals in the time domain are susceptible to noise,
degrading the performance of pulse waveform reconstruction
and BP measurement. Moreover, the tiny body motion is
another concern for mmWave-based BP monitoring, which
would cause severe non-linear signal distortions and lead to a
huge performance drop in BP monitoring.

To address the above challenges, mmBP [102] develops a
contact-free BP monitoring system to achieve high accuracy
and tiny-motion robustness. To reduce noise, mmBP first
converts the received mmWave signals from time domain to
the delay-Doppler (DD) domain, and then retains the pulse-
related information but filters out noise by leveraging on their
different properties in the DD domain. To alleviate the impact
of tiny motion, mmBP develops a functional link adaptive filter
(FLAF) by exploiting the periodic property and correlation
character of the pulse signals. mmBP is implemented with
an off-the-shelf mmWave radar (TI IWR1843BOOST), and
results demonstrate that mmBP achieves the mean errors of
0.87 mmHg and 1.55 mmHg for systolic blood pressure
(SBP) and diastolic blood pressure (DBP), respectively, and
the standard deviation errors of 5.01 mmHg and 5.27 mmHg
for SBP and DBP, respectively. Results meet the acceptable
error range specified in the Association for the Advancement
of Medical Instruments (AAMI) standard and rank Grade A
in the Britain Hypertension Society (BHS) standard.

3) Sound recognition: Sound recognition is another impor-
tant application field of mmWave sensing. Conventional solu-
tions based on microphone(s) often fail in noisy environments
or outside soundproof scenes. Thanks to the penetrability and
high directivity of mmWave signals, people can directionally
capture the voice-related reflected signals by mmWave sensing
to achieve sound recognition or eavesdropping.
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Fig. 13. The reflected mmWave signal indicates speech information.

Different from gait recognition or vital sensing, sound
recognition mainly extracts the time-frequency spectrum from
the sound-related signal to reconstruct the sound. This means
that sound recognition is more sensitive to the complex noise
in the frequency domain, which may come from the sur-
rounding acoustic field, electromagnetic interference or even
imperfect hardware. Moreover, as the sensing target is the
tiny near-throat region, how accurately locate this vocal part
becomes a key problem.

For denoising in the frequency domain, learning-based
denoising methods are often applied as the complex noise
overlaps with the speech frequency band. These methods can
also help recover the severely distorted high-frequency part.
To accurately locate the speaker’s throat, the signal variance
brought by throat vibration are often considered. Some works
also solve this problem with the help of microphones or the
surrounding environment.

WaveEar [76] first explores how to utilize the mmWave
signal to achieve noise-resistant speech sensing. Its observation
is that the vibration of the speaker’s vocal cord contains speech
information and can be measured on the throat’s surface. As
shown in Fig. 13, the skin-reflected mmWave signal has
a strong correlation with human speech. WaveEar designs a
customized 24GHz mmWave probe, where both Tx and Rx
consist of 16 antennas following the 4 × 4 layout. With the
help of such a powerful probe, WaveEar can easily scan in all
directions and extract the time domain features to detect the
throat’s location. After that, the mmWave reflected signal is
converted to a series of spectrograms and fed into a novel DNN
to obtain the corresponding sound spectrograms. Finally, the
Griffin-Lim phase reconstruction approach [108] is employed
to recover the sound. Results show that WaveEar can achieve
a mean Mel-Cepstral distortion (MCD) [109] lower than 1.5
and a word error rate (WER) lower than 6%.

With the directivity and small range resolution of mmWave
sensing, Many noises can be eliminated. VocalPrint [103]
enables a secure voice authentication system by exploiting the
unique characteristics of the vibrating near-throat region. As
the vocal cords and vocal tract vary from person to person,
the voice pronunciation process can be regarded as a unique
feature, just like the voice itself. VocalPrint first applies a
resilience-aware clutter removal scheme on the Range-Doppler
matrix (RDM) calculated from the reflected mmWave signals.
In this way, the complex clutters can be moved from RDM and

the vocal biometric properties can be preserved. Furthermore,
VocalPrint extracts a series of text-independent features (e.g.,
residual phase Cepstrum coefficients (RPCC) [53] and Mel fre-
quency cepstral coefficient (MFCC) [54]) and feeds them into
a classifier for user authentication. VocalPrint is implemented
based on a commercial mmWave radar, TI AWR1642BOOST
[7]. The experimental results show that it achieves over 96%

authentication accuracy under different conditions.
The work on [110] also proposes a speaker verification

system based on mmWave sensing. It utilizes the mmWave
radar to capture both vocal cord vibration (VCV) and lip
motion (LM) as multimodel biometrics for user verification.
MFCC features and fuzzy WPT techniques are separately
applied to extract VCV features and LM features. These
features are further fed into a CNN for user verification.

Sound recognition based on mmWave sensing can be uti-
lized not only for authentication but also for illegal eaves-
dropping. mmPhone [104] utilizes piezoelectric films and
a mmWave radar to eavesdrop on the loudspeaker speech
protected by soundproof environments. The properties of
piezoelectric films can change with sound pressure and can
be captured by the mmWave radar. In this case, the films
can be converted to a passive “microphone” as long as they
are in the sound field. To improve the signal-to-noise ratio
(SNR) of the received signal, mmPhone employs a DNN-based
denoising method to handle non-stationary noise. Finally, a
training-free harmonic extension scheme is utilized to improve
speech intelligibility. Different from mmPhone, Wavedropper
[105] eavesdrops on speech contents by directly sensing the
speaker’s throat vibration in the obstructed condition. It applies
wavelet-based analysis to extract the voice-related signal from
the hybrid signal and an RNN-based classifier for speech
recognition. The experimental results show that Wavedropper
can achieve 91.3% accuracy for 57-word recognition.

As the reflected mmWave signal is seriously affected by
various noises, such as environmental acoustic noise and elec-
tromagnetic noise, the SNR of the received signal constrains
the recovered sound quality. To resist the impact of complex
noises, RadioMic [47] first utilizes a line fitting algorithm to
extract the phase change caused by the sound. Then RadioMic
employs a selection combining scheme on these signals from
multiple antennas and multipath components. Finally, a sound
enhancement scheme via deep learning is proposed for neural
bandwidth expansion and denoising. MILLIEAR [63] directly
employs a conditional generative adversarial network (cGAN)
[111] to enhance the audio components and reduce noise. It
achieves a mean MCD of less than 4, which implies that the
reconstructed audio is highly similar to the original speech.

Furthermore, mmWave-based sound recognition is con-
strained by another thorny problem: Due to the dynamics of
the speaker’s position and posture, the speaker’s throat is hard
to detect and locate in real-world scenarios, making the voice-
related signal can not be accurately extracted and analyzed.
Wavoice [106] explores the inherent correlation between the
reflected signal from a mmWave radar and the audio signals
collected from a microphone to achieve noise-resistant speech
recognition. The collected audio signals, although noisy, can
guide mmWave radars to detect the vibrating throat and
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Fig. 14. The multi-model speech recognition system.

compensate for information loss in mmWave signals.
The architecture of Wavoice is shown in Fig. 14. Wavoice

first detects the voice activity by comparing the audio signals
and mmWave signals in each range bin. It multiplies these
two signals and inputs the result into a low-pass filter. If these
two signals have the same or similar frequency components,
there will be an energy peak in the output of the low-pass
filter. Then Wavoice proposes two learning-based modules
for multi-modal signals fusion. One module exchanges valid
features while the other module projects respective information
into a joint feature space. Finally, the semantic information
can be extracted from the joint feature space with a typical
speech-to-text translation system. Results show that Wavoice
outperforms existing methods with the character recognition
error rate (CER) below 1% in a range of 7 m.

