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ABSTRACT
Recently, mmWave has been widely used in fine-grained
sensing applications due to its short wavelength and large
bandwidth. One mmWave device usually can measure the
target’s 1D micro-displacement along the line-of-sight (LOS)
direction. In this work, we try to empower mmWave with
the capability of measuring 2D micro-displacements. Our
insight is that although the mmWave reflection from one
path contains only 1D observation, the spatial separability
of mmWave offers an opportunity to separate multipath re-
flections from the received signal. Combining the coherent
observations from multipath reflections can restore the 2D
orbit of the target. Based on this insight, we present GWaltz,
a mmWave sensing system that manages to measure sub-
𝑚𝑚-level 2D orbits of rotating machinery. In GWaltz, we
first reveal the relationship between the rotor’s movement
and the observed ghost multipath reflections (GMRs) and then
design a set of novel signal processing techniques to restore
the rotor orbit from the poor-quality GMR signals. We im-
plement GWaltz with a commercial mmWave radar, and our
evaluation results show that it achieves an absolute error of
about 8.42𝑢𝑚 when measuring 100𝑢𝑚-diameter rotor orbits.

CCS CONCEPTS
• Computer systems organization → Embedded and
cyber-physical systems; •Hardware→ Sensor applica-
tions and deployments.
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1 INTRODUCTION
The past decade has witnessed much progress in mmWave-
based wireless sensing, e.g., target localization and motion
tracking [3, 21, 24, 42, 48]. As a sensing modality, mmWave
has several highly attractive properties. Compared with tra-
ditional sensor- or vision-based sensing, it is non-intrusive,
cost-effective, and unaffected by ambient light conditions.
Compared with other wireless technologies such as 900𝑀𝐻𝑧
RFID [45] and 2.4𝐺𝐻𝑧 WiFi [41], mmWave naturally sup-
ports much more fine-grained sensing. For example, its large
bandwidth endows it with a 𝑐𝑚-level range resolution, and its
high frequency, e.g., 77𝐺𝐻𝑧, makes it sensitive to even sub-
𝑚𝑚-level displacements. With all those properties, mmWave
radar is used in many fine-grained sensing applications, from
object imaging [25, 49], activity and gesture recognition [20],
to vital signal [5, 46] or tiny vibration measurement [15, 36].

In these applications, mmWave radar is basically regarded
as a 1D displacement sensor. However, knowing the 2D or
higher-dimensional micro-movements of a target is also es-
sential in many scenarios. A typical example is to track the
2D rotor orbit of rotating machinery. Specifically, the rotor is
the critical component of a rotating machine (e.g., generator
and electric motor), which rotates along an ellipse-shaped
orbit with a tiny scale [1, 2, 12]. Tracking the rotor orbit is
an essential way to monitor the health of the machine. A
conventional method [8] is to deploy vibration sensors along
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Figure 1: Measure 2D rotor orbit with sensors and GWaltz.

two different axes of the rotor, as shown in Fig. 1(a). How-
ever, such specialized vibration sensors require intrusive
deployment, which leads to high deployment and mainte-
nance costs. What’s worse, the precise synchronization of
multiple sensors further increases the system complexity
and brings additional expenses. A non-intrusive alternative
is to adopt two mmWave radars. However, apart from the
problems mentioned above, this dual-radar solution has to
share channel resources among radars, which could, in turn,
degrade the measurement accuracy.
Therefore, we wonder: can we measure the 2D rotor orbit

with just a single mmWave radar? To do so, we explore the
feasibility of leveraging the extra information extracted from
the non-line-of-sight (NLOS) paths (i.e., signal’s multipath
reflections). Recent studies have already exploited multipath
effects [17, 32, 33, 40] for 2D target localization. By observing
images of a target from both the LOS reflection and the so-
called ghost multipath reflections (GMRs), one can derive the
target’s actual position based on signal reflection models
[16, 26, 30]. Nevertheless, different from those GMR-based
2D localization tasks, measuring the sub-𝑚𝑚-level 2D rotor
orbit suffers the following two challenges:

• Understanding the relationship between the rotor
orbit and GMR signals. Since the scale of the sub-𝑚𝑚-
level orbit is much smaller than the target size, we have to
regard the target as a rigid body instead of a particle. In
this case, the signal will be reflected by different points of
the target when it is rotating. So, we have to build a more
comprehensive model to (i) analyze the properties of GMR
signals reflected from different points of its surface and (ii)
understand the relationship between the rotor orbit, orbit
of the reflection points GMR signals.

• Dealing with the poor signal quality of GMR signals.
Compared with 2D localization, sub-𝑚𝑚-level orbit track-
ing requires much higher signal quality. However, GMR
signals suffer from low SNR due to multiple reflections. As
a result, the tiny variations of the signal’s physical-layer
properties (e.g., phase), which reflects the target’s micro-
movements, are easily buried under the noise. Besides,

Table 1: Advantages of GWaltz over other methods

Sensi-
tivity

Intrus-
iveness

Light
Condition

Synchro-
nization

Device
Cost

Dual Sensor High High No Yes Low
Dual Laser High Low Low Yes High
Camera High No High No High
RFID, WiFi, etc. Low No No Yes Low
Dual Radar High No No Yes High
GWaltz High No No No Low

the spatial resolution of commercial mmWave radars can
hardly support the accurate separation of GMR signals. So,
the received GMR signals might entangle with each other,
which further impedes the signal quality.
As the first attempt to achieve the vision of orbit restora-

tion with GMR signals, we propose GWaltz, a system that
can measure sub-𝑚𝑚-level 2D rotor orbits of rotating ma-
chinery with just one mmWave radar. Compared with the
existing methods, GWaltz is a high-sensitive, non-intrusive,
synchronization-free, and easy-to-deploy solution, as shown
in Tab. 1.With the continuously restored rotor orbits, GWaltz
can be widely applied in industries for mechanical fault di-
agnosis. Our contributions can be summarized as follows:
First, with a complete understanding of the principle of

mmWave signal reflections and the motion law of rigid bod-
ies, we build an orbit-to-signal transformation (OST) model to
quantify the relationship between the rotor orbit, surface vi-
bration, and GMR signals. The model answers the following
three questions: (i) how are the GMRs produced? (ii) is the or-
bit of the rotor consistent with that of the reflection points?
(iii) what is the relationship between the 1D observation
obtained from GMR signals and the rotor orbit?

