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Small Unmanned Aerial Vehicles (UAVs) are becoming potential threats to security-sensitive areas and per-
sonal privacy. A UAV can shoot photos at height, but how to detect such an uninvited intruder is an open
problem. This article presents mmHawkeye, a passive approach for non-cooperative UAV detection and iden-
tification with a commercial off-the-shelf millimeter wave (mmWave) radar. mmHawkeye does not require
prior knowledge of the type, motions, and flight trajectory of the UAV, while exploiting the signal feature in-
duced by the UAV’s periodic micro-motion (PMM) for long-range accurate detection. The design is therefore
effective in dealing with low signal-to-noise ratio and uncertain reflected signals from the UAV. After analyz-
ing the theoretical model of the PMM feature, mmHawkeye can further track the UAV’s position containing
range, azimuth and altitude angle with dynamic programming and particle filtering and then identify it with
a Long Short-Term Memory–based detector. We implement mmHawkeye on a commercial mmWave radar
and evaluate its performance under varied settings. The experimental results show that mmHawkeye has a
detection accuracy of 95.8% and can realize detection at a range up to 80 m.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Hard-

ware→ Sensor applications and deployments;

Additional Key Words and Phrases: Passive detection, periodic micro-motion, LSTM, millimeter Wave, UAV

ACM Reference format:

Yuan He, Jia Zhang, Rui Xi, Xin Na, Yimiao Sun, and Beibei Li. 2024. Detection and Identification of Non-
cooperative UAV Using a COTS mmWave Radar. ACM Trans. Sensor Netw. 20, 2, Article 44 (February 2024),
22 pages.
https://doi.org/10.1145/3638767

This work is supported by the National Science Fund of China under grant No. U21B2007 and Tsinghua University - Meituan
Joint Institute for Digital Life.
Authors’ addresses: Y. He, J. Zhang, X. Na, and Y. Sun, Tsinghua University, 30 Shuangqing Rd., Haidian District,
Beijing, China, 100084; e-mails: heyuan@mail.tsinghua.edu.cn, {j-zhang19, nx20, sym21}@mails.tsinghua.edu.cn; R. Xi
(Corresponding author), University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech
Zone, Chengdu, Sichuan, China, 611731; e-mail: ruix.ryan@gmail.com; B. Li, Xi’An Xingfu Lindai Construction & Invest-
ment Co., LTD., Hansen Rd., Xincheng District, Xi’an, China, 710000; e-mail: libeibei1@cscec.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1550-4859/2024/02-ART44 $15.00
https://doi.org/10.1145/3638767

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 44. Publication date: February 2024.

https://orcid.org/0000-0002-6676-4009
https://orcid.org/0000-0002-9885-3436
https://orcid.org/0000-0002-6400-9106
https://orcid.org/0000-0002-0986-5209
https://orcid.org/0000-0001-9384-5915
https://orcid.org/0009-0004-9621-259X
https://doi.org/10.1145/3638767
mailto:permissions@acm.org
https://doi.org/10.1145/3638767
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638767&domain=pdf&date_stamp=2024-02-16


44:2 Y. He et al.

1 INTRODUCTION

With the proliferation of small Unmanned Aerial Vehicles (UAVs), threats of UAVs arise, such as
intrusion into personal space [36], illegal item delivery [6], public safety threat [30], human injury
[2], and so on. Uninvited intrusion into personal space is the biggest concern, as it threatens the
privacy and safety of individuals. Without mandatory restrictions, a UAV can easily but illegally
intrude personal space at height to conduct activities such as candid photography or even theft.
Since such UAVs are often very small and hard to spot with the naked eye, how to detect them
becomes an extremely important and urgent problem.

A UAV detection system is desired to meet multiple goals: First, the detection approach should be
passive, i.e., the detection process should not require the cooperation of the UAV. Second, the sys-
tem should be able to detect the presence of a UAV at height. Third, the detection system should be
low cost and easy to deploy, considering potentially a large population of ordinary users. Last, the
system should be generic to detect a variety of UAVs in various illumination and noise conditions.

Unfortunately, we find limitations in the existing approaches for UAV detection. Specifically, by
complex environmental noise can easily interfere with sound-based UAV detection [39, 43]. The
sound of UAVs attenuates fast in the air, so sound-based approaches generally have a limited de-
tection range. Their performance further degrades when the UAV employs the noise reduction
technique. Vision-based UAV detection [8, 57] can work when the UAV is visible, but its accuracy
and reliability are susceptible to illumination conditions and visual background. Thermal and In-

frared Radiation (IR) imaging cameras [1] are possible options, but they are expensive and have
limited coverage. There are also proposals of UAV detection based on Radio Frequency (RF) sig-
nals [5, 16, 32, 33], which need special instruments to capture and analyze the communication of
non-cooperative UAVs. Traditional radars [25] are too expensive and power-consuming. In short,
none of the existing approaches is suitable for UAV detection in daily usage scenarios.

Specifically, non-cooperative UAV detection faces the following challenges: First, the small size
of the UAV makes the reflected signal very weak and easily overwhelmed by environmental noise.
Second, detecting a UAV at height requires the detection system to cover a large detection range.
Third, the unknown information of the non-cooperative UAVs (e.g., model, size, etc.) makes accu-
rate UAV detection more challenging. Finally, as the daily scenarios are very complex, the UAV
should be detected in various illumination and noise conditions.

In this article, we explore the feasibility of using a commercial off-the-shelf (COTS) mmWave
(millimeter Wave) radar for UAV detection. mmWave radar-based sensing [9, 24, 50, 53, 55] has at-
tracted a large body of research in the past few years. The UAV-reflected signals received by the
radar contain rich information associated with the UAV. But it is a daunting task to accurately de-
tect and identify a UAV from such signals for the following reasons: First, since a COTS radar has
limited transmission power and the UAV is usually small and at height from the radar, the signals re-
flected from the UAV and received by the radar are very weak. This problem is particularly common
in intrusion into personal space, as the small UAVs tend to conduct candid photography at height.
Conventional approaches based on the signal intensity for target detection [3, 10, 18, 19, 31, 51, 58]
become ineffective in such contexts. Second, the motions of a non-cooperative UAV (e.g., turn-
ing and hovering, etc.) are dynamic and unpredictable, making it extremely difficult to extract
the UAV-reflected signals from the received signals. The intruders often temporarily adjust their
flight trajectories based on their targets, making the UAV’s motions unpredictable. Third, the
UAV-reflected signals contain both the inherent features of the UAV and the motion-related fea-
tures, which are tightly coupled with one another. The motion-related features can confuse the
intruding UAVs with other objects such as birds, resulting in a high false alarm rate. The above
factors collectively lead to the very low signal-to-noise ratio (SNR) and the uncertainty of
the UAV-reflected signals.
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To address the above challenges, we try to exploit a unique signal feature that can help us
to extract and identify the reflected signals of the UAV. This feature is desired to be motion in-
dependent, stable over time, consistent across different types of UAVs, and distinguishable from
noise. Our finding is that the periodic micro-motion (PMM) of the UAV (such as propeller ro-
tation, etc.) can be converted into stable and consistent features of the frequency of the reflected
mmWave signals. Specifically, the periodic micro-motion always induces periodic frequency mod-
ulation of the reflected signal, resulting in a series of periodic peaks in the frequency spectrum.
Based on this finding, we propose mmHawkeye, a PMM-based UAV passive detection approach
with a COTS mmWave radar. mmHawkeye first extracts and enhances the periodic features with
spectrum folding technology to enhance the signal SNR. To deal with unpredictable UAV motions,
a novel tracking algorithm incorporating dynamic programming and particle filtering is designed
to obtain the UAV’s location containing range (r), azimuth angle (θ ), and altitude angle (φ). Given a
sequence of UAV’s locations, mmHawkeye extracts the corresponding Doppler spectrums to form
a Doppler–Time diagram, which is then fed into an Long Short-Term Memory– (LSTM) based
detector for accurate UAV identification.