However, the voice detection problem still exists in non-
line-of-sight (NLoS) scenarios, where the line-of-sight (LoS)
path between the throat and the radar is hard to find or even
does not exist. AmbiEar [66] pinpoints that although the near-
throat region may not be sensed, surrounding objects around
the speaker can provide voice-related information. Its insight
is that sound propagates as a mechanical wave. The speaker’s
voice causes similar vibrations of the surrounding objects,
which are highly correlated with the voice. To detect the
surrounding objects around the speaker, AmbiEar proposes a
variance-based human trajectory detection algorithm to detect
the human’s trajectory and locate surrounding objects. Then a
modified minimum variance distortionless response (MVDR)
[42] algorithm is applied to these signals from surrounding
objects to extract their common components and enhance each
signal. Finally, these signals are superimposed and fed into an
end-to-end network for voice recognition. AmbiEar provides
an effective voice recognition approach in NLoS scenarios
with a word recognition accuracy of 87.21%.

D. Human Imaging
mmWave imaging system emits artificially generated signals

to illuminate the target object, and 2D/3D images can be
reconstructed by the reflected signals from the target according
to the reflectance distribution. Different from the existing
vision, IR, and X-ray imaging systems, mmWave signals
can penetrate clothes and work in low visibility conditions.
Due to its higher privacy and millimeter-scale ranging res-
olution, mmWave-based imaging has been widely pursued
for pose/posture tracking [30] [112], automatic driving [114],
security concerns [65] [113] [119], etc. We summarize the
related works in TABLE VIII.

Fig. 15. The flowchart of mmFace.

The biggest challenge of mmWave imaging system is the
data sparsity. The small size of the antenna array of mmWave
radar device and its specularity lead to a poor spatial resolu-
tion. In general, the imaging resolution of a radar system is
defined by resolution ∝ wavelength× distance/aperture.
For an antenna array size of 1.8 cm × 1.8 cm, its imaging res-
olution can only reach up to 28 cm at 1 m distance. To enhance
resolution, a universal technique is the Synthetic Aperture
Radar (SAR) [120], in which the mmWave device needs to
move a pre-determined trajectory and collect reflections from
uniformly and densely grid locations. Recent works further
propose to use the deep learning algorithm to generate images
from mmWave signals.

mmFace [65] proposes a anti-spoofing face authentication
(FA) system using a COTS mmWave radar (TI IWR1642-
BOOST [5]). As Fig. 15 illustrates, mmFace emulates a large
aperture planar antenna array by moving a radar along a
specific 2D slide rail, and collects the reflected signals from the
human face. Firstly, as the reflection coefficient only depends
on the material of the facial surface [121], mmFace designs
a novel algorithm to extract biometric features using the
amplitudes of the reflected signals for liveness detection. With
the reflected signals, a Range Migration algorithm (RMA)
[122] is applied to construct a 3D facial image. However, it
is distance-dependent and requires the authentication distance
and registration distance to be identical, which is impractical.
To further obtain distance-resistant features, mmFace utilizes
the contour of the bright area on the facial image, which
corresponds to the user’s facial region and its surface curvature
is relatively stable. This feature is utilized to calculate Fourier
descriptors as the facial structure features for similarity-
based user matching. Furthermore, to mitigate the registration
overhead, mmFace also proposes a VRS (Virtual Registration
Signals) generation method rather than directly collecting
mmWave signals. Given three 2D facial photos taken from
different perspectives, mmFace can reconstruct a virtual scene
and generate the reflected mmWave signals by building a
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TABLE VIII
COMPARISON OF HUMAN IMAGING WORKS

Method Signal Form Algorithm Hardware Platform Performance

mmFace [65] Amplitude,
Phase

Range Migration Algorithm,
Similarity-based Matching, Ray-tracing TI IWR1642BOOST 96% ASR

lower than 5% EER

SquiggleMilli [112] Phase,
Waveform

Non-linear Motion Compensation,
Compressed Sensing,

Unconstrained Basis Pursuit De-noising,
cGAN

TI IWR1443BOOST 0.85-0.95 Similarity
90% Classification Accuracy

milliCam [113] Phase,
Waveform

SAR,
Motion Compensation Algorithm Customized 60GHz Testbed 20% Error for 5× 5 cm2

4% Error for 20× 20 cm2

MILLIPOINT [114] Point Cloud
Dynamic Programming,

Automatic Multi-focusing Mechanism,
Capon Algorithm

TI MMWCAS-DSP-EVM 1.2% Cumulative
Tracking Error

mmMesh [30] Point Cloud Attention Mechanism,
Skinned Multi-Person Linear Model TI AWR1843BOOST 2.47 cm Error

mmFER [115] Phase,
Waveform

Gaussian Mixture Model,
Cross-domain Transfer,

Autoencoder
TI IWR1843BOOST 80.57% Accuracy

RPM [116] Point Cloud Attention Module, Deformable
Multi-stage Convolution Module Two FMCW Radars 5.71 cm Error

Hawkeye [117] Phase,
Waveform

cGAN, Ray-Tracing,
SAR Customized 60GHz Testbed 30 cm Ranging Error

27o Orientation Error

mmEye [24] Point Cloud
MUSIC,

Joint Transmitter Smoothing,
Background and Noise Cancellation

Qualcomm 60GHz
802.11ad Chipset 7.6 cm Keypoint Precision

m3Track [118] Doppler
Spectrum

MVDR,
Two-steam Deep Learning Architecture,

K-means Algorithm
TI AWR1443BOOST 42.4 mm Tracking Error

theoretical model of mmWave signal propagation. With the
generated VRSes, the user’s corresponding facial structure
features are stored as templates. The experimental results that
mmFace can achieve an average authentication success rate
(ASR) of 96% and an average equal error rate (EER) lower
than 5%.

Unfortunately, the pre-determined trajectory and uniform
sampling make it extremely challenging to emulate SAR on
a hand-held device. To this end, SquiggleMilli [112] uses a
non-linear motion compensation and a compressed sensing-
based framework to generate uniformly and densely spaced
grid locations, as the traditional SAR imaging system does.
As a user freely moves the device in the air, SquiggleMilli
maps the measured sample to the nearest point on the uniform
grid according to its phase change. To avoid shape alias-
ing from the missing grid samples, SquiggleMilli estimates
the missing by combining several measurements around its
corresponding location. The recovery procedure then can be
represented as an L1-norm minimization problem and solved
by the unconstrained basis pursuit de-noising method [123].
Then it applies voxel segmentation to extract the 3D shape of
objects at different depths. To enhance the perceptibility of the
reconstructed 3D shape, SquiggleMilli leverages a pre-trained
cGAN [111] model to recover the high spatial frequencies in
the object to generate an accurate 2D shape with the partial
3D mmWave shape. It further designs two networks to predict
its 3D features and category. The experimental results show
that SquiggleMilli can reconstruct 2D shapes with a similarity
score ranging from 0.85 to 0.95. For the 3D feature, it can
predict the mean depth and rotation angle with less than 1%
error and 1.5◦ error for the 90-th percentile. Meanwhile, it
achieves more than 90% accuracy for classifying the objects.