Second, we embed the OST model in the design of a com-
plete system GWaltz, and design a set of novel signal pro-
cessing techniques to overcome practical challenges brought
by poor signal qualities, including (i) a high-resolution GMR
signal extraction algorithm that improves the separability of
GMR signals; (ii) a noise-resilient displacement extraction
algorithm that utilizes geometric features of the In-phase &
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Quadrature (IQ) domain signal to distinguish noises and dis-
placement sequences; (iii) an independent-observation clus-
tering algorithm to stably select available and independent
1D observations; (iv) a spatiotemporal iterative restoration
algorithm that can efficiently extract the 2D rotor orbit.

Last, we implement the prototype of GWaltz with a com-
mercial mmWave radar and evaluate its performance under
various conditions. The experiment results demonstrate that
GWaltz can achieve an absolute error of 8.42𝑢𝑚 when mea-
suring 2D orbits with about 100𝑢𝑚 diameters. Also, we find
that GWaltz can accurately restore the orbit-shape features,
e.g., eccentricity and orbit phase.
The rest of this paper is organized as follows. §2 first

presents preliminary understandings of mmWave GMRs to
motivate our work. §3 and §4 then introduce the overview
and design of GWaltz respectively. §5 presents our prototype
implementation and various evaluations and §6 compares
GWaltz with related works. Last, §7 summarizes our work.

2 EXPLOITING GMRS FOR ORBIT
RESTORATION

In this section, we review mmWave basics to measure micro-
displacements (§2.1) and introduce our OST model (§2.2).

2.1 mmWave Displacement Measurement
The ability of mmWave to measure micro-displacements
acts as the foundation of GWaltz. We adopt the commer-
cial frequency-modulated continuous-wave (FMCW) radar (TI
IWR1642 [13]) for its good range resolution, lightweight de-
sign and low cost. Basically, a FMCW radar sends continuous
linear-frequency-modulated chirp signals and translates the
beat frequency between the TX and RX signals into the range
measurement [5]. To separate targets at different angles, the
radar performs the spatial spectrum analysis with multi-RX
inputs [14]. Readers are suggested to refer to [5, 14, 34] for
details. Here we just summarize the two-step Range-Angle
FFT process for the 𝑁 -RX radar as follows:{

𝑦 [𝑛] (𝑡) = 𝐴 [𝑛] exp

[
𝑗4𝜋 (𝑓𝑐 + 𝐾𝑐𝑡)

𝑅 [𝑛] (𝑡)
𝑐

]}
𝑛∈𝑁

Range FFT
−−−−−−−→

per RX

{
𝑦
[𝑛]
𝑟 (𝑡) = 𝐴 [𝑛] exp

[
𝑗4𝜋 𝑓𝑐

𝑅
[𝑛]
𝑟 (𝑡)
𝑐

]}
𝑛∈𝑁

Angle FFT
−−−−−−−→

all RXs
𝑦𝑟,𝑎 (𝑡) = 𝐴 exp

[
𝑗4𝜋 𝑓𝑐

𝑅𝑟,𝑎 (𝑡)
𝑐

]
(1)

where 𝑓𝑐 , 𝐾𝑐 , and 𝑇𝑐 are the start frequency, frequency slot,
and FMCW chirp period, respectively. The input of this
process is the 𝑁 -RX beat-frequency signals {𝑦 [𝑛] (𝑡)}𝑛∈𝑁 ,
and the output is the signal reflected from the targets lo-
cated at the discrete range bin 𝑟 and angle bin 𝑎, denoted as

(b)  Rigid-body GMR Assumption(a)  Particle GMR Assumption
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Figure 2: The formation and properties of GMRs.

𝑦𝑟,𝑎 (𝑡). The Fourier analysis tells us that the range resolution
Δ𝑟 = 𝑐

2𝐵 is determined by the chirp bandwidth 𝐵 = 𝐾𝑐 · 𝑇𝑐
while the angle resolution Δ𝑎 = 2

𝑁 cos𝑎 is mainly determined
by the array size 𝑁 [14]. For TI IWR1642, Δ𝑟 ≈ 4𝑐𝑚 and
Δ𝑎 ≈ 30◦ when 𝑎 ≈ 0. Thus, imaging technologies like in-
verse synthetic aperture radar (ISAR) [23] can hardly track
the sub-𝑚𝑚-level rotor orbit with such limited resolutions.
Since the sub-𝑚𝑚-level displacement is within the wave-

length of mmWave, it can be directly extracted from ∠𝑦𝑟,𝑎
[5, 42]. Suppose the radar-target distance𝑅𝑟,𝑎 (𝑡) = 𝑅𝑟,𝑎+𝑑 (𝑡),
where 𝑑 (𝑡) is the time-varying 1D micro-displacement and
𝑅𝑟,𝑎 is the time-invariant term, 𝑑 (𝑡) can be computed with:

𝑑 (𝑡) = 𝑐

4𝜋 𝑓𝑐
unwrap(∠𝑦𝑟,𝑎) − 𝑅𝑟,𝑎 (2)

2.2 Orbit-to-Signal Transformation Model
To track a target’s 2D orbit, GWaltz tries to exploit the extra
information contained in GMRs instead of deploying extra
devices. Fig. 1(b) depicts its measurement scheme: we place
the radar in front of the rotor and ensure that its RX array is
perpendicular to the rotor’s central axis. Due to GMRs from
ambient reflectors, e.g., wall, floor, or ceiling, the radar will
observe several separable ghost images coherently rotating
with the intrinsic image, as if they were dancing the waltz
together. For each GMR signal, GWaltz extracts one 1D ob-
servation at a certain observation angle. Together with all
the multi-angle observations, it can finally restore the 2D
rotor orbit with just a single radar. Next, we introduce the
formation and properties of GMRs (§2.2.1), the coherence
between the 2D rotor orbit and 2D surface vibration (§2.2.2),
and the projection relationship between 1D observations
from GMR signals and the 2D orbit (§2.2.3).