Our contributions can be summarized as follows:

— To the best of our knowledge, mmHawkeye is the first mmWave-based long-range UAV
detection approach. By exploiting the reflected signal features from the UAV, mmHawkeye
is able to detect and identify an uncooperative UAV with very weak signals.

— We propose tailored algorithms based on the PMM feature to fully utilize the reflected signal
from the UAV, including feature extraction based on feature periodicity, UAV tracking with
trajectory continuity, and motion-independent UAV identification.

— We implement mmHawkeye on commercial radar (TI IWR6843ISKODS board) and conduct
extensive experiments. The results demonstrate that mmHawkeye achieves an average UAV
detection accuracy of 95.8% and an average relative range error of 0.9% at a detection range
up to 80 m. To the best of our knowledge, mmHawkeye is the first work to detect small UAVs
at such a long range using only a COTS mmWave radar.

The rest of the article is organized as follows. Section 2 presents the sensing model and the
PMM feature, which are the theoretical foundation of this work. Section 3 elaborates on the design
of mmHawkeye. The implementation details and evaluation results are presented in Section 4.
Section 5 discusses practical issues and future work. Section 6 reviews the related work. Section 7
concludes this work.

2 THEORETICAL MODEL

In this section, we first introduce the theoretical model of the PMM feature, which theoretically
exists stably during the UAV flight. Then we conduct some preliminary studies to verify the sta-
bility of the PMM feature and demonstrate the feasibility of UAV detection and tracking with the
PMM feature.

2.1 The Sensing Model and the PMM Feature

As shown in Figure 1, the mmWave radar is deployed on the ground, faces upward, and sends
frequency-modulated continuous wave (FMCW) chirp signals. When a small UAV is flying
across the radar’s sensing area, the emitted signals hit the UAV and reflect back to the radar. Due to
its radial motion relative to the radar, the flying UAV will induce a certain frequency modulation of
the reflected signal, which appears as a spectral shift peak in the Doppler spectrum of the reflected
mmWave signal, called the body velocity peak. Meanwhile, the components of the flying UAV
(such as rotating blades) have additional periodic micro-motions. These periodic micro-motions
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Fig. 1. The sensing model.

will induce the additional periodic and time-varying frequency modulation of the reflected signal,
which causes a series of periodic peaks in the Doppler spectrum centered on the body velocity
peak.

Specifically, a mmWave radar sends chirp signals for range estimation and velocity measure-
ment. The frequency difference between the transmitted signal (Tx) and the received signal

(Rx) indicates the signal propagation time, which can be used to calculate the distance of the tar-
get. Denoting the time-variant distance between the radar and the target by R (t ), the transmitted
signal and the received signal can be expressed as

ST x (t ) = exp[j (2π fct + πKt
2)]

SRx (t ) = αST x [t − 2R (t )/c],
(1)

where fc and K represent the starting frequency and the chirp slope of the FMCW signal, respec-
tively. α is the propagation loss. By mixing the transmitted signal and the received signal, the beat

frequency signal s (t ) can be obtained as

sbf (t ) = S∗T x (t )SRx (t ) = αexp[j4π ( fc + Kt )R (t )/c], (2)

whose phase value indicates the distance R (t ).
To obtain the range and the radial velocity of the target, we first conduct a Range–FFT operation

[17] on the samples of sbf (t ) during a chirp. In this way, the frequency spectrum of sbf (t ) is mapped
to the range spectrum and the distance of the target can be obtained.

Since the duration of a chirp is around 0.5 ms, we can neglect the displacement during this
period and focus on the distance change across consecutive chirps. By combining the samples in
a certain bin from the Range–FFT results, we can obtain the reflected signal S (t ) from the target
range bin,

S (t ) = αexp[j4π fcR (t )/c], (3)

If the distance R (t ) can be rewritten as R (t ) = R0 +vt , then R0 and v are the current distance and
the radial velocity, respectively. We then perform a Doppler–FFT operation [17] on the samples of
S (t ) to obtain the Doppler spectrum,

S ( f ) = αδ ( f − 2v fc/c ), (4)

where δ () is the Dirac delta function. The peak of the Doppler spectrum indicates the target ve-
locity. With Range–Doppler–FFT, we can obtain the Range–Doppler spectrum and estimate the
range and the velocity of the target.

When the detection target is a UAV, we need to consider not only the body motion of the UAV
but also the impact of these components with periodic micro-motion on the reflected signal. The
theoretical model is shown in Figure 2. To simplify the understanding, we assume that the UAV’s
radial velocity relative to the mmWave radar is v and the rotational angular velocity of each blade
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Fig. 2. The theoretical model of the PMM feature.

isw . Similarly, considering the small size of the UAV and the long distance between UAV and radar,
we also assume that the rotors all exist in a certain range bin and the number of rotors is Q . The
blades of each rotor can be viewed as consisting of P scattering points. Then we derive the impact
of the periodic micro-motion of the blades on the reflected signal.

First, considering that the distance between UAV and radar is much larger than the distance
from the scattering point to the rotor, the distance between the pth scattering point in the qth
blade and the mmWave radar Rp (t ) can be represented as

Rp (t ) = Rq (t ) + Rpq (t )

Rq (t ) = Rq +vt

Rpq (t ) = rpq ∗ cos (θpq ) ∗ cos (ωt + ϕpq ),

(5)

where Rq (t ) represents the distance between the qth rotor and the mmWave radar, Rq is its current
distance. the distance between the pth scatter point and the rotor is represented as rpq , and its
projection to the velocity direction is represented Rpq (t ). θpq is the angle between the blade plane
and the velocity direction, and ϕpq is the rotation initial phase of the pth scattering point.