Different from SquiggleMilli, milliCam [113] proposes
a mmWave-based scanning system for capturing a high-
resolution shape of a small metallic object by emulating the
SAR imaging principle and swiping the hand-held mmWave
device over the air. As SAR requires stringent linear motion
and mm-scale localization accuracy, milliCam first leverages
the co-located camera to compute the position and tractory
of the device by measuring the translation and rotation. The
camera has sub-mm pixel resolution and can achieve a 7mm
localization error. Considering the target-scene is very close-
by, such localization errors still cause significant errors. mil-
liCam observes that most of the target-scene in the mmWave
signals are sparse, due to the specular reflection. It re-designs
a novel motion compensation algorithm based on the airborne
SAR compensation by fusing a clustering algorithm and a
bicubic interpolation. Furthermore, to resist the varied reflec-
tivity and noise reflections, milliCam iteratively segments and
corrects the defocused image using Otsu’s method and squint
correction, separately. After that, in order to ensure the phase
coherency across the emulated apertures, milliCam calibrates
the incoherent phases relying on the line-of-sight signals from
Tx to Rx. Results show that the measurement errors are less
than 20% and 4% for 5×5 cm2 and 20×20 cm2, respectively.

However, autonomous driving cars move fast and their
trajectories are uncertain, making it very challenging for
precise localization at the scale of the signal wavelength and
uniform sampling, which are the requirements of emulating
the SAR technique. To this end, MILLIPOINT [114] en-
ables SAR imaging on low-cost commodity radar to generate
3D point clouds. First, MILLIPOINT observes that different
Tx/Rx pairs may experience similar channel responses with a
lagging effect, and the delay depends on the spacing between
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Fig. 16. The flowchart of milliCam.

antenna pairs. It characterizes the radar’s cross-movement by
correlating the received signals. The correlation reaches the
maximum at the range of half a spacing of two antenna
pairs. In addition, MILLIPOINT uses multiple antenna pairs
with different spacing to overcome the influence of side
peaks and achieves robust self-tracking by applying dynamic
programming.

Furthermore, due to the existence of specular reflection,
only reflections around the normal direction of the target can
be received by the radar, resulting in a very small effective
aperture. To synthesize a full image of the 3D environment,
MILLIPOINT proposes an automatic multi-focusing mecha-
nism to focus on each target separately and then synthesize
them. To achieve it, MILLIPOINT first compensates for the
antenna gain and the attenuation in the cross-range spectrums.
It further identifies targets as the peaks of frequency spectrums
along the range direction by an empirical threshold. The
corresponding peak widths can be regarded as the target’s
effective aperture lengths. Then the classical SAR imaging
algorithm is applied and synthesizes a 2D image by selecting
pixels with the maximum value across all images. To extend it
with height information, MILLIPOINT models the relationship
between height and phase response of pixel, according to
the idea of AOA estimation with antenna array [124]. The
height is estimated with the Capon algorithm [39]. Through
evaluation of the commercial mmWave Radar with 6 Tx and
8 Rx antennas, results show that MILLIPOINT achieves the
median cumulative tracking error of 1.2% and has a precision
rating of sub-mm.

As the SAR-based imaging methods require the target to
be stationary or relatively stationary, they are not suitable for
tracking the target’s posture that dynamically changes. How-
ever, the spatial relationships and temporal dependencies of
the joint skeletons are concealed in the sequence of mmWave
reflected signals. This information can be utilized for pose
tracking. MilliPose [64] proposes a machine-learning model
for pose tracking and solves the problems of poor resolution,
specular reflection, and varied reflectivity. Firstly, MilliPose
leverages cGAN to generate a high-resolution 2D full-body
silhouette image from the low-resolution 3D mmWave signals.
Meanwhile, Considering that the degrees of freedom (DoF)
and the ranges of body joints are very limited, MilliPose de-

signs an RNN, consisting of a two-layered GRU network [125]
and a Structured Prediction Layer (SPL) [126], to learn these
rules and predict skeleton joint of the next pose. Then it
feedbacks the predicted pose to cGAN and can generate a
high-quality body shape. Results show that the median error
of joint location prediction is only 2.1 cm.

Instead of applying SAR imaging, mmFER [115] develops
a mmWave radar-based system to recognize facial expressions
by extracting and exploring subtle facial muscle movements
from raw mmWave signals. To this end, mmFER first leverages
the MIMO technique to localize the facial areas of the target
and eliminate ambient noise. Then it utilizes Gaussian Mixture
Model (GMM) to mitigate the impact of body motions on
facial localization. mmFER further proposes a cross-domain
transfer pipeline to guarantee an effective and reliable model
knowledge transformation from image to mmWave. In partic-
ular, a hybrid learning loss function is designed to effectively
address the over-fitting issue caused by small-scale training
datasets. Moreover, an autoencoder is explored to learn the
transition of latent features to reshape mmWave data, thereby
eliminating the influence of data heterogeneity. mmFER is
fully implemented using a commercial mmWave radar (TI
IWR1843BOOST), and results show that mmFER obtains an
accuracy of at least 80.57% when the distance between the
subject and radar is within the range of 0.3-2.5 m.

Different from generating 2D silhouette images, mmMesh
[30] proposes a deep learning framework to reconstruct the
dynamic 3D human mesh from the mmWave signals. To
alleviate the influence of ambient noise and multipath effects,
mmMesh uses an attention mechanism to discriminate the
point cloud and the points reflected by the subject tend to have
higher qualities. Then a rough estimation of the shape and pose
can be generated. To correctly align the points and make the
human mesh more accurate, mmMesh dynamically chooses
some ”virtual locations” near the subject as anchor points that
are each related to a part of the human body. According to
the anchor locations, mmMesh dynamically groups the 3D
point cloud into several subsets, and each one corresponds
to a different body segment. Meanwhile, the local structure
and associations can be learned. Finally, mmMesh incorporates
the Skinned Multi-Person Linear (SMPL) [127] model as an
additional constraint. It allows us to represent the whole 3D
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Fig. 17. The architecture of HawkEye.

human mesh with 86 parameters and does not need to calculate
the positions of thousands of vertices. The experimental results
show that mmMesh can achieve an average vertex error of
2.47 cm and a mesh localization error of 1.27 cm. Besides,
the average joint localization and rotation errors are 2.18 cm
and 3.8 degrees, respectively.

Besides, RPM [116] designs a multi-dimensional feature
fusion backbone network for human pose estimation. It con-
sists of two blocks: one is a channel fusion block that can
effectively fuse horizontal and vertical RF features based on
the channels’ correlation. The other one is a deformable multi-
stage convolution module that maintains scale-insensitive fea-
ture representations. Due to the high directivity of mmWave
radar, it is possible to receive the reflected signal of a subset
of limbs at each RF snapshot. Therefore, a spatial atten-
tion module is applied to recover the remaining body parts
from a single RF snapshot by modeling non-local skeleton
relationships. A temporal attention module is further applied
to model the temporal dependencies across the 3D skeleton
sequences. Finally, the complete 3D skeleton can be obtained.
The experimental results reveal that RPM can achieve a Mean
Per Joint Position Error (MPJPE) of 5.71 cm.