2.2.1 GMR Signal Properties. Eq. 1 tells us that the radar
obtains 𝑦𝑟,𝑎 (𝑡) if there are reflections from the location bin
(𝑟, 𝑎), where 𝑟 equals the half-length of the traveling path
and 𝑎 equals AoA. Here, 𝑦𝑟,𝑎 (𝑡) can be either a LOS or NLOS
reflection. For a LOS reflection, it forms an intrinsic image
of the target at the correct location. For a NLOS reflection, it
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Figure 3: Observation experiment of GMR properties.

forms a ghost image at an incorrect location, since the radar
still assumes the rectilinear signal propagation.
Fig. 2(a) depicts the relationship between intrinsic and

ghost images under the particle GMR assumption. We only
focus on GMRs reflected once by the target and zero or mul-
tiple times by other reflectors, since only these GMRs carry
extractable motion characteristics. We define the order of
a GMR as the number of reflections from ambient reflec-
tors. Due to accumulated energy losses, higher-order GMRs
are often negligible. So, we in this paper only discuss the
properties of 0th, 1st and 2nd-order GMRs:
• 0th-orderGMR -𝐺0:Without loss of generality,𝐺0 stands
for the LOS reflection from the target. Suppose 𝑳1 is the
vector form of the LOS path, then 𝑟0 = |𝑳1 | and 𝑎0 = −∠𝑳1.

• 1st-order GMR - 𝐺1: 𝐺1 represents the reflection signal
bounced by an ambient reflector for once. There are two re-
verse traveling paths |𝑳1 |→ |𝑳3 |→ |𝑳2 | and |𝑳2 |→ |𝑳3 |→
|𝑳1 |. In radar’s perspective, since it can only infer a sig-
nal’s propagation distance and AoA, the reflection signal
will induce two GMRs (𝐺1,1 and𝐺1,2) with the same range
𝑟1,1 = 𝑟1,2 = 1

2 ( |𝑳1 | + |𝑳2 | + |𝑳3 |) but different AoAs, i.e.,
𝑎1,1 = ∠𝑳2 while 𝑎1,2 = −∠𝑳1.

• 2nd-order GMR -𝐺2:𝐺2 represents the signal bounced by
ambient reflectors for twice. A typical 𝐺2 has a traveling
path following the principle of specular reflection, i.e., 𝐺2

and𝐺0 are mirrored images. In radar’s perspective,𝐺2 has
the same AoA as 𝐺1,1 but a longer range.
The above discussion treats the target as a particle. How-

ever, the volume and shape of the rigid-body target can’t
be neglected in our case, where the target size is much
larger than the orbit size. Fig. 2(b) depicts the rigid-body
GMR assumption. As we can see, 𝐺0 and 𝐺2 are still mir-
rored images while 𝐺1,1 and 𝐺1,2 slightly deviate from their
ideal positions. This is because signals traveling along paths
|𝑳1 | → |𝑳3 | → |𝑳2 | and |𝑳2 | → |𝑳3 | → |𝑳1 | will reach dif-
ferent points on the target surface, which further leads to
slightly different incident (and thus exit) angle of the two
paths. Such a slight deviation makes it difficult to calculate
the reflection properties of GMRs deterministically. So we
use a searching-based method, as will be discussed in §4.
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Figure 4: Orbit-to-signal transformation model.

To visualize practical GMRs, we conduct an observation
experiment. As shown in Fig. 3(a), a centrifuge and an alu-
minum plate act as the rotating device and reflector, respec-
tively, whose deployment obeys the illustration in Fig. 2(b).
After collecting the reflected signals, we extract 𝑦𝑟,𝑎 (𝑡) from
every location bin (𝑟, 𝑎) and plot their magnitudes in the
range-angle map (RAM): a higher magnitude of a point (𝑟, 𝑎)
stands for the stronger signal strength of the reflection from
that location [14]. Fig. 3(b) shows the decibel-form RAM that
clearly describes GMRs and their properties:
• Higher-order GMRs have lower energy and poorer SNR.
• GMRs’ geometric relationships obey our assumption.
• There exist ambient reflections from either the table, floor,
or walls that may get entangled with the desired GMRs.

2.2.2 Coherence underlying Rotor Orbit and Surface Vibra-
tion. With the basic knowledge of GMR signals, we further
analyze the relationship between the reflection signals on
the target surface and the rotor orbit. Since the radar cannot
directly perceive the movement of the rotor center, it can
only receive the signal reflected from the reflection points on
the target surface. Although we have the primary assump-
tion that the target surface moves in accord with the rotor,
the trajectory of those reflection points are not necessarily
the same as the trajectory of the rotor center. We define
the latter one as the rotor orbit, whose location at time 𝑡
is 𝒔𝑡 = (𝑠𝑥,𝑡 , 𝑠𝑦,𝑡 )⊤ (⊤ stands for the matrix transpose), and
define the former one as the surface vibration 𝒔 ′𝑡 . Then, to
restore the rotor orbit from GMR signals, the preliminary
task is to explore whether GMR signals can accurately reflect
the rotor orbit or not. That is, denoting 𝒐𝑡 = 𝒔𝑡 − 𝒔𝑡−1 and
𝒐′𝑡 = 𝒔 ′𝑡 − 𝒔 ′𝑡−1, do we always have 𝒐𝑡 = 𝒐′𝑡?
We demonstrate the underlying coherence with the two

examples in Fig. 4. Based on whether the incident wave
arrives at the surface along its normal direction or not, we
classify GMR signals into two categories. Fig. 4(a) shows the
case of normal incidence (𝐺0&𝐺2), where points 𝑠1 ∼ 𝑠4 and
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𝑠 ′1 ∼ 𝑠 ′4 denote the trajectories of the rotor center and the
reflection points respectively. For each pair of two successive
points, say 𝑠 ′1 and 𝑠 ′2, since the normal incident direction
must pass through the center, we have |−−→𝑠1𝑠 ′1 | = |−−→𝑠2𝑠 ′2 |. In
addition, since incident waves are assumed to be parallel
with each other, we further have

−−→
𝑠1𝑠

′
1 ∥ −−→

𝑠2𝑠
′
2. So finally we

have
−−→
𝑠1𝑠

′
1 =

−−→
𝑠2𝑠

′
2 and thus −−→𝑠1𝑠2 =

−−→
𝑠 ′1𝑠

′
2. For the case of non-

normal incidence (𝐺1) in Fig. 4(b), we still have
−−→
𝑠1𝑠

′
1 =

−−→
𝑠2𝑠

′
2

and −−→𝑠1𝑠2 =
−−→
𝑠 ′1𝑠

′
2. Therefore, we have proved that 𝒐(𝑡) = 𝒐′(𝑡),

i.e. 𝒔 (𝑡) and 𝒔 ′(𝑡) are coherent.