We can find that both the radial velocity of the UAV and the blade rotation angular velocity
affect the distance between the scattering point and the mmWave radar, which in turn affects the
reflected signal. The reflected signal from the scatter point can be expressed as

Spq (t ) = βpqexp{j4π fc [Rq (t ) + Rpq (t )]/c}, (6)

where βpq represents the propagation loss, which is related to the propagation distance, the ma-
terial and roughness of the scattering point, and so on. By adding the reflected signals from all
scatter points and the body together, we can obtain the reflected signal of a flying UAV,

S (t ) = αexp[j4π fcR (t )/c]+

Q∑

q=1

P∑

p=1

βpqexp{j4π fc [Rq (t ) + Rpq (t )]/c}.
(7)

If we perform a Doppler–FFT operation on this reflected signal, then its Doppler spectrum can
be represented as

S ( f ) = αδ ( f − 2v fc/c ) +

Q∑

q=1

P∑

p=1

+∞∑

m=−∞
γpqδ ( f − 2v fc/c − ωm/2π ),

(8)
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Fig. 3. The Range–Doppler spectrum of the UAV.

where γpqm denotes the mth frequency loss of a scattering point, which is a complex function of
m, βpq , rpq , ϕpq , and θpq . For more calculation details, the reader can refer to the related work [22].
This formula shows that there will be a series of periodic peaks centered on the body velocity peak
in the Doppler spectrum. We call these peaks the PMM feature,⎧⎪⎪⎨⎪⎪⎩

Peak Pos : 2v fc/c + ωm/2π m ∈ Z

Peak value :
∑Q

q=1

∑P
p=1 γpqm m ∈ Z

. (9)

The interval between the peaks is the same (ω/2π ) and is determined by the propeller rotation
velocity. The peak values are more complex and related to the UAV relative position (βpq , θpq ) and
the UAV structure (rpq , ϕpq , P , Q).

With the derivation of the PMM feature, we can find that the PMM feature exists stably during
the UAV’s flight. The structure and position of a UAV only affect the peak values rather than the
peak intervals. This means that the number of propellers, the number of blades and the blade
length do not affect the peak intervals. Such a stable feature can be used to detect various UAVs.
Without loss of generality, we use a six-wing UAV as an example in later sections.

2.2 PMM in Reality

We give the observations on PMM to demonstrate the feasibility of UAV detection with the PMM
feature.

In our experiments, a commercial mmWave radar (TI IWR6843ISKODS board) [14] is deployed
on the ground and faces upward. A six-wing UAV with three blades per propeller is steered above
the mmWave radar. The UAV is first controlled to ascend at a constant speed of about 1.5 m/s
and then hover at a range of 48 m. We respectively select a segment of the reflected signal from
these two stages and perform Range–Doppler–FFT on them. Figure 3(a) and Figure 3(b) show the
Range–Doppler spectrum of the ascending UAV and that of the hovering UAV, respectively. The
results show that (1) whether the UAV is moving or hovering, the PMM feature always stably
appears in the range bin where the UAV is located. In contrast, the reflection intensity and the
radial velocity features are less stable as they are more easily affected by the relative distance and
the UAV’s motions. (2) When the distance between UAV and radar is far, the PMM feature shrinks
and distorts, due to the degraded quality of the reflected signal. Nevertheless, its periodicity still
exists stably. Note that the highest peak of the PMM feature in Figure 3(b) corresponds to the
direct current (DC) components. In this case, we try to exploit the periodicity of the UAV’s PMM
feature to extract and identify the reflected signal of the UAV.

3 MMHAWKEYE DESIGN

This section starts with an overview of mmHawkeyeand then introduces three key modules of the
design respectively.
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Fig. 4. The overflow of mmHawkeye.

3.1 Overview

mmHawkeye solves the UAV detection problem in three steps, which correspond to the three key
modules in its design, namely feature extraction, UAV tracking, and UAV identification. Figure 4
shows the overview of mmHawkeye.

— Feature extraction. mmHawkeye continuously extracts the Range–Doppler spectrums with
Range–Doppler–FFT. To distinguish the PMM feature from the environment noise in each
Range–Doppler spectrum. We perform spectrum folding on each Doppler spectrum. If the
PMM feature exists, then it will be significantly enhanced by spectrum folding and the fold-
ing result can be used for further tracking and detection.

— UAV tracking. With feature extraction, mmHawkeye continuously extracts the folding re-
sults in Range–Doppler spectrums, which collectively form the Range–Time–PMM diagram.
To cope with the impact of unpredictable UAV motions, we design a tracking algorithm
based on dynamic programming and particle filtering to obtain the range results from the
Range–Time–PMM diagram. Furthermore, as UAV’s distance is known, mmHawkeye ap-
plies a beamforming technique to obtain the Angle–Doppler spectrum and then estimates
the UAV’s angles using similar operations to range estimation.

— UAV identification. After obtaining the target’s tracking result, mmHawkeye continuously ex-
tracts the Doppler spectrums from the target’s location, forming the Doppler–Time diagram.
After preprocessing the diagram via DC removal and feature alignment, the Doppler–Time
segments are fed into an LSTM-based detector for UAV identification.

3.2 Feature Extraction

The feature extraction module employs the spectrum folding technique to amplify the difference
between the PMM feature and the environment noise. Below is the detail of this module.

As we mentioned before, we can obtain the Range–Doppler spectrum by performing Range–
Doppler–FFT on the reflected mmWave signals. Specifically, we use {D1,D2, ...,DR } to represent
the Doppler spectrums in a Range–Doppler spectrum. Di and R represent the Doppler spectrum
in the ith range bin and the number of range bins, respectively. The number of Doppler bins in a
Doppler spectrum is L. When the UAV appears in the ith range bin, the PMM feature will appear in
the corresponding Doppler spectrum Di . However, considering the unpredictable propeller rota-
tion velocity, the period of the peaks in the PMM feature is uncertain and variable. Those periodic
peaks may even be buried in environment noise due to the low SNR of the reflected signal.

We employ the folding technique [26] to extract and enhance the PMM feature, which is used
to find signal periodicity under noise. An example of the folding process is shown in Figure 5,
where the values of Doppler bins are represented by boxes. The black boxes represent the periodic
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Fig. 5. The folding process of the PMM feature.

peaks in the PMM feature and the other boxes represent the noise. The interval λ between adjacent
peaks in the Doppler spectrum is 5 and the number of Doppler bins L is 20. If we exactly fold the
Doppler spectrum into a matrix with j = λ columns, then the periodic peaks will align in a column
and there will be a significantly enhanced peak in the columnwise averaged result. For clarity, the
maximum value in the columnwise averaged result and the number of folding columns are referred
to as the folding value and the folding size, respectively. When the folding size j is not equal to λ,
the folding value will decrease rapidly as the peaks are not aligned.