Although deep learning-based methods are proven to be
effective, the procedure of collecting real-world signals for
training is very time-consuming and labor-intensive. Benefit-
ing from the success of the GAN technique and its robust
resistance to noise, HawkEye [117] uses the GAN tech-
nique to generate the mmWave signals for training. In this
work, a cGAN-based architecture is designed to predict high-
resolution depth maps with a low-resolution mmWave heatmap
input. HawkEye utilizes an encode-decode framework as the
generator network to generate a 2D depth image. Meanwhile,
the skip connection mechanism [128] is applied to retain the
high-frequency details in depth. The discriminator employs a
two-stream architecture to classify real vs. generated samples.
Furthermore, to avoid collecting real-world mmWave data,
HawkEye proposes a data synthesizer to simulate the propaga-
tion of the mmWave signals in the real world using ray-tracing
[129] and generate realistic mmWave heatmaps.

Different from the use of radar devices, mmEye [24] is the
pioneering work of attempting to achieve mmWave imaging on
a single commodity 60GHz WiFi device. To break through the
resolution limited by the physical aperture, mmEye proposes
to reconstruct the spatial spectrum by applying the Multiple
Signal Classification (MUSIC) [91] with Akaike information

criterion (AIC) [130], a well-known information-theoretic
approach for model order selection. However, The rank of
MUSIC is likely much less than the number of incoming
signals, making its performance greatly deteriorate or even fail.
To overcome the rank deficiency problem without loss in pre-
cision, mmEye designs a novel 2D spatial smoothing termed
Joint transmitter smoothing (JIT). This technique reuses all the
Rxs for each Tx rather than dividing the receive array. mmEye
further proposes a background and noise cancellation (BANC)
algorithm to remove interfering signals and a minimum mean
square error (MMSE) [131] estimator is applied to compute the
background CIR. Additionally, mmEye searches the point of
interest (PoI) based on the variance of the energy distribution
of the spatial spectrum. Finally, mmEye transforms the PoIs
into plain images by solving a weighted least absolute devia-
tion problem. The experimental results show that it achieves a
median silhouette (shape) difference of 27.2% and a median
boundary keypoint precision of 7.6 cm.

Although commodity RF signals have been utilized to
realize 3D human posture tracking, these studies cannot handle
cases where multiple users are in the same space. Towards this
end, m3Track [118] proposes a 3D posture tracking system.
Based on the varying Doppler responses along with the speed
of movement, m3Track performs a convolution operation
on the Range-Doppler-Profile to detect all users with their
corresponding ranges. In the meanwhile, it utilizes minimum
variance distortionless response (MVDR) [132] to separate all
users from different angles. Given the range and the angle,
m3Track extracts the mmWave profiles of each user based on
a 3-cylinder model, relating to the head-neck, chest-arm and
lap-leg, respectively. Each profile contains two Range-Angle-
Profiles (spatial features) and one Range-Doppler-Profile (tem-
poral features). Then, m3Track designs a two-steam deep
learning architecture. It takes the spatial features and temporal
features as inputs to extract the global body shape features and
local body motion features. By concatenating these features,
a regression model is applied to predict the 3D coordinates
of skeleton joints and reconstruct the 3D body posture. For
tracking posture in multi-user scenarios, it is necessary to map
the reconstructed posture into real-world 3D space accurately.
m3Track leverages the K-means algorithm [49] to separate
the point clouds into multiple clusters. Each cluster center
corresponds to a posture joint, and the optimal mapping
relation can be obtained by searching the minimal mapping
error. Considering that the above computed 3D coordinate
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is in the polar coordinate system, m3Track further designs
a coordinate-correlated extended Kalman filter to calculate
the user’s position in the Cartesian coordinate system. With
the position trajectories, m3Track realizes continuous 3D
posture tracking in real-world multi-user scenarios. With TI
AWR1443 [6], the experimental results show that the overall
joint tracking error is 42.4 mm in a 4-user scenario.

E. Lessons Learned
The current mmWave-based human sensing has covered a

variety of sensing tasks and corresponding solutions. When
people try to utilize mmWave sensing to achieve a certain
sensing task, they should first choose the appropriate hardware
platform and processing signal form. For example, the point
cloud is more suitable for contour-related sensing tasks such
as activity recognition or human imaging, while the phase
waveform is more suitable for fine-grained quantitative sensing
tasks such as handwriting tracking or biometric measurement.

As we mentioned before, different sensing tasks have dif-
ferent technical frameworks and thus different challenges. For
example, tracking and localization works are still plagued by
trajectory crossing and multipath effect, which leave signif-
icant room for improvement in indoor multi-person local-
ization. In terms of motion recognition, continuous motion
recognition and dynamic human orientation changes are still
open problems. Considering the unique requirements of bio-
metric measurements for localization and sensing of human
body parts (chest, throat, etc.), precise body parts localization
and enhancement of the weak biometric signals are worthy of
research, due to the uncertainty of human body position and
posture. In human imaging, since SAR technique and deep
learning models are widely used, how to improve the human
imaging speed and model generalization is worthy of further
study.

People then are encouraged to explore the core technical
challenges of the corresponding sensing task, which determine
the detailed technical targets of the algorithms to be adopted.
For example, in recognition tasks such as activity recognition,
gesture recognition, and voice recognition, considering the
data differences (duration, intensity, variation, etc.) brought by
different individuals, the learning-based classification methods
often show better recognition abilities. Moreover, in measure-
ment tasks such as handwriting tracking and vital sensing, the
complex noise has a significant impact on sensing results, due
to the requirement for fine-grained quantitative measurements.
Therefore, appropriate noise reduction methods need to be
carefully designed.

Furthermore, the sensing scenes should be carefully ob-
served to assist sensing methods and achieve better sensing
results. For example, human orientation and radar deployment
need to be carefully considered to reduce potential signal
distortion and environmental noise. On the other hand, mul-
tiple reflections between human and environmental reflectors
and the impact of the human body on the environment may
contain additional human-related information, which can help
to achieve more general or accurate sensing.

Finally, people are encouraged to deploy their systems
in various scenarios to verify their performance in detail.

Considering the increasing demand for fine-grained sensing in
complex scenarios, such as in smart cockpits and smart homes,
multi-scenario experimental verification can not only explore
the potential capabilities but also promote the deployment of
mmWave-based human sensing in actual scenarios.

VI. APPLICATION SCENARIOS

Various human sensing tasks can be applied to many actual
scenarios to realize attractive applications. In this section,
we briefly introduce some application scenarios of mmWave-
based human sensing, including smart home, smart health,
smart vehicle and security.

A. Smart Home

Smart home is very attractive in our daily scenarios as
people can directly interact with devices through gestures
or voices to achieve various applications. Moreover, smart
home can automatically monitor our daily activities to provide
customized services and protect our safety [133]–[142]. As
mmWave-based human sensing techniques can capture human-
related activity information in real-time, they can be well
adapted to smart homes.

As the mmWave radar can capture people’s commands
through activity recognition [29], [69], [77], gesture recog-
nition [33], [34], [80] and sound recognition [66], [76], [106],
people can only give preset actions or voices to directly
interact with devices, such as opening curtains and turning
off lights. For example, mHomeGes [33] enables real-time
arm gesture recognition in smart home scenarios to provide
natural user experiences. Furthermore, mmWave-based gesture
recognition can also help Deaf and Hard of Hearing (DHH)
people communicate with others. mmASL [80] provides a
home assistant system for DHH users that can perform Amer-
ican Sign Language (ASL) recognition with a single mmWave
radar. Considering complex home scenarios, signal denoising
techniques need to be adopted and deep learning-based sensing
models are highly recommended.