2.2.3 2D Orbit Restoration with 1D GMR Observations. The
previous section has verified the coherence between the rotor
orbit and the surface vibration. However, the radar can only
perceive the 1D displacements of the surface rather than
its 2D vibrations. Then, this section further explores the
relationship between the 2D rotor orbit / surface vibration
and those 1D displacements observed from GMRs.

For any 2D movement trajectory of a target, the mmWave
radar can only extract its projections on signal propagation
directions, i.e., incident and exit directions. We illustrate
this projection model in cases of normal and non-normal
incidence in Fig. 4. Denoting their normal direction by 𝛽 and
the equal incident and exit angles by 𝛾 , the incident and exit
directions can be represented as 𝛽 ′ = 𝛽 − 𝛾 and 𝛽 ′′ = 𝛽 + 𝛾
respectively. Without loss of generality, we have 𝛾 = 0 and
𝛽 ′ = 𝛽 ′′ = 𝛽 for the normal-incidence case. Then the 1D
displacement 𝑑 measured by the radar can be computed as
the average of the projections of 𝒐′ on 𝛽 ′ and 𝛽 ′′:

𝑑 (𝒐′ |𝛽,𝛾) = 𝑑 (𝒐 |𝛽,𝛾) = 1

2
(𝒗⊤

𝛽′𝒐 + 𝒗⊤
𝛽′′𝒐)

=
1

2
[(𝑜𝑥 cos 𝛽 ′ + 𝑜𝑦 sin 𝛽 ′) + (𝑜𝑥 cos 𝛽 ′′ + 𝑜𝑦 sin 𝛽 ′′)]

= cos𝛾 · (𝑜𝑥 cos 𝛽 + 𝑜𝑦 sin 𝛽) = cos𝛾 · 𝒗⊤
𝛽
𝒐

(3)

where 𝒗𝛽 = (cos 𝛽, sin 𝛽)⊤ is the projection vector. Eq. 3 tells
us that 𝑑 is a projection of 𝒐 on the normal direction 𝛽 (also

known as its observation angle), and the incident/exit angle
𝛾 can be considered as a scaling factor whose value range
is cos𝛾 ∈ (0, 1], 𝛾 ∈ [0, 𝜋2 ). In the case of normal incidence,
we have 𝛾 = 0 and cos𝛾 = 1.

Finally, we can formulate the coherence underlying multi-
angle observations {𝑑 (𝒐 |𝛽𝑚, 𝛾𝑚)}𝑚∈𝑀 : (i) they are 1D projec-
tions of the same 2Dmovement; (ii) they are intrinsically syn-
chronized since the differences in the propagation time on dif-
ferent paths are significantly smaller than the chirp sampling
period. This verifies our insight that we can restore the 2D
orbit 𝒐 with multi-angle 1D observations {𝑑 (𝒐 |𝛽𝑚, 𝛾𝑚)}𝑚∈𝑀 .
However, it’s a non-trivial task to implement this idea due
to the following challenges:

• The first concern is the signal qualities of the GMRs. Since
higher-order GMRs basically have poorer SNR, we have to
figure out a way to stably identify GMRs and tolerate the
phase noises of GMRs when extracting 1D observations.

• The second concern is the lack of prior knowledge about
ambient reflectors. Thus, it’s very difficult to determine
the orders of GMRs as well as the projection parameters
𝛽𝑚 and𝛾𝑚 . Moreover, we find GMRs could be close or even
overlap with each other in practice, which could further
impede the displacement extraction.

3 GWALTZ OVERVIEW
Fig. 5 depicts the overview of GWaltz: it takes raw beat-
frequency signals from 4 RXs of the mmWave radar as inputs,
and outputs the 2D rotor orbit. To achieve this goal, we design
a processing pipeline consisting of the following 4 modules:

• Module 1 - GMR Signal Extraction: The 1st module
serves as the prerequisite of the system: it identifies GMR
areas, i.e., the locations of GMRs in the RAM, and extracts
corresponding GMR signals. To improve the spatial reso-
lution of GMR signals and avoid them being overwhelmed
by noises, we bring several advanced signal processing
technologies together.
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Figure 6: ERAM generation and GMR detection.

• Module 2 - 1DDisplacement Extraction: The 2nd mod-
ule generates the core intermediate results of the system: it
extracts the 1D displacement sequence embedded in each
GMR signal. To extract the tiny signal variation caused by
the sub-𝑚𝑚-level displacement from the noisy signal, we
utilize the signal’s geometric features in the IQ domain
to distinguish noises and displacement sequences. For ev-
ery GMR signal in every GMR area, we run this module
separately to get multiple 1D displacement sequences.

• Module 3 - Observation Selection: The 3rd module is
designed to ensure the quality of the intermediate results.
Since one detected GMR area might falsely contain more
than one GMR, the extracted 1D displacement sequences
might be a joint result of several independent observations.
To solve the problem, we design an independence cluster-
ing algorithm to generate the final 1D observations for the
orbit restoration.

• Module 4 - 2D Orbit Restoration: The 4th module col-
lects all the independent 1D observations from all GMR
areas to restore the 2D orbit. An optimization problem
is formulated to simultaneously solve the orbit as well
as the undetermined projection parameters. We design a
spatiotemporal iteration algorithm to split the searching
space for higher efficiency.

4 GWALTZ DESIGN
4.1 GMR Signal Extraction
The primary task of this module is to improve the separability
of GMR signals, find their locations, and extract them in a
high-fidelity and efficient way.