Note that the interval between adjacent peaks in the PMM feature is determined by the propeller
rotation velocity, it is unpredictable and may change at any time. To find the right folding size,
we traverse all integers in an empirical range [jmin , jmax ] and calculate the corresponding folding
values, where jmin and jmax represent the minimum and maximum folding size, respectively. They
are set to 2 and 20 according to the propeller rotation velocity range and the Doppler spectrum
resolution. With the fixed traversing range, the computation time can be controlled. The folding
value of Doppler spectrum Di with folding size j can be calculated by

Fi (j ) = max
1≤k≤j

∑
1≤m≤M Di [k + (m − 1) ∗ j]

M
, (10)

where k and m denote the folding column index and the row index in the folding matrix, respec-
tively. The number of rows in the folding matrix is represented by M , which can be calculated by
M = � L

j
�.

The largest folding value is selected to be the folding result, which increases significantly when
the PMM feature exists. The folding result of the Doppler spectrum Di can be calculated by

Pi = max
jmin ≤j≤jmax

Fi (j ). (11)

In this way, mmHawkeye can calculate the folding result of each Doppler spectrum. Since the
PMM feature of the UAV has a stable periodicity, its folding result is much larger than that of
the random environment noise. These folding results can be further used for UAV tracking and
detection.

3.3 UAV Tracking

The UAV tracking module first preprocesses the folding results with spectral subtraction, so that
the impact of the static background noise is mitigated. Then the UAV tracking is realized through
dynamic programming and particle filtering, where the unpredictable UAV motions and the local
dynamic noise are taken into account and appropriately dealt with.

To estimate the UAV trajectory, mmHawkeye continuously extracts the folding results with
feature extraction. These folding results form a Range–Time–PMM diagram, denoted by R-PMM.
Suppose that there are T Range–Doppler spectrums and each Range–Doppler spectrum has R
range bins; the value of R-PMM(r, t) represents the folding result of the r th range bin in the t th
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Range–Doppler spectrum. As the Doppler spectrum of the UAV has a larger folding result at each
moment, the UAV trajectory corresponds to a series of range bins that contain larger values in
the R-PMM. These range bins can form a maximum path in the R-PMM whose cumulative folding
result over time is the maximum among all paths. Therefore, we can track the UAV by searching
for the maximum path in the R-PMM.

Considering that the intensity of the Doppler spectrum is proportional to the reflected sig-
nal intensity, there are different static background noise intensities in different range bins in the
R-PMM. To mitigate the impact of such noise, we employ the spectral subtraction algorithm [42]
to preprocess the R-PMM. The main idea is to subtract the estimation of the average background
noise spectrum from the noisy R-PMM. Specifically, the average background noise spectrum can
be estimated by

N (r ) =
1

T

T∑

t=1

N (r , t ), (12)

where N (r , t ) is the R-PMM measured in the background noise. The gain of the background noise
is calculated as a normalized projection of the noisy R-PMM onto the background noise spectrum,

G (t ) =
R∑

r=1

N (r )S (r , t )

| |N | |2 , (13)

where S (r , t ) is the measured R-PMM in the tracking phase and | |N | | =√
N (1)2 + N (2)2 + ... + N (R)2 is the Euclidean norm of the noise spectrum. Finally, the

background noise can be removed from the measured R-PMM as follows:

S
′
(r , t ) = S (r , t ) −G (t )N (r ). (14)

In this way, the range-related static background noise can be removed and the preprocessed
R-PMM can be used to find the maximum path, which corresponds to the UAV tracking result. The
maximum path д∗ can be obtained by solving

д∗ = arg max
д

��
T∑

t=1

S
′
(д(t ), t )�	, (15)

where д = (t ,д(t ))T
t=1 is denoted as a path.

However, since the folding result characterizes the PMM feature of the UAV, it may change
rapidly due to unpredictable UAV motions. However, impacted by the complex environment and
imperfect hardware, there may still be local dynamic noise in the vicinity of the UAV trajectory in
the R-PMM. Both of them lead to degradation in tracking accuracy.

Considering that the UAV trajectory always changes continuously, mmHawkeye utilizes the
trajectory continuity to reduce the tracking errors. Specifically, assuming that the maximum flight
speed of the UAV is Vmax and the duration of the Range–Doppler spectrum is Td , the maximum
range bin variation of the UAV in the adjacent columns of the R-PMM can be calculated by

K =

⌈
Vmax ∗Td

Rr es

⌉
, (16)

where Rr es represents the range resolution of the mmWave radar. The path in the R-PMM corre-
sponding to the UAV trajectory always satisfies this constraint. Therefore, the UAV tracking prob-
lem can be further transformed into the problem of finding a constrained maximum path in the
R-PMM, where the variation of adjacent columns in the path does not exceed K . This constrained
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maximum path can be found by solving

д∗ = arg max
д

��
T∑

t=1

S
′
(д(t ), t )�	

s .t . |д(t ) − д(t − 1) | ≤ K .

(17)

This problem can be solved by dynamic programming. Specifically, we first define the score at
bin (r , t ) as the constrained maximum cumulative folding result, which can be calculated as

θ (r , t ) = max
k ∈[−K,K ]

θ (r + k, t − 1) + S
′
(r , t ). (18)

Since θ (r , t ) considers both the trajectory continuity and the previous cumulative folding results,
its calculation process obtains the constrained optimal track through the bin (r , t ). To obtain the en-
tire constrained maximum path, we first find the bin (T ,д∗ (T )) in the last column that contributes
to the maximum score. Then the rest of the path can be obtained by

д∗ (t ) = arg max
k ∈[−K,K ]

θ (д∗ (t + 1) + k, t ) + д∗ (t + 1)

∀ t = T − 1,T − 2, . . . , 1.
(19)

This backtracking procedure provides the constrained maximum path д∗, which is the optimal
solution for Equation (17). In this way, we can obtain the UAV tracking result.

mmHawkeye further applies the particle filter [4] to the tracking result to reduce the tracking
error. The particle filter can estimate the target state by combining the observation and the pre-
diction. Specifically, the state in our particle filter includes the range and the velocity of the UAV,
and the observation is the tracking result. We initialize 5,000 particles with uniform distribution
and use the multinomial resampling algorithm as the particle resampling method.

We further provide the users with the UAV angle estimation results. Due to the limited number of
the mmWave radar’s antennas, the angular resolution is limited and the angle estimation results
fluctuate. However, since we can obtain accurate range estimation results, the angle estimation
error can be bounded.

To obtain the angle estimation results, we first select these reflected signals of all antennas
corresponding to the UAV as the UAV-related signals. Then we apply the Capon beamforming
algorithm [28] to these UAV-related signals in each frame to obtain the reflected signals from each
angle.

After the reflected signals from each angle are obtained, the Doppler–FFT operation can be ap-
plied to them to obtain the Angle–Doppler spectrum. The PMM feature can be captured from
the angle bin where the UAV locate with the same feature extraction operation mentioned in
Section 3.2.