Smart home is also expected to automatically monitor
people’s daily activities to provide more intelligent services.
The tracking and localization of people can help to identify the
location of people to provide more accurate services [23], [68].
mmTrack [23] proposes a passive indoor localization system
and enables various applications that demand ubiquitous hu-
man localization, such as intelligently rotating the TV’s view-
ing angle with the user’s location and turning on/off the TV
when users are coming/leaving. Furthermore, the mmWave-
based vital sensing [22], [61] can monitor the sleep state of
people, so as to choose the appropriate light intensity and
temperature. Considering the non-invasive sensing capability
of mmWave radar, it is more comfortable and suitable for
long-term use, compared with wearable sensor-based sensing.

Furthermore, mmWave-based human sensing can help smart
home achieve intrusion detection. by locating the intruder’s
location [68], [69] and identifying its gait [92], [93] or
voiceprint [103], [110], smart home can judge whether the
intruder’s identity is legal and take corresponding warning
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measures. Compared with existing WiFi-based intrusion de-
tection systems [143], [144], mmWave sensing is expected
to achieve more accurate detection results, thanks to its high
spatial resolution and fine-grained sensing capabilities.

B. Smart Health
Smart health is another attractive application scenario [10],

[11], [145]–[148]. Through the continuous non-intrusive sens-
ing of the user’s physical state, the mmWave devices can
provide the user with daily health monitoring and timely
anomaly detection.

When the user suffers from certain chronic diseases and
needs real-time monitoring, mmWave-based vital sensing can
provide the users with continuous health monitoring and
assist doctors by providing sufficient auxiliary data, such as
heart rate [22], [61], breathing rate [95], [99], blood pressure
changes [102], etc. Especially, thanks to the contactless fine-
grained sensing capability of mmWave radar, users do not have
to remain still to obtain the vital sensing results. Movi-Fi [99]
enables a motion-robust vital signs monitoring system and can
recover vital signs waveform under severe body movements.
mmECG [96] utilizes the mmWave radar to monitor the heart
movements of drivers in moving vehicles.

When some special groups (e.g., children, the elderly,
patients in convalescence, etc.) cannot guarantee their own
safety during activities, the mmWave devices can monitor
their activities [55] and timely detect abnormal activities [149],
such as falls, bumps, chokes, etc. In this case, body-harmful
actions can be detected and dealt with in time. Furthermore,
mmWave-based activity recognition can also help people adopt
recommended habits and stay healthy. For example, RF-Wash
[79] attempts to track hand hygiene by monitoring hand
washing activities and is expected to be applied in future
healthcare facilities.

C. Smart Vehicle
With the rapid development of autonomous driving tech-

niques and the Internet of Vehicles, smart vehicles are moving
from a beautiful vision toward reality [150]–[154]. Smart
vehicles can monitor road conditions and provide drivers with
comprehensive assisted driving services.

When driving in scenes with limited vision such as heavy
fog and rainy days, it is difficult for the driver to judge
pedestrians and cyclists beside the car, which leads to potential
driving accidents. Thanks to the penetrability of mmWave
in these scenarios, the mmWave devices can identify poten-
tial pedestrians and cyclists through human imaging [114],
[117] or activity recognition [29], [78] to avoid driving acci-
dents. Moreover, smart vehicles can predict the trajectories
of pedestrians by tracking and localizing pedestrians [69],
[118], thereby providing safer assisted driving information.
Researchers have emphasized that being able to recognize,
detect and track objects from afar is essential in smart ve-
hicles to prevent traffic accidents [13], [14]. Moreover, the
radar manufacturers, such as Texas Instruments, have provided
detailed guidance [155] on the application of mmWave radar
in automotive applications, which can help to further explore
the application potential of mmWave radar in smart vehicles.

D. Security

Security has been widely concerned by people as they
are closely related to our property and personal information
[15], [156], [157]. On the one hand, mmWave-based identity
authentication can provide people with high security and
protect people from troubles brought by attackers. On the other
hand, the sniffing of private information by mmWave devices
may also bring new challenges to existing security services.

mmWave-based identity authentication is being gradually
developed and adopted. Through sensing tasks such as gait
recognition [32], [93], sound sensing [103], [110] and human
imaging [65], mmWave devices can identify and authenticate
the human’s physical characteristics, including gait, voiceprint
and facial features. As mmWave-based identity authentication
relies on changes in mmWave signals, it is hard to attack
and can work with other authentication methods to further en-
hance authentication security. mmFace [65] points out that the
camera-based face authentication approaches are vulnerable to
emerging 3D spoofing attacks. With the material sensitivity of
RF signals, the mmWave radar can be utilized to distinguish
real human faces from other materials and defend against 3D
spoofing attacks. In this way, combining cameras and radars
appears to be a more secure authentication method.

Conversely, mmWave-based human sensing can capture
subtle changes in human physiological signs, such as throat
vibrations [76], [106] and gesture variance [81], [82]. This
means that mmWave devices can sniff sensitive private infor-
mation, such as private voice and manually entered passwords,
thereby threatening existing security services. For example,
mmKey [82] enables a virtual keyboard to sense the position
and action of human fingers. This approach, in turn, can
be utilized by attackers for illegal eavesdropping. Moreover,
AmbiEar [66] validates the feasibility of recovering human
voice from surrounding objects. This approach may inspire
rethinking the security issues of acoustic systems.

VII. CHALLENGES & FUTURE DIRECTIONS

According to the discussion in the previous section, we can
see that there is still a big gap between the state of the arts
and the ideal vision of mmWave-based human sensing, with
respect to the capacity, applicability, accuracy, and ubiquity.
Filling this gap requires continuous innovations in all the di-
mensions around this technology, such as hardware, algorithm,
sensing mediums, and application designs. Therefore, our
discussion in this section will accordingly focus on four main
research directions, namely hardware and platforms, enhancing
the applicability, novel sensing schemes, and integration with
new mediums.

A. Hardware and Platforms

1) Current limitations: The current mmWave-based sensing
technology still deeply suffers from limited hardware capabili-
ties. The insufficient number of antennas, limited transmission
power and hardware denoise capability hinder the further
development of mmWave-based sensing.

Taking mmWave radar based sensing as an example, the
COTS mmWave radar only has several antennas (e.g., 3 TX



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 27

antennas and 4 RX antennas in IWR1443 and IWR6843ISK-
ODS), which leads to very limited angle resolution (15◦). The
reason is that these radars can only provide 3 ∗ 4 = 12 virtual
antennas by letting 3 Tx antennas take turns transmitting
signals and 4 Rx antennas receive signals simultaneously. Then
the Angle-FFT operation can obtain an angle resolution of
180◦

3∗4 = 15◦ [46]. Such angle resolution is insufficient to
enable many fine-grained sensing tasks, such as face imaging.
Researchers have attempted to perform Rx beamforming [45],
[46] and synthetic aperture radar (SAR) technique [65], [114]
to expand the radar’s angle resolution. However, they either
have limited improvements or need a customized slide rail,
causing the current solutions still be unsatisfactory. To further
enhance the angle resolution, it’s necessary to increase the
number of antennas and exploit novel signal enhancement
techniques. Texas Instruments has launched a powerful radar,
TI MMWCAS-RF-EVM [158], which has 12 Tx antennas and
16 Rx antennas and has a much better angle resolution. How-
ever, its four-radar cascaded array implementation makes its
form factor multiply. Moreover, its power consumption (higher
than 20 W [158]) is much higher than that of those radars
mentioned before (less than 2 W [3], [4]). These factors limit
the practical deployment of this radar, especially in mobile
scenarios where energy consumption needs to be carefully
considered. In fact, the impact of its high energy consumption
has been discussed in the autonomous driving community.
Moreover, some signal local resolution techniques, such as
Chirp-Z transform techniques [159], can be explored.