Step 1 - Enhanced RAM Generation: With the FMCW
modulation and multi-RX inputs, the raw mmWave signals
can be separated into reflection signals from every discrete
location bin (𝑟, 𝑎). However, the angular resolution of the
raw RAM generated through the Range-Angle FFT process
is very limited [27], as shown in Fig. 6(b). This makes the ex-
tracted GMR signals entangled with each other. To improve
the angular resolution of RAM, our basic idea is utilizing the
receiver beamforming (RBF) technology [27, 35] instead of

Angle-FFT. RBF calculates the optimal aggregation weights
of the RX antennas that can make them concentrate on the
desired direction [34]. To reduce signal distortions under
noises during RBF, we choose robust Capon beamforming
(RCBF) technology [35]. Then, to further increase the quality
of RAM, we adopt Blackman windowing and direct-current
component filtering to reduce the spectral leakage problem
[27] and eliminate static clutters, respectively. The enhanced
RAM (ERAM) shown in Fig. 6(e) shows a much higher resolu-
tion than the raw RAM,where GMRs can be clearly separated
and observed.

Step 2 - GMR Detection: Next, to find the locations of
GMRs in ERAM, the main challenge is the trade-off between
the missed and false detection rate under noise. Instead of
applying a fixed threshold to ERAM, we adopt constant false
alarm rate (CFAR) detector [27], which derives a dynamic
power threshold according to the estimated noise level and
the expected false alarm rate [28]. We cascade two noise-
resilient Ordered-statistic CFAR in the range and angle do-
mains, thus weighing the effectiveness and efficiency. Fig.
6(e) shows the 2D bounding boxes where GMR signals pos-
sibly locate in ERAM as detected GMR areas.
Step 3 - GMR Signal Output: With the detected GMR

areas, the final step is to extract them from ERAM through
RCBF. However, the computation cost of the global opera-
tion, i.e., scanning every location bin to perform the signal
extraction with RCBF, is relatively high. Fortunately, we find
that as long as the operating environment keeps stable, the
signal propagation paths are basically unchanged, and thus
the detected GMR areas are also unchanged. Thus, we only
perform RCBF globally once in a while to generate ERAM for
GMR Detection. And then, we perform RCBF locally only on
the detected location bins for subsequent data frames. This
heuristic idea achieves 3𝑋 ∼ 5𝑋 speed-up.

4.2 1D Displacement Extraction
The second module extracts 1D displacement 𝑑 (𝑡) from ev-
ery GMR signal 𝑦𝑟,𝑎 (𝑡). In this section, we first show how
poor-SNR signal affect the process of 1D placement extrac-
tion in §4.2.1 and provide our noise-resilient displacement
extraction algorithm in §4.2.2.

4.2.1 GMR Signal Model and Impact of Poor SNR. Inspired
by some existing researches [15, 42], the samples of 𝑦𝑟,𝑎 (𝑡)
form an arc in the IQ domain. The central angle \ of the arc
is determined by the peak-to-peak amplitude of the displace-
ment 𝐷 , and the circle radius 𝜏 is proportional to the signal
strength. The center of the arc is theoretically located at the
origin of coordinates.
In practice, however, GMR signal contains not only the

time-varying part 𝑦𝑟,𝑎 (𝑡) induced by periodic rotor rotation
but also the time-invariant part that stands for the static
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Figure 7: Signal features in the IQ domain.

background reflections [42]. Fig. 7(a) visualizes the GMR
signal model 𝑦∗𝑟,𝑎 (𝑡) as:

𝑦∗𝑟,𝑎 (𝑡) = 𝑦𝑟,𝑎 (𝑡) +𝑦𝑟,𝑎 = 𝐴 exp

[
𝑗4𝜋 𝑓𝑐

𝑅𝑟,𝑎 + 𝑑 (𝑡)
𝑐

]
+𝑦𝑟,𝑎 (4)

where 𝑦𝑟,𝑎 represents an aggregation of all the static back-
ground reflections from the bin (𝑟, 𝑎). Since 𝑦𝑟,𝑎 is a constant
value, the background reflection only induces a displacement
of the arc in the IQ domain, as shown in Fig. 7(a). The devia-
tion exactly represents the signal vector of the background
reflection. So, to infer 𝑦𝑟,𝑎 , a common strategy is to find the
center of the signal arc in the IQ domain through a circle
fitting process [15, 22].

However, traditional fitting-based methods are vulnerable
to poor SNR condition that is inevitable for high-order GMRs.
To understand this problem, we illustrate an example of the
poor-SNR signal in Fig. 7(b). As we can see that (i) the sub-
𝑚𝑚-level displacements induce a particularly small central
angle \ ; and (ii) the weak high-order GMR signal makes a
particularly low circle radius 𝜏 . As a result, the signal sam-
ples form a cluster rather than an arc, which significantly
degrades the fitting performance. Although some existing
methods [15] are proposed to mitigate this problem by uti-
lizing multi-frequency calibration, they require at least one
good initial fitting result on a certain frequency. This makes
them unsuitable for our case, where the high-order GMRs
may exhibit limited SNR on all the frequencies.

4.2.2 Signal Fitting with Circle Fitting Constraint. Before in-
troducing our solution, let’s have a quick look at the 4 typical
wrong fitting results in Fig. 7(b): 𝐶2 and 𝐶3 show the cases
where the arc radius is inaccurately estimated while 𝐶1 and
𝐶4 shows the cases where the direction of the circle center
(defined as the direction of the circle center respect to the
signal arc’s midpoint) is incorrectly identified. The inaccu-
rate circle radius leads to an inaccurate estimation of the
signal amplitude (𝐶2 &𝐶3). However, the wrong circle radius
causes a more serious error that treats the signal variation
caused by the noise as the vibration signal and outputs a
wrong signal sequence (𝐶4). Thus, to cope with the poor-
SNR GMR signal, our basic insight is that: we first ensure the

Best Direction
𝟒𝟓°𝟏𝟑𝟓°

NLOS GMR (r, a) = (45, 26)

GMR 1 at (45, 26) bin Best Direction = 33.75° GMR 3 at (63, 32) bin Best Direction = 112.50°

(a) Observations on Signal Projections

(b)  Radar Plots of Direction Metric 𝑘𝛼

Figure 8: Projection-based center direction metric.

correctness of signal extraction with a strong constraint on the
center direction, then try our best to improve the accuracy with
a weak constraint on the circle radius. Next, we describe how
to derive these two constraints.