These folding results from the angle bins can form an Angle–Time–PMM diagram, denoted by
A-PMM. The angle estimation results can be obtained from the A-PMM using the same operation
as these of R-PMM, including spectrum subtraction, dynamic programming-based tracking, and
particle filter.

3.4 UAV Identification

Now we show how to utilize the PMM features to identify a UAV. We first extract the target’s
Doppler spectrums from a series of Range–Doppler spectrums according to the tracking result.
Then the Doppler spectrums are fed into an LSTM-based detector for UAV identification. The
process of UAV identification is shown in Figure 6.
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Fig. 6. The process of UAV identification.

With the tracking result and the Range–Doppler spectrums, we can extract a series of Doppler
spectrums from where the target is located, forming a Doppler–Time diagram. When the target
is a UAV, this diagram will contain unique and continuous PMM features that can be used to
distinguish the UAV from other objects.

We first remove the DC noise from the Doppler–Time diagram. Considering that the body veloc-
ity of the UAV is close to zero when it hovers, the corresponding DC component contains the body
velocity peak. To preserve the body velocity peak, we average the DC components of the Doppler
spectrums where the body velocity peak is not close to the DC component. Then the average value
is subtracted across all the DC components. Besides, the unpredictable body velocity determines
the center of the PMM feature and prevents us from exploiting the periodicity of the PMM feature.
Therefore We devise a feature alignment algorithm on the Doppler–Time diagram to align each
PMM feature center to the Doppler spectrum center. When the body velocity peak of the Doppler
spectrum is not in the DC bin, we shift the entire Doppler spectrum along the direction from the
body velocity peak to the DC bin and complement it by linear interpolation.

The preprocessed Doppler–Time diagram contains the PMM features. However, the tracking
result may have errors, especially when the UAV is at height. It is not always reliable to directly
use the obtained Doppler–Time diagram. To reduce the impact of tracking errors, we first split
the Doppler–Time diagram into fixed-length segments. Then we compare the maximum folding
result of each segment with an empirical threshold. When the maximum folding result is less than
the threshold, we consider that the segment does not contain PMM features and discard it. The
threshold is set to 30,000 according to our extensive empirical experiments.

Finally, the preprocessed Doppler–Time segments are used to identify the UAV from other ob-
jects. Considering that when there are objects such as birds or balloons in the vicinity of the radar,
their Doppler–Time segments may have high folding results and uncertain folding sizes. Due to
the environmental noise, the simple classification methods based on statistical features of PMM,
such as peak interval, mean value, and so on, may be easily disturbed by such segments and se-
verely degrade. Therefore, we design an LSTM-based detector to solve such a binary classification
problem. The LSTM network [12] is a classic recurrent neural network that is suitable to process
the sequences of data and has excellent performance on recognition tasks. Considering that each
time slot in the Doppler–Time diagram contains L Doppler bins, the input dimension of our LSTM
network is set to L. Our network contains two stacked LSTM layers and the hidden state size is
set to 128. A fully connected layer is used to map the hidden state to the identification results, i.e.,
UAVs or other objects. We select the cross entropy loss function to train our network. Considering
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Fig. 7. The experiment scenario.

that the peak intervals in PMM features are not affected by UAV types, our network can detect
various UAVs with small training data.

4 IMPLEMENTATION AND EVALUATION

In this section, we introduce the implementation of mmHawkeye and evaluate the performance
of our prototype under different settings.

4.1 Implementation

We implement mmHawkeye on a commercial mmWave radar Texas Instruments IWR6843ISKODS
[14]. There are three Tx antennas and 2*2 Rx antennas on the radar board. In our implementa-
tion, we let three TX antennas take turns transmitting FMCW signals starting at 60.25 GHz with
1.92-GHz bandwidth, and all Rx antennas receive the reflected signals. The duration of a single
chirp is 900 μs and each frame includes 100 chirps. The frequency slope of the FMCW signal is
9.994 MHz/μs and the ADC sample rate is 6,250 kHz. So the radar’s maximum sensing range can

reach 3×108 m/s×6,250 kHz
9.994 MHz/μs×2 = 93.8 m. The angle of the radar’s field of view (FoV) is about 120◦, which

is large enough to cover the experimental scene. The ADC samples from the radar are captured by
a Ti DCA1000EVM data acquisition board [13] and then transmitted to a computer with an Intel
Core i9-11900H 2.5 GHz CPU for processing.

The experiment scenario is shown in Figure 7. The radar is fixed horizontally on a tripod mount
and is calibrated with a corner reflector in advance. A six-wing UAV with three blades per propeller
is used as the detection target. The UAV weights about 8 kg and each blade is about 25 cm long.
It has a maximum velocity of 4 m/s. The UAV is equipped with a Real-time Kinematic Positioning
module [45] to provide the ground truth of the UAV’s location, which has a cm-level precision. We
collect the reflected signals of the UAV from different flight trajectories, at different altitudes and
different velocities. These reflected signals are first processed to obtain the tracking results and the
corresponding Doppler–Time diagrams. The tracking results are aligned with the ground truth by
their timestamps and trajectory features. Then the Doppler–Time diagrams are split into segments
of 3.6-s duration. We collect more than 4,000 s of signals under different settings and generate over
1,000 segments. We further generate the same amount of the other objects’ segments by recording
the Doppler–Time diagrams of kites, birds, balloons and shaking trees. We place the radar under
balloons, kites, and shaking trees for data collection, and near a nest for bird data collection. These
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Fig. 8. The overall performance of UAV

detection.

Fig. 9. The overall performance of UAV

tracking.

two types of segments together form our dataset. In our implementation, we use the random 70%
of the segments as the training set and the rest 30% as the test set. The model is trained using the
Adam optimizer with a learning rate of 0.00005 and a batch size of 10.

4.2 Methodology

We use accuracy, precision, recall, and F1-score as the performance metrics to evaluate the per-
formance of mmHawkeye. The accuracy, precision, recall, and F1-score are calculated from True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). They are calcu-
lated as follows: accuracy = T P+T N

T P+F P+F N+T N
, precision = T P

T P+F P
, recall = T P

T P+F N
, and F1-score =

2∗pr ecision∗r ecall

pr ecision+r ecall
.

To clearly show the whole detection process, we also evaluate the UAV tracking performance.
We measure the tracking accuracy with the average relative range error. It it calculated as follows:

1

N

N∑

n=1

|G (n) −T (n) |
G (n)

, (20)

where G (n) andT (n) represent the actual range and the tracking range at the nth sampling times-
tamp, respectively. N is the number of the sampling timestamps in a trace.