The sensing range is another important technical indicator.
Although the mmWave radar can sense vehicle targets from
tens of meters, the range of human sensing is very limited.
For example, mmTrack [23] can only track users within 5 m
range. WaveEar [76] localizes the position of the speaker and
performs speech recognition within 2 m range. The reason
is that the extremely high frequency of the mmWave causes
its rapid attenuation, which makes the human-related signal
features blurred a few meters away. To overcome the limitation
of sensing range, more powerful equipment is needed. They
can be radars with higher transmission power or some auxil-
iary equipment that can enhance the reflected signals, such as
retro-reflective tags [151], [154], [160].

To obtain more accurate sensing results, careful signal
noise reduction is necessary to resist hardware deficiency and
environmental interference. However, the existing hardware
denoise capability cannot fully meet our needs. For example,
mmSpy [161] models the noise from the ramp/settle times
in the radar’s oscillator. It further employs statistical error
correction techniques to subtract it from the phase waveform.
These imperfect hardware features may affect our sensing
results and must be carefully modeled and handled.

2) Potential directions: Considering that the current lim-
ited hardware capabilities seriously constrain the development
of sensing techniques, we hope to discuss the development
trend of the future mmWave hardware to provide some ideas
and reasonable imagination for researchers in industry and
academia.

We think the future mmWave hardware will have the
characteristics of miniaturization, an increased number of

antennas and flexible customization, etc. With the continuous
development of the radio-frequency integrated circuit (RFIC)
technique, the RF front-end and computing units of the radar
have been able to be integrated into a small-size chip. In
this way, the mmWave hardware can be easily integrated into
mobile phones, smartwatches and other devices to achieve
more ubiquitous sensing. In the past few years, Soli [2]
has made this attempt but most radars still have not been
integrated. Nevertheless, we believe that miniaturization will
be a major trend of mmWave hardware.

Furthermore, since the number of antennas determines
the angle resolution and directional sensing capability of
the mmWave hardware, more antennas will definitely be
welcomed in industry and academia. Texas Instruments has
noticed this extensive demand and launched a more pow-
erful radar, TI MMWCAS-RF-EVM [158], which forms a
12×16 virtual antenna array. Compared with mmWave radars,
mmWave probes usually have more antennas, such as the
32 Tx antennas and 32 Rx antennas of Qualcomm 802.11ad
60GHz WiFi. However, these probes cannot easily form a
larger virtual antenna array. In addition, the sensing pipeline
of transmitting and receiving in turn also limits their sensing
frequency.

Finally, we believe that more flexible customization is
attractive and fascinating. The current mmWave hardware
platform has achieved a lot of signal collection and processing
functions. However, due to the high integration of hardware, it
is difficult for developers to modify the hardware to make their
attempts, such as antenna layout and polarization direction
modification. We believe that more flexible customization can
certainly stimulate the community creatively.

B. Enhancing the Applicability

1) Challenges in real deployments: In addition to limited
hardware capabilities, complex deployment environments also
bring various critical challenges to mmWave-based human
sensing. NLoS scenarios and multipath effects are the most
common challenge in these complex environments.

Due to the human’s position and posture dynamics and the
blockage between the radar and the target, the human-related
signal sometimes cannot be obtained directly, especially in
NLoS scenarios. In this case, we can obtain the human-related
signal with environmental reflection [46] or realize indirect
sensing through the influence of the human on surrounding
objects [66]. Some works also try to utilize the penetrability
of the mmWave signal to achieve human sensing in NLoS sce-
narios [104], [105], [162]. However, their application scenarios
are limited due to insufficient penetrability.

Multipath effects also challenge the actual deployment of
mmWave-based human sensing, especially in dense environ-
ments. Due to the reflection of mmWave signals on the
surface of environmental objects, the received signal is the
superposition of multiple signals with different time delays
and attenuation. Researchers have attempted to eliminate
multipath interference by either deploying multiple radars
[163] or exploiting the consistency of the dynamic between
the target and the ghost images [33]. Some works begin to
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utilize rather than eliminate the multipath effect. For example,
mmReliable [164] utilizes multiple beams to achieve more
reliable communication links. However, the exploitation of
multipath effects in human sensing remains to be explored.

In addition, large-scale ground truth data is indispensable
to the actual deployment of mmWave-based human sensing.
Although the existing works have provided a lot of datasets,
as mentioned in Sec. III-D. Datasets that contain quantitative
sensing results are lacking. For example, the actual measure-
ment dataset of human respiration and heartbeat is significant
to develop the relevant mmWave-based sensing techniques.

2) Promising directions: To resist the complex deployment
environment and provide accurate sensing results, researchers
have made many various efforts [33], [45], [46], [66], [154].
Based on those works, we discuss the promising directions
that appear to be effective in enhancing the applicability
of mmWave-based human sensing. Retracing the continuous
enrichment of mmWave-based human sensing applications in
the past few years, we think that the future mmWave sensing
applications will be more quantitative, ubiquitous and fine-
grained, etc.

Although mmWave-based human sensing has realized a
variety of sensing applications, varying from tracking and
localization to vital sign sensing, the quantitative sensing of
the human body still needs to be developed [45], [46]. Taking
gesture recognition as an example, the existing works can
well distinguish the gesture types. However, the quantitative
indicators such as the amplitude of each gesture are difficult
to analyze. To further promote the development of mmWave
sensing techniques, accurate quantization results are needed.
Moreover, quantitative sensing is a key step to realizing the
practical application of sensing techniques. Without quantita-
tive indicators that meet the error standard, it is difficult for
the public to pay for these sensing techniques.

Another development trend of mmWave sensing appli-
cations lies in ubiquitous sensing, including wider sensing
ranges, more universal sensing scenarios and richer sensing
capabilities. As we mentioned before, due to the complex
deployment environment, most of the existing works are the
realization of single sensing tasks within the limited sensing
range of specific scenarios. How to achieve more ubiquitous
sensing is still an open problem. In the actual scenes, many
factors such as range, occlusion, multipath and so on will lead
to the limited application of mmWave sensing. Some works
have tried to expand the sensing application scenarios [33],
[66], [154]. However, more efforts are needed for this vision.

Finally, with the deepening of mmWave sensing techniques,
more and more fine-grained sensing applications have been
developed, including vital sensing and sound recognition, etc.
However, we believe that the potential of mmWave sensing
techniques goes beyond this. With directional and fine-grained
sensing capabilities, mmWave sensing techniques are expected
to enable more sophisticated sensing applications, such as skin
disease detection, blink recognition, etc.

C. Novel Sensing Schemes
To further enrich the mmWave-based sensing capabilities,

researchers have begun to find novel sensing schemes, such as

fusion sensing and multitask sensing. Furthermore, researchers
have noticed the indirect sensing ability of mmWave sensing
and tried to realize enhanced sensing through “sensing side
channels”.

1) Fusion sensing: After realizing the limitation of existing
mmWave-based human sensing techniques, some researchers
begin to explore the feasibility of fusion sensing. By combin-
ing mmWave signal with other sensing media, such as vision,
inertial measurement unit (IMU) and acoustic, fusion sensing
is expected to provide more accurate and robust performance.