CenterDirectionConstraintΩ1: First, we deriveΩ1 by
searching for the correct center direction 𝛼 . Our key insight
here is although the signal arc of GMRs may be overwhelmed
by noises, the signal’s variation in the IQ domain caused by
the noise is highly random, while the variation caused by the
displacement is deterministic (i.e., along the arc). Thus, when
projecting the IQ samples to the normal direction of the
signal arc and observe the change in the signal’s amplitude
with time, we can obtain a signal sequence that best preserves
the distinct pattern of the sinusoidal waveform, as shown in
Fig. 8(a). As a result, for a better center direction, the energy
of the projection sequence’s spectrum is more concentrated
to a certain frequency. Based on the above observation, we
combine two spectrum features to find the best 𝛼 (i) The
spectrum kurtosis ^𝑏 of the rotation frequency band 𝑏, e.g.
[10, 200]𝐻𝑧 for the centrifuge we have used. (ii) The band
spectrum energy ratio b𝑏 =

𝑒𝑏
𝑒
where 𝑒 is the total spectrum

energy and 𝑒𝑏 is spectrum energy of the band 𝑏. With ^𝑏 and
b𝑏 , we propose a metric 𝑘 = max(0, ^𝑏) · b𝑏 to quantify how
likely a certain direction is the correct center direction.
By enumerating 𝛼 with a step of 𝛿𝛼 = 𝜋

16 , we compute
the metric 𝑘𝛼 and visualize their values with the radar plots
shown in Fig. 8(b), where red arrows indicate best direction
𝛼∗ with the highest 𝑘𝛼∗ . Due to the perpendicularity between
𝛼∗ and the deterministic tangent direction of the signal arc,
the radar plot forms a shape of the number 8, whose peaks
and valleys are perpendicular to each other. Since 𝑘𝛼 has two
opposite-direction peaks, we construct Ω1 as two symmet-
rical areas: [𝛼∗ − 𝛿𝛼, 𝛼∗ + 𝛿𝛼]⋃ [𝛼∗ − 𝛿𝛼 + 𝜋, 𝛼∗ + 𝛿𝛼 + 𝜋]
where 𝛼∗ ∈ [0, 𝜋). Note that the opposite-direction circle
(𝐶1) will generate a displacement sequence with an opposite
phase, which is tolerated by inverting its observation angle.

Circle Radius Constraint Ω2: Since the circle radius 𝜏 is
hard to accurately estimate in practice, we deriveΩ2 based on
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the prior knowledge of the range in the vibration amplitude
𝐷 , e.g., 𝐷 ∈ [20, 100]𝑢𝑚 for our centrifuge. Given \ = 8𝜋𝐷

_
,

we can build the relationship between \ and 𝜏 by introducing
the concept of the projection height. As shown in Fig. 9(b), the
projection height ℎ is the maximum range of the projected
signal samples in the best direction. We can get sin \

2 = ℎ
2/𝜏 ,

that is 𝜏 = ℎ
2/sin

(
4𝜋𝐷
_

)
. Given 𝐷 ∈ [𝐷min, 𝐷max], we get Ω2

as
[
ℎ
2/sin

(
4𝜋𝐷max

_

)
, ℎ2/sin

(
4𝜋𝐷min

_

)]
.

Fig. 9(c) shows how Ω1 and Ω2 jointly bound the searching
space of the fitting process. Then, we form a nonlinear-least-
square optimization that minimizes the geometric distances
from every sample to the circle under Ω1 and Ω2:

𝒛∗,𝝉∗ = argmin 𝐿(𝑿 |𝒛, 𝜏) =
𝑁∑
𝑖=1

(∥𝒙𝑖 − 𝒛∥ − 𝜏)2

𝑠 .𝑡 . 𝒛 satisfies arctan (𝑧2/𝑧1) ∈ Ω1

𝜏 satisfies 𝜏 ∈ Ω2

(5)

where 𝒛 = (𝑧1, 𝑧2)⊤ and 𝜏 are the center coordinate and ra-
dius of the fitted circle respectively, and 𝑿 = {𝒙1, ..., 𝒙𝑁 },
𝒙𝑖 ∈ R2 are IQ samples of the GMR signal. We compute Ω1

and Ω2 with 𝑿 and convert them into the penalty terms in
the loss function with Lagrange multiplers. Then, the opti-
mization problem is solved with the Levenberg-Marquardt
(LM) algorithm [7]. Finally, we get 𝑦𝑟,𝑎 (𝑡) = 𝑿 − 𝒛∗ and
extract the 1D displacement sequence 𝑑 (𝑡) from ∠𝑦𝑟,𝑎 (𝑡).

4.3 Observation Selection
In ERAM, different GMRs could be very close to or even
overlap with each other for the following two reasons. First,
due to the limited resolution of ERAM, it is possible that one
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(b) Clustering Results

Figure 10: Independent observation clustering.

detected GMR area actually contains multiple GMRs. Second,
signals traveling from different paths could occasionally fall
into the same location bin if they have similar AoAs and
equivalent propagation distances. Either of these two cases
results in inaccurate 1D displacement measurement. There-
fore, we in this section propose a method to first filter out the
bins that contain multiple GMR signals, and then separate
the GMRs that are incorrectly bounded into one GMR area.

Step 1 - Usable Candidate Selection: First, we select 1D
displacement sequences with good SNR as candidates. Geo-
metric features like circle radius, signal height, best direction
metric, and spectrum features like kurtosis and energy ratio
are considered. We calculate their normalized sums as the
candidate weights. Only top-70% weighted sequences are
kept as candidates in this step.

Step 2 - Independent Candidate Clustering: Next, we
select independent candidates as the final 1D observations.
A problem here is how to quantify their dependence? By
observing the candidates extracted from one detected GMR
area, we find that two factors cause their dependence:
• Physical Adjacency: GMR signals from adjacent positions
on the target surface have similar motion characteristics.