4.3 Overall Performance

4.3.1 Detection Accuracy. The overall detection and tracking performance of mmHawkeye are
shown in Figure 8 and Figure 9 respectively. We first evaluate the overall detection performance
of mmHawkeye. The UAV is controlled to perform different flight trajectories. The flight altitude
varies from 10 to 80 m. The flight trajectories at each altitude include hovering, horizontal flight,
vertical flight, and flying with a horizontal square. The radar is placed on the ground and vertically
aligned with the horizontal center of the trajectories. The detection results at different altitudes are
shown in Figure 8. The overall detection accuracy of mmHawkeye is 95.8% (corresponding with
92.6% of precision, 97.2% of recall, and 94.8% of F1-score). With the UAV altitude increasing, the
detection accuracy decreases from 98.3% to 91.3%. When the UAV altitude is 10 m, mmHawkeye
achieves an accuracy up to 98.3%, a precision of 99.8%, a recall of 96.8%, and a F1-score of 98.3%.
When the altitude increases to 80 m, the detection performance falls to an accuracy of 91.3%, a
precision of 84.8%, a recall of 94.8%, and a F1-score of 89.5%. As the UAV altitude increases, the
PMM feature extracted from the received signal becomes weaker and sometimes incomplete, which
leads to degradation in the detection performance. mmHawkeye keeps a high recall, which means
that it can effectively detect most of the UAVs even when the UAVs are at height.

Furthermore, we verify the effectiveness of the LSTM network, using Convolutional Neural

Network (CNN) to replace LSTM for binary classification. Similarly to the LSTM detector in this
work, only two layers of two-dimensional (2D) CNN are used, and the extracted feature are of

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 44. Publication date: February 2024.



44:14 Y. He et al.

Fig. 10. The ROC curve and AUC of

mmHawkeye.

Fig. 11. The ROC curve and AUC of the

variant with CNN.

the same size to ensure the fairness of the comparison as much as possible. The overall detection
accuracy is only 68.67% (corresponding with 68.47% of precision, 99.76% of recall, and 81.21% of
F1-score). This is because the CNN network is only capable of obtaining local area features but has
insufficient performance in long-term data.

In addition, we calculate the Receiver Operating Characteristic (ROC) curve and the Area

Under Curve (AUC) of the two network models to evaluate their performance. The ROC curve
can easily detect the impact of any threshold on the generalization performance of the learner. AUC
is defined as the area enclosed by the ROC curve and the coordinate axis. The closer the value is
to 1.0, the higher the authenticity of the detection method. From the results shown in Figure 10
and 11, we can find that the AUC value of mmHawkeye is higher than 0.9, which is much better
than that of the variant with CNN. It means that mmHawkeye has good generalization and good
stability in practical applications. As all we know, there are also a large number of network models
whose performance is much better than the LSTM designed in this article. However, it is out of
the scope of this work, and we prefer to leave it in the practical applications.

We also evaluate the detection efficiency. Since our network is lightweight, it only takes about
0.17 s to obtain the detection results, as shown in Table 1. This means that mmHawkeye can provide
almost real-time detection capabilities once the target is tracked.

4.3.2 Tracking Accuracy. We further evaluate the tracking performance. We compare mmHawk-
eye with the intensity-based tracking approach commonly used in previous works such as
WaveEar [49] and mmTrack [46], which select the largest value of the Range–FFT result as
the tracking result. For consistency and fairness, we also perform preprocessing, dynamic pro-
gramming, and particle filtering on the result of the compared approach. The tracking results of
mmHawkeye at different altitudes are shown in Figure 9. The results show that mmHawkeye can
achieve a detection range of 80 m, which is much higher than the detection range of 30 m with
the intensity-based approach. When the UAV altitude is below 30 m, our tracking algorithm can
achieve a more accurate range estimation compared with the intensity-based approach. The av-
erage relative range error of mmHawkeye decreases as the altitude increases. The reason is that
the average range error of mmHawkeye remains less than 10 cm within 30 m, resulting in a reduc-
tion in average relative tracing error. When the UAV altitude is above 30 m, the intensity-based
approach fails completely due to the low SNR of the reflected signal. In comparison, mmHawkeye
keeps accurate and has less than 2% relative range error within 80 m. This is mainly attributed
to the utilization the UAV’s PMM feature, which helps to efficiently distinguish UAVs from the
environment noise.

4.4 The Impact of Different Factors

4.4.1 The Impact of the UAV’s Trajectory. In this experiment, We evaluate the detection perfor-
mance under different trajectories of the UAV. The results are shown in Figure 12. The detection
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Fig. 12. The impact of UAV trajectory on

detection results.

Fig. 13. The impact of UAV trajectory on

tracking results.

Fig. 14. The impact of UAV velocity on

detection results.

Fig. 15. The impact of UAV velocity on

tracking results.

accuracy varies slightly from 95.3% to 96.6% across different types of trajectories. Since the micro-
motion of the UAV’s propellers always exists in different trajectories, the PMM feature remains
consistent and can be used to resist the impact of the unpredictable UAV’s motion and in turn
keeps the good detection performance.

We also evaluate the tracking performance under different trajectories of the UAV. The average
relative range errors under different trajectories at three altitudes (20, 40, and 60 m) are shown
in Figure 13. The range errors vary slightly with the types of UAV trajectory at each altitude and
the range errors with the vertical flight are the lowest. The reason is that when the UAV is flying
vertically, its radial velocity is the largest, and the calculated folding result is more distinguishable.
Since mmHawkeye utilizes the PMM feature of the UAV to track it, we can resist the impact of the
UAV’s motion and keeps a reliable tracking result.

4.4.2 The Impact of the UAV’s Velocity. In this experiment, We evaluate the impact of the UAV’s
velocity on the detection performance. Due to the page limit, we only show the detection results of
different UAV velocities at the altitude of 40 m in Figure 14. The detection accuracy varies slightly
from 94.1% to 94.8% with the different UAV velocities. Since mmHawkeye removes velocity-related
features from the obtained Doppler–Time diagram, the velocity of the UAV has little impact on the
detection performance.

We further evaluate the impact of the UAV’s velocity on the tracking performance. The average
relative range errors at different velocities are shown in Figure 15. The relative range errors vary
from 0.26% to 0.35% at different UAV velocities. This result demonstrates that our UAV tracking al-
gorithm remains effective applied under different UAV velocities. The reason is that our algorithm
focuses on the frequency peaks caused by the UAV’s PMM rather than the body velocity, which
makes the tracking result stable even when the UAV’s velocity is varied.

4.4.3 The Impact of the Obstacle. In this experiment, we evaluate the performance of mmHawk-
eye in non-line-of-sight (NLoS) scenarios. We place a large piece of obstacle of different materials
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Fig. 16. The impact of obstacle material on

detection results.

Fig. 17. The impact of obstacle material on

tracking results.

30 cm above the radar to block the LoS path. The thickness of each material is about 1 cm. The
detection results with different obstacle materials at 40-m UAV altitude are shown in Figure 16.
The detection accuracy varies slightly from 93.8% to 95.5%. This result shows that mmHawkeye re-
mains accurate in these NLoS scenarios. It also implies that the devices deployed by mmHawkeye
can be protected by enclosures of those materials, while keeping satisfactory performance. This is
indeed an inspiring experience, especially when we consider the deployment of mmHawkeye in
practice.