On the one hand, the sensing efficiency and ability can be
increased by fusion sensing. The sensing techniques based on
other media can share a part of the sensing task for mmWave
sensing. For example, [162] utilizes a mmWave + camera
multimodal sensing system to track the box’s position and the
relative position of fragile products in the box. The vision-
based sensing algorithm is employed to locate the box along
the conveyor belt, making the mmWave sensing can focus on
computing the product’s location.

On the other hand, by mutual correction with the sensing
results based on other media, fusion sensing can further
improve the sensing accuracy. [165] employs a mmWave
radar based simultaneous localization and mapping (SLAM)
solution assisted by IMU. The IMU data is utilized to combine
continuous radar scanning point clouds into “multi-scan” to
achieve accurate and robust SLAM results. Wavoice [106] ex-
plores the inherent correlation between the audio sensing result
from a mmWave radar and a microphone. By combining the
noisy audio signals and the aimless mmWave signal, Wavoice
can achieve noise-resistant speech recognition. Considering the
complexity of human sensing, fusion sensing is an attractive
and effective way.

2) Multitask sensing: The complexity of human sensing
is also reflected in the interlacing of human sensing tasks.
For example, both gesture recognition and vital sensing are
important components of health monitoring in smart home.
If we can sense these two tasks simultaneously with a single
mmWave radar, the deployment and implementation of smart
home can be simplified, and the constraints on people will be
further released.

However, multitask sensing is not simply the superposition
of multiple single-task sensing. For example, human gestures
and vital signals are closely related and are difficult to be sep-
arated. The relation between multiple human sensing tasks is a
challenge to achieve multitask sensing, which makes it difficult
to describe and analyze the reflected signals. Conversely, it is
also an opportunity as mutual correlation and improvement can
be performed. In this case, the multitask learning techniques
[166], which have made great progress in the past ten years,
may be able to show unique advantages in multitask sensing.

3) Side channel for human sensing: In addition to directly
sensing the human body, there are many potential “sensing
side channels” that can be used to obtain human-related
information. By analyzing the influence of the human body on
other objects, we can deduce the characteristics of the human
body itself.

The current sensing side channel is most commonly used
in sound recognition especially in eavesdropping. mmEve
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[167] and mmSpy [161] attempt to recover speech emitted
from smartphone earpieces. They both utilizes the fact that
the reflected mmWave signals from the smartphone’s rear
are highly correlated with the soundwaves emitted from the
smartphone’s earpiece. Similarly, mmPhone [104] utilizes the
changes of piezoelectric films with sound pressure to decode
the speech through soundproof obstacles. There are also some
works to eavesdrop devices with “sensing side channels”.
For example, SpiralSpy [168] utilizes a malicious software to
encode data into the fan control signals. Then the fan motion
status can be sensed and decoded by a mmWave radar.

Considering that the influence of the human body on the
surrounding environment does not only exist in voice but
also in many other physical signs, researchers can further
explore the sensing side channel in many sensing tasks, such
as keyboard sensing and gait recognition.

D. Integration with New Mediums

Innovations in the wireless medium is the extra boost of
mmWave-based sensing. Emerging wireless communication
techniques are deemed to provide ideal sensing mediums.
With the continuous development and innovation of wireless
communication techniques, many of them have been applied
to sensing tasks to achieve ubiquitous sensing, including
integration sensing and communication, backscatter, intelligent
reflecting surface and THz sensing.

1) Integration sensing and communication: With the in-
creasing demand for human sensing and the number of
mmWave network techniques such as 3GPP 5G-NR and IEEE
802.11ad/ay, Integration sensing and communication (ISAC)
has received extensive attention from academia and industry.

Given the growing popularity of mmWave networks, human
sensing based on communication devices seems to be more
suitable for life scenes. Chenshu Wu et al. propose a series
of works based on 60GHz probe, such as mmWrite [81],
ViMo [22] and mmTrack [23]. However, these works all
need to adjust the probe to a radar-like mode to give up the
communication function. Therefore, such a design can only
support the rotation of sensing and communication but can
not achieve ISAC. On the contrary, SPARCS [55] proposes
an IEEE 802.11ay based ISAC solution. It utilizes the CIR
measurements from sparse communication data packages to
analyze human movement without interfering with communi-
cation. Considering the popularity of 5G network and WiZig,
ISAC has great potential to be applied to daily scenarios.

Moreover, some researchers have begun to endow the
mmWave radar, which is customized for sensing, with addi-
tional communication capabilities. For example, people have
changed the frequency, transmission time and interval of the
mmWave signal to encode information. We will not expand as
this is beyond the scope of this survey.

there are several critical technical challenges in implement-
ing ISAC, both communication-assisted sensing and sensing-
assisted communication. Firstly, people need to carefully con-
sider the trade-off between information delivery and channel
state estimation. The latter usually serves as the basis for
sensing. More power allocated to information delivery means

less sensing capability, and vice versa. Since the ratio of
communication and sensing is different in different scenarios,
people should analyze the trade-off by actual measurement
and modeling to achieve the desired target. Secondly, due
to hardware limitations and environmental interference (e.g.,
LoS path blockage), the coverage of ISAC is often limited,
which hinders the application of ISAC in many scenarios.
To solve this problem, new auxiliary devices such as In-
telligent Reflecting Surface (IRS) can be considered to be
deployed around the main ISAC device to further expand
the coverage of ISAC. For example, Mosiac [169] utilizes
multiple curved reflectors to provide comprehensive coverage
to achieve omnidirectional around-corner automotive radars.
Finally, the interference from other devices will be stronger
in ISAC compared to pure wireless sensing scenarios. The
interfering signals can cause the ISAC signals to be cor-
rupted, delayed or even lost. To improve the robustness of
ISAC in scenes full of interference, people can either adopt
compensatory operation similar to SPARCS [55] or protect
ISAC signals from interference through scheduled measures,
such as frequency division multiplexing and time division
multiplexing.

2) Sensing over backscatter: Backscatter technology
[170]–[174] has been developed rapidly in the past few
years to provide communication capability for low-end de-
vices. Compared with active radios, backscatter [175]–[180]
promises to be extremely low power, smaller and cheaper
alternative. As the reflected signal of the backscatter tag is
affected by both the modulation information and the channel
state, we can sense the target state by attaching the tag to the
target and analyzing the change of the reflected signal.

Backscatter technology has been used to improve the
sensing range of mmWave sensing. For example, Millimetro
[154] exploits a customized backscatter tag to realize accurate
localization in a long range. The tag is formed by Van Atta
retro-reflectors, which can reflect the carrier signals back in
the direction of arrival regardless of the incident angle and
the tag’s mobility. With the retroreflected tag, The attached
target can be localized at high accuracy (centimeter-level) over
extended distances (over 100 m). Such a design can enhance
the mmWave reflected signal and expand the sensing range of
mmWave sensing.

The mmWave sensing capability can also be enhanced
by combining mmWave sensing and backscatter technology.
RoS [151] utilizes multiple configurable Van Atta arrays to
build radar readable road signs. The arrays are formed as
customized geometrical layouts and can be distinguished by
an automotive radar. With the continuous development of
mmWave backscatter technology [160], [181], we believe that
there will be more mmWave sensing works combined with
backscatter technology adapting to various sensing tasks.