• Logical Adjacency: FFT or beamforming process causes
inevitable spectrum leakage, which makes GMR signals
extracted from adjacent bins similar to each other.

Therefore, we empirically select two features to identify
two independent GMR signals: (i) the phase value 𝜙 of the
candidate, and (ii) the bin location of the GMR signal where
the candidate comes from. We consider that two candidates
are independent if they have different phase values and they
come from non-adjacent bins.

The above insight motivates the our independence cluster-
ing algorithm. First, we derive a phase-based similarity met-
ric with a wrapping period of 𝜋 : min{|𝜙1 − 𝜙2 + Δ𝜙 |},Δ𝜙 ∈
{−𝜋, 0, 𝜋}. We choose the wrapping period of 𝜋 instead of 2𝜋 ,
because our displacement extraction algorithmwith symmet-
rical constrained areas could produce similar displacement
sequences with opposite phases. Second, we set the similar-
ity metric to +∞ if two candidates don’t come from each
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Figure 11: Processing steps of a 3-cluster GMR area.

other’s 3 × 3 neighborhood. Finally, the similarity metrics
are fed into a classic clustering algorithm, DBSCAN [6]. Fig.
10(b) shows the clustering result, where different edge colors
of different location bins stand for their different clusters. At
last, we calculate the weighted aggregation of the candidates
in each cluster as one final observation. Fig. 11 shows an
example of this processing chain.

4.4 2D Orbit Restoration
The final module restores the 2D orbit with all the indepen-
dent 1D observations from all detected GMR areas. We first
formulate the restoration problem that exploits the obser-
vations’ coherence and diversity to simultaneously solve
undetermined projection parameters and the orbit (§4.4.1).
A spatiotemporal iteration algorithm is proposed to improve
its efficiency by splitting the searching space (§4.4.2).

4.4.1 Problem Formulation. With 𝑀 independent 1D obser-
vations, we obtain 𝑀 sequences of 1D displacement mea-
surements 𝑑𝑚 (𝑡),𝑚 ∈ [1, 𝑀]. Recall that 𝑑𝑚 (𝑡) is a projec-
tion of the orbit 𝒐(𝑡), i.e. 𝑑𝑚 (𝑡) = cos𝛾𝑚 · 𝒗⊤

𝛽𝑚
𝒐(𝑡), where

𝒗𝛽𝑚 = (cos 𝛽𝑚, sin 𝛽𝑚)⊤ is the projection vector and cos𝛾𝑚
is the amplitude scaling factor. As we have discussed in §2,
parameters 𝛽𝑚 and 𝛾𝑚 are determined by the relative po-
sitions of the target, the radar, and the ambient reflectors.
Moreover, we apply an error factor 𝜖𝑚 to𝑑𝑚 (𝑡) to tolerate the
inaccurate amplitude estimation due to poor SNR conditions.
Since both 𝜖𝑚 and cos𝛾𝑚 can be considered as amplitude
scaling factors, we can combine these two factors to create
one variable 𝑔𝑚 =

cos𝛾𝑚
𝜖𝑚

:

𝑑𝑚 (𝑡) = 𝑔𝑚𝒗⊤𝛽𝑚 𝒐(𝑡),𝑚 ∈ [1, 𝑀] (6)

With𝑇 samples of 𝑑𝑚 (𝑡), 𝑡 ∈ [1,𝑇 ], Eq. 6 can be expanded
into a set of 𝑀 · 𝑇 equations, where 2𝑀 + 2𝑇 variables are
undetermined. Then we can represent the equation set in
the matrix form:

𝑫 = 𝑮𝑽𝑶,

where 𝑫 = {𝑑𝑚 (𝑡)}𝑀×𝑇 , 𝑮 = diag ({𝑔𝑚}𝑀×1) ,
𝑽 = {𝒗⊤

𝛽𝑚
}𝑀×2,𝑶 = {𝒐(𝑡)}2×𝑇

(7)

Then, our goal is to search for the optimal variables that
minimize the 2nd-norm ∥𝑫 − 𝑮𝑽𝑶 ∥2. Two constraints can
be applied to bound the searching space. First, for the LOS
reflection 𝐺0 (i.e.𝑚 = 1), its projection parameters can be
obtained as prior knowledge: (i) the observation angle 𝛽1 can
be fixed to −𝜋

2 if we place the radar directly in front of the
rotating device; (ii) 𝑔1 can be set to 1 since cos𝛾1 = 1 as we
analyzed before and 𝜖1 can be deemed as 1 due to the high
SNR of𝐺0. Second, we can further derive a rough estimation
of 𝑔𝑚,𝑚 ∈ [2, 𝑀] in practice: (i) since the low SNR condition
basically causes a larger amplitude estimation, we can have
𝜖𝑚 ∈ [0.75, 1]; (ii) 𝛾𝑚 can be roughly estimated based on the
deployment, e.g., 𝛾𝑚 ∈ [0, 𝜋6 ] in our experiment setup. Then,
the rough value range of 𝑔𝑚,𝑚 ∈ [2, 𝑀] can be computed.

4.4.2 Spatiotemporal Iterative Restoration. Althoughwe have
bounded the searching space in the last step, directly search-
ing for 𝑮, 𝑽 and 𝑶 simultaneously is still a highly complex
process. We propose a high-efficiency spatiotemporal itera-
tion method to divide and conquer the problem.

Among these unknown variables, we denote time-invariant
𝑮 and 𝑽 as the spatial variables that are only related to the
traveling paths of GMRs. And we denote time-varying 𝑶
as the temporal variable that is irrelevant to GMRs. With
the prior of spatial variables, the temporal variable can be
directly inferred with the equation set and vice versa. There-
fore, we design an iteration-based restoration algorithm that
significantly reduces the searching space: for each iteration
𝑖 ∈ [1, 𝑖max], we solve 𝑶 [𝑖 ] with 𝑮 [𝑖−1] , 𝑽 [𝑖−1] , and then solve
𝑮 [𝑖 ] , 𝑽 [𝑖 ] with 𝑶 [𝑖 ] . The initial value 𝑮 [0] is set to a vector
whose elements are all 1, and 𝑽 [0] is guessed by regarding
all GMRs as 2nd-order GMRs since their observation angles
can be deterministically derived with the OTS model. Next,
we present the detailed algorithm, where the superscript 𝑖 is
neglected for clarity.