We also evaluate the impact of the obstacle material on the tracking performance. The average
relative range errors with different obstacle materials are shown in Figure 17. The relative range
errors vary from 0.26% to 0.33% with different obstacle materials. The results again demonstrate
the applicability and dependability of mmHawkeye in NLoS scenarios.

4.5 Ablation Study

As the feature extraction module in mmHawkeye serves the other two modules and cannot be
evaluated separately, we conduct ablation study on UAV tracking and UAV identification modules
separately. The impact of feature extraction module can be verified by comparing with the exper-
imental results of intensity-based approach.

4.5.1 UAV Tracking. This section evaluates the performance of the UAV tracking algorithm. We
select the reflected signals when the UAV altitude is 40 m as the target of processing. Then we re-
spectively adopt the tracking method (1) based on the maximum value of the folding results (PMM
based), (2) based on the maximum value of the preprocessed folding results (+Prepro), (3) with dy-
namic programming of the preprocessed folding results (+DP), and (4) with dynamic programming
and particle filtering of the preprocessed folding results (+PF). The method +PF is the algorithm
used in mmHawkeye.

The experiment result is shown in Figure 18. The results demonstrate that both the preprocess-
ing and the dynamic programming significantly reduce the range error by 16.4% and 35.12%, respec-
tively. The reason is that the preprocessing removes the static background noise from the folding
results, and the dynamic programming considers the trajectory continuity and can resist the im-
pact of the unpredictable UAV motions. The results also demonstrate that the particle filtering can
effectively reduce the variation of the range error by 13.83%, since it can effectively resist the im-
pact of the unpredictable motions and the local dynamic noise. Furthermore, the intensity-based
approach fails when the UAV altitude is 40 m, and our simple PMM-based method can achieve
a relative range error of 0.49%. This means that spectrum folding can significantly improve UAV
tracking accuracy.

4.5.2 UAV Identification. This subsection evaluates the performance of the UAV identification
algorithm. For the obtained Doppler–Time diagrams, we respectively perform (1) no processing

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 44. Publication date: February 2024.



Detection and Identification of non-cooperative UAV using a COTS mmWave Radar 44:17

Fig. 18. Ablation study on UAV tracking. Fig. 19. Ablation study on UAV identification.

Fig. 20. The average azimuth errors. Fig. 21. The average elevation errors.

(DTD-based), (2) DC removal (+DR), and (3) DC removal and feature alignment (+FA) to obtain
the corresponding results. The results of each method are used to train the corresponding de-
tection network and test the detection performance. The method +FA is the algorithm used in
mmHawkeye.

The detection results of these methods are shown in Figure 19. The results demonstrate that the
DC removal can significantly improve the detection accuracy by 14.62%, since it can remove a large
portion of the DC noise and make the PMM features easier to be learned. The results also show
that the feature alignment can effectively improve the detection accuracy by 4.68%, since it can
remove the velocity-related features from the Doppler–Time diagrams and make the periodicity
of the PMM feature easier to be identified.

4.6 Angle Estimation Accuracy

We evaluate the angle estimation accuracy. The average azimuth error and the average elevation
error are shown in Figure 20 and Figure 21, respectively. They show similar results, and the azimuth
estimation is more accurate. We conjecture this may be due to the asymmetric layout of the radar’s
antennas. mmHawkeye is consistently more accurate than the intensity-based approach, especially
when the UAV altitude is above 30 m. The reason is that mmHawkeye can still obtain accurate
range when the UAV altitude is above 30 m to limit the angle estimation error, while the intensity-
based approach cannot obtain the correct UAV trajectory. Though the angle estimation error of
mmHawkeye also increases, it remains in a low error range. We believe such angle estimation
results are useful in informing the users of the UAV’s flight trajectory.

4.7 Time Consumption

We finally measure the time consumption of each module of mmHawkeye to evaluate its real-time
capability in tracking and identifying a UAV. mmHawkeye uses a desktop with Intel i9-11900H
as the back end to process 11.25-s mmWave samples. Table 1 lists the computation time of each
module. It can be observed that the total time consumption is almost 19 s without angle estima-
tion. Through in-depth analysis of the algorithm flow, the Range–Doppler–FFT part currently
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Table 1. Time Analysis of Each

Component

Processing Step Time (s)
Range–Doppler–FFT 12.95
Spectrum Folding 4.72
UAV Tracking 1.65
Angel Estimation 6.36
UAV Identification 0.17

calculates the Doppler–FFT corresponding to all Range bins (0–93 m), which can be further
improved based on the previous tracking result. For example, if we only calculate one-third of
Doppler–FFT results, then the time consumption will be reduced to one-third of the corresponding
time, which is 4.32 s. Such an adaptive FFT operation can ensure that the processing time is
less than the data collecting time, thus ensuring that mmHawkeye can provide a real-time user
experience. In addition, mmHawkeye can also provide angle estimation results for UAV trajectory
informing, which is 6.36-s time consumption. We find that such a time consumption is mainly
caused by the beamforming operation, which is nearly 5-s time overhead. Considering that the
angle estimation is only used to inform the users of the UAV’s flight trajectory, we believe that
such a computational time delay is acceptable.

5 DISCUSSION

5.1 UAV Categories

As our system is based on the PMM features, all rotary-wing UAVs with such features can be
detected by our system. For UAV categories that do not have rotors, such as fixed-wing UAVs, it has
been reported that their periodic micro-motions also exist due to the body vibrations [22], which
may make them detectable by our system. However, the size of the UAV affects the reflected signal
intensity and thus the detection range. We can accurately detect it as long as it is tracked with the
help of the PMM feature. However, since the flying UAV always has periodic micro-motions, its
size has little effect on the detection accuracy as long as it is tracked.

However, for UAV categories that do not have rotors, such as fixed-wing UAVs, it is difficult for
our system to extract the PMM feature to achieve UAV detection and tracking. Reference [22] men-
tioned that the fixed-wing UAV will also produce periodic micro-motion due to the body vibration.
We will further explore this problem in our future work.

5.2 Short-range Detection

When the distance between the UAV and the radar is close (e.g., below 10 m), the UAV can no
longer be regarded as a whole and each part may occupy a different range bin. In this case, there
will be multiple PMM features in different range bins in the Range–Doppler spectrum. We can
utilize these features to further track and sense the UAV. Note that probably the UAV has already
been detected by mmHawkeye before it arrives in such a close range.