3) Sensing with intelligent reflecting surface: As a
cost-effective technology, Intelligent Reflecting surface
(IRS) [182]–[187] has been an attractive subject to improve
the performance of communication and sensing systems by
reconfiguring the wireless propagation environments smartly.
Generally, IRS is a metasurface consisting of a large number
of passive reflecting elements. Each reflector induces an
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adjustable phase shift and amplitude variation to the incident
signals. With the ability to reconfigure the direction of
mmWave signals, IRS is expected to play an important role
in enhancing the coverage and energy efficiency of mmWave
systems.

Due to the strong directivity and rapid attenuation of
mmWave signals, the coverage of mmWave sensing is very
limited. As IRS can reconfigure the mmWave signal direction,
it can guide the mmWave signal to the originally inaccessible
positions to enhance the sensing coverage. For example,
MilliMirror [188] designs a passive metasurface prototype
which expands the coverage of mmWave radios to blind
spots by redirecting and reshaping mmWave signals to any
anomalous directions. mmWall [189] proposes another tunable
smart surface made of metamaterial, which enables a fast
mmWave beam relay through the wall and redirects the beam
power to another direction when a human body blocks a line-
of-sight path. In addition, mmWall also supports splitting the
incoming signal into multiple beams and concurrently steering
the multi-armed beams. In this way, “through-wall” sensing or
even multi-person sensing can be performed.

With such powerful capability, however, IRS has the poten-
tial to be utilized for illegal attacks. MeSS [190] has achieved
illegal eavesdropping based on mmWave metasurface. By
leveraging two degrees of freedom (space and time) in re-
configurable surfaces, MeSS generates and steers a concealed
directional sideband toward the eavesdropper while main-
taining the direction of the mainband toward the legitimate
client. Joonas Kokkoniemi et al. [191] also discuss the channel
modeling of the phased array type reconfigurable IRSs in the
mmWave band.

To sum up, we believe the research of IRS has the oppor-
tunity to open a novel direction for solving the pain points
of mmWave sensing, such as NLoS, mobility, and so on.
Meanwhile, it also brings new challenges to our privacy
protection.

4) From mmWave to THz: With the rapid increase of smart
applications and devices, it is foreseeable that 5G network is
hard to meet the ever-increasing network traffic. According to
ITU-T’s estimation [192], the global mobile traffic will grow
to 5016 EB per month in 2030, compared to 62 EB per month
in 2020. To solve this problem, the 6G network has been
discussed and researched by industry and academia. mmWave
signal and THz signal are expected to be used in 6G because
of their wide unexplored spectrum. At present, mmWave com-
munication and THz communication have reached 1 terabyte/s
and 206.25 Gbit/s data rate in laboratory environments [193],
[194].

On the other hand, due to the lack of corresponding stan-
dards, we make some predictions about the requirement of 6G
in human sensing from application scenarios. The 6G network
is expected to be human-centric and provide comprehensive
human sensing. Therefore, 6G will pay more attention to
various human-related applications, such as holographic-type
communications, digital twins and tactile internet. Taking
the tactile internet as an example, human sensing techniques
may be used to recognize human body movements and the
6G network is expected to meet the low transmission delay

of 1 millisecond or less reaction time [195]. Based on our
summary of mmWave sensing, we give some discussions on
THz sensing to complement blueprint for 6G.

THz signals share many similarities with mmWave signals,
including high frequency, large bandwidth and extremely high
attenuation. With the continuous development of wireless sens-
ing, THz signals have also begun to enter the field of vision of
researchers and are used to realize some sensing tasks, such
as indoor positioning [196]. Since THz signal frequency (0.3-
3 THz) is much higher than that of mmWave signal (0.03-
0.3 THz), THz sensing faces many unique challenges and has
attractive potential capabilities.

The high-frequency characteristics of THz signals will cause
extremely higher attenuation, resulting in very limited sensing
coverage and low-SNR received signal. The limited sensing
coverage may make it difficult to apply THz sensing to
outdoor human sensing. Furthermore, how to reliably extract
the human-related phases from the low-SNR received signal
needs to be further explored. Novel low-noise electronics
may be demanded. In addition, considering the separated
transceiver device, tight synchronization is needed to extract
human-related information, which will be more challenging in
higher frequencies.

Conversely, the higher frequency and larger bandwidth of
THz signals enable THz sensing to have finer sensing capabil-
ity and higher spatial resolution, which means that more fine-
grained sensing tasks can be achieved, such as fine-grained
medical imaging, fingerprint detection, skin texture detection,
etc. Considering the frequency limitation of mmWave signals,
THz sensing is more suitable for achieving such fine-grained
sensing tasks.

VIII. CONCLUSION

mmWave sensing has become more and more popular with
the development of the 5G network and automatic driving.
This survey focuses on recent research advances in mmWave-
based human sensing. This survey presents various hard-
ware and the key techniques of mmWave sensing, reviews
existing mmWave sensing works based on different sensing
tasks, i.e., human tracking and localization, motion recogni-
tion, biometric measurement and human imaging. We further
discuss potential challenges and future directions, including
hardware and platforms, enhancing the applicability, novel
sensing schemes, and integration with new mediums.
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LIST OF ABBREVIATIONS

ADC Analog-to-digital converter
AiP Antenna in package
AoA Angle of arrival
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ASL American sign language
ASR Authentication success rate
AUC Area under the ROC curve

BANC background and noise cancellation

CER Character error rate
CFAR Constant false alarm rate
CGAN Conditional generative adversarial nets
CIR Channel impulse response
CNN Convolutional neural network
COTS Commercial off-the-shelf
CPDA Crossover path disambiguation algorithm
CPDP Concentrated position-Doppler profile

DBSCAN Density-based spatial clustering of applications
with noise

DCT Discrete cosine transformd
DDBR Dual-differential backgound removal
DHH Deaf of hard-of-hearing
DNN Deep neural network
DoF Degrees of freedom

EER Equal error rate
EKF Extended Kalman filter
EMD Empirical mode decomposition algorithm
EM Electromagnetic

FA Face authentication
FFT Fast fourier transform
FMCW Frequency modulated continuous wave
FSK Frequency shift keying

GAN Generative adversarial network
GRU Gated recurrent network

HAR Human activity recognition
HMM-VM Hidden markov model-based voting mechanism
HRV Heart rate variability
HWA Hardware accelerator block

IF Intermediate frequency
IHT Iterative hard thresholding
IMF Intrinsic mode function
IMU Inertial measurement unit
IRS Intelligent reflective surface
ISAC Integrated sensing and communication

JIT Joint transmitter smoothing

LoS Line-of-sight
LSTM Long short term memory

MCD Mel-Cepstral distortion
MFCC Mel frequency cepstral coefficient
MMSE Minimum mean square error
MTI Moving target indication
MUSIC Multiple signal classification

MVDR Minimum variance distortionless response

NLoS Non-line-of-sight

PoI Point of interest

RAI Range angle image
RDM Range-Doppler matrix
RFIC Radio-frequency integrated circuit
RF Radio frequency
RNN Residual neural network
RPCC Residual phase cepstrum coefficients
RSS Receiver signal strength

SAR Synthetic aperture radar
SLAM Simultaneous localization and mapping
SNR Signal-to-noise ratio
STFT Short-time Fourier transform

VCV Vocal cord vibration
VMD Variational modal decomposition

WER Word error rate
WPT Wavelet packet transform
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