5.3 Limited Angle Resolution

Due to the limited number of antennas, most of COTS mmWave radar can only achieve very lim-
ited angular resolution. For example, the used TI IWR6843ISK-ODS only contains 3 Tx antennas
and 4 Rx antennas. This leads to unsatisfactory performance of mmWave radars in angle esti-
mating. Although our angle estimation algorithm based on PMM features can effectively limit the
angle estimation error, the angle estimation results still need to be improved. There are some more
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powerful COTS radars that can be used for accurate angle estimation, such as TI MMWCAS-RF-
EVM [15], which has 12 Tx antennas and 16 Rx antennas and has a much better angle resolution.
However, such radars suffer from high cost, and large form factor, making them unsuitable in
daily usage scenarios. Another approach is applying Synthetic Aperture Radar technique [34] to
enhance angle resolution. For example, mmFace [50] emulates a large aperture planar antenna
array by moving a COTS mmWave radar along a specific trajectory in the 2D plane and achieves
precise angle measurement for face authentication. But this causes higher energy consumption.

5.4 Multi-target Detection

Multi-target detection is another interesting problem. When there are multiple UAVs simultane-
ously in the FoV of the radar, their trajectories are generally well separated to ensure flight safety.
We can use the difference in the range and angle dimensions to distinguish them. When their tra-
jectories occasionally coincide, their PMM features can further help us to match their respective
trajectories. The trajectory crossover problem is still an open problem in mmWave sensing. Differ-
ent from the trajectory recognition method that relies on trajectory continuity, our method based
on the PMM feature can distinguish these trajectories from the feature space, thereby achieving
accurate trajectory recognition. We leave this problem in our future work.

5.5 Practical Deployment

In practical scenarios, UAVs can intrude into personal space at height or from around. However,
considering that low-altitude UAVs are easy to be detected manually or by other approaches, and
these UAVs have limited viewing angles, there are very few cases of actual intrusion into personal
space from low altitude. In this case, we usually deploy the radar horizontally to detect the presence
of UAVs at height rather than the presence of UAVs from around.

6 RELATED WORK

6.1 UAV Detection with mmWave Radar

With the development of COTS mmWave radar and the growing concern about UAVs, there have
been some works utilizing mmWave radar to track and identify small UAVs. Reference [58] captures
the UAV three-dimensional (3D) motion with a novel deep neural network and achieves decimeter-
level tracking accuracy within 5 m. It simply utilizes the reflected mmWave signal strength of the
UAV as input and focuses on short-range UAV tracking based on deep learning methods, resulting
in a very limited tracking range. Reference [3] utilizes the reflected mmWave signal intensity to
calculate the distance and the elevation angle between UAV and radar, realizing the UAV tracking
within 10 m. It further extracts the micro-Doppler signatures from the captured UAV and achieves
activity classification accuracy of 95%. Different from our method that directly uses the PMM fea-
ture in the Doppler spectrum for tracking, it first uses the reflected signal strength to track the UAV
and then extracts the micro-Doppler spectrum from the tracking results for activity classification.
Reference [31] employs the constant false alarm rate detector on the Range–Doppler spectrum
and achieves a maximum detection range of about 40 m. However, its performance decreases sig-
nificantly when the UAV is hovering as the Doppler feature is less significant. On the contrary,
we enhance and track the PMM features brought by the periodic micro-motion rather than the
single peak brought by the body motion in the Doppler spectrum, so we can achieve more robust
and accurate detection results. In conclusion, none of them can achieve long-range UAV detection
with the COTS mmWave radar due to the limited reflected signal intensity. To solve this problem,
we directly utilize the PMM feature of the flying UAV rather than the signal intensity to achieve
long-range UAV detection.
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6.2 UAV Detection with Other Devices

There have been proposals to utilize sound [11, 27, 41, 44], visual information [8], and RF signals
[32] to achieve passive non-cooperative UAV detection. For example, DronePrint [27] proposes to
detect a drone according to its acoustic signatures. Such approaches are susceptible to the envi-
ronment noise and have a limited sensing range. Reference [8] uses cascades of boosted classifiers
on the collected videos to detect the UAV and achieve distance estimation. Such video-based ap-
proaches are easily affected by illumination conditions and complex backgrounds. Matthan [32]
detects the presence of UAVs by monitoring the unique characteristics of the received WiFi signal.
It achieves over 80% detection accuracy within 600-m range. However, it requires non-cooperative
UAVs to actively send WiFi signals, which renders silent UAVs undetectable.

6.3 Active UAV Detection

Unlike passive UAV detection methods, active UAV detection methods typically require the co-
operation of UAVs. They often involve emitting signals using sensors or devices to monitor
for specific signatures or signals that the drone actively emits. Researchers have explored vari-
ous techniques, including RFID [52], optical markers [20, 21, 23, 38], radio signal fingerprinting
[32, 35, 37, 40, 47, 48, 56], and so on. For example, RFHUI [52] attaches N RFID tags to a small board
and exploits the measured CSI phase information to precisely track the 6-DoF pose in a 3D space.
Jin, et al [21] mounted four round LED markers onto a UAV and detected them using a static
camera for UAV localization. However, it can only explore varying distances in one dimension
along the camera’s direction. Xie, et al [48] proposed a novel UAV downlink and uplink detection
method by analyzing received signals based on a UAV communication model. Furthermore, Xiao,
et al [47] analyzed the UAV downlink signals and demodulated them with a known communica-
tion protocol corresponding to a particular UAV model. To tackle RF interference, many machine
learning-based approaches are presented in UAV detection [7, 29, 37]. Martins et al. [37] designed a
Markov models-based naÃŕve Bayes decision mechanism to distinguish signals emitted by a UAV
and then applied a neighborhood component analysis to select the three most significant features
for UAV classification.

Our previous work [54] proposed a simplified PMM feature model that characterizes the rela-
tionship between the periodic micro-motion of the UAV and the PMM features in the reflected
signal but lacks the fine-grained theoretical model of the PMM feature. We also designed a PMM-
based UAV detection and ranging method. Compared with the published conference version, we
first theoretically deduce the relationship between the reflected signal and the rotation velocity
of the scattering point and then deduce the mathematical representation of the PMM feature in
Section 2. Inspired by our PMM-based UAV range estimation solution, we further extend our de-
sign to estimate the UAV’s angle after the range estimation results are obtained in Section 3. Then
we evaluate the effectiveness of the LSTM detector, the performance of mmHawkeye in NLoS sce-
narios, angle estimation accuracy, and the time consumption of each module in Section 4. More
practical issues are discussed in Section 5, including UAV categories, limited angle resolution, and
multi-target detection. Finally, the difference between active UAV detection works and this work
is emphasized in Section 6.

7 CONCLUSION

Defending against uninvited UAVs is an increasingly important problem nowadays. This article
presents our study on non-cooperative UAV detection and identification. Our proposal named
mmHawkeye is a mmWave-sensing based approach that has broad applicability and satisfactory
accuracy. With the theoretical model of the PMM feature, mmHawkeye can continuously track
the UAV’s location containing range, azimuth angle, and altitude angle and achieve accurate
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UAV identification. mmHawkeye particularly tackles the problem induced by low SNR signals
and achieves long-range detection. Extensive experiments with the implemented prototype
demonstrate that mmHawkeye is accurate and reliable under various settings.
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