(1) Temporal Variable Solver: With the known 𝑮 and
𝑽 , Eq. 7 is degenerated into a overdetermined linear equation
set, where 𝑶 can be solved with the linear least square (LLS)
method. We adopt the weighted LLS with a diagonal weight
matrix𝑾 whose elements are the candidate weights of 𝑫 :

𝑾𝑮−1𝑫 =𝑾𝑽𝑶 =⇒ 𝑶 =
(
𝑽⊤𝑾𝑽

)−1
𝑽⊤𝑾𝑮−1𝑫 (8)

(2) Spatial Variable Solver: Assuming the independence
among spatial variables, we run this solver on each observa-
tion separately. Eq. (9) shows the loss function of the search-
ing process. To quantify the similarity between 𝒅𝑚 (𝑡) and
𝑔𝑚𝒗⊤𝛽𝑚 𝒐(𝑡), we first use cosine distance, a widely used metric
in comparing two periodic signals, to quantify their simi-
larity in phase, i.e., the amount of misalignment between
them. Then we use the Euclidean distance to quantify their
similarity in amplitude. We use these two steps to find a
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Figure 12: Restored and ground-truth orbits.

sequence with an acceptably high goodness-of-fit.

min
𝛽𝑚

𝐿𝑚,1 = 1 −
(𝒅𝑚)⊤

(
𝑔𝑚𝒗⊤𝛽𝑚 𝒐

)
∥𝒅𝑚 ∥ ·

𝑔𝑚𝒗⊤𝛽𝑚 𝒐
min
𝑔𝑚

𝐿𝑚,2 =

𝒅𝑚 − 𝑔𝑚𝒗⊤𝛽𝑚 𝒐
2

(9)

Fig. 12 shows examples of the orbits restored by GWaltz,
where the blue and red orbits stand for the restored orbit and
the ground truth, respectively. The directions and lengths of
red arrows indicate the observation angles and amplitudes
of 1D observations, respectively. As expected, the initial
orbit after one LLS shows great bias due to the incorrect
estimation of 𝑽 [0] . While the result after 5 iterations is very
similar to the final convergent one, which demonstrates the
high efficiency of our algorithm.

Fig. 12(5) shows the orbit restored with only two observa-
tions. The result tells that we can still obtain a decent result
with only two observations, although the estimated orbit can
be distorted if one of the two observations suffers poor accu-
racy. Fig. 12(6) shows the orbit restored without applying a
scaling factor. The result tells that even with multiple GMRs,
one inaccurate observation, e.g., GMR-2 in this case, can
degrade the performance if scaling factors are not applied.
In summary, GWaltz can achieve a good result of the orbit
restoration at an acceptable cost.

4.5 Discussion
As the first step to achieving the vision of orbit restoration
with GMR signals, our current design has several limitations
that are left for future work. First, GWaltz identifies the tar-
get’s reflections by finding the signal that changes with time.
So, GWaltz does not support the cases with multiple rotating
targets or with moving ambient reflectors. This problem can
be resolved by endowing reflection signals with identities
through state-of-the-art battery-free mmWave backscatter
technologies [19]. Second, the orbit restoration module of
GWaltz requires a coarse-grained prior knowledge of the

(b) Rich Multipath (a) Moderate Multipath 
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Figure 13: Experiment setup.

deployment setup to reduce the searching space. Actually,
even without this prior knowledge, we can still obtain a
coarse-grained estimation of the deployment setup as well
as the value ranges of the projection parameters based on
the relative locations of the GMRs in ERAM.

5 EVALUATION
5.1 Implementation and Methodology
Implementation: For the hardware, we adopt a commercial
mmWave radar TI IWR1642 [13], which has 6 antennas (2
TXs and 4 RXs) and works on 77𝐺𝐻𝑧 frequency band with
the maximum available bandwidth of 4𝐺𝐻𝑧. We let all 4 RXs
to receive reflected signals from 1 TX. The cost of IWR1642
IC is < $40, which is very competitive compared to other
solutions.We implement GWaltz software in Python 3, which
can be easily translated into other languages or ported to
embedded platforms. We open-source the core code as well
as our datasets at http://tns.thss.tsinghua.edu.cn/sun/. The
experiments are conducted on a laptop with an Intel i7-8550U
processor and 16𝐺𝐵 memory.
Ground Truth: To obtain the ground truth, we use the

eddy-current sensor, [4] which can measure the micro dis-
placement by sensing the change of the magnetic field be-
tween its probe and the target surface. The sensor’s datasheet
declares a relative measurement error of ±5%. To measure
the 1D vibrations along the X and Y axis, we deploy two eddy-
current sensors perpendicularly to each other, as shown in
Fig. 14. A multi-input data collector is used to synchronize
the data streams from two sensors. After getting two sinu-
soidal displacement sequences from the collector, we restore
the 2D orbit with previously-known observation angles and
then fit an ellipse as the ground-truth orbit.

Experiment Settings: All of the experiments are con-
ducted in an office environment as shown in Fig. 13. We use
a centrifuge as the rotating machinery during most of the
experiments for the convenience of controlling experimental
variables, e.g., the distance between the radar and the cen-
trifuge (i.e., measuring distance), the distance between the
centrifuge and the ambient reflector (i.e., reflector distance),
the rotating speed and the workload of the centrifuge. We
also evaluate the impact of different multipath conditions

http://tns.thss.tsinghua.edu.cn/sun/
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Figure 14: Ground-truth
measurement setup.
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Figure 15: Overall performance under different setups.
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Figure 16: Performance of orbit restoration.

and explore whether deploying dedicated reflectors can im-
prove the performance. Moreover, to demonstrate the floor
can act as the ambient reflector for GWaltz, we measure the
2D orbit of a fan whose central axis is parallel to the ground.
Last, we also evaluate some microbenchmarks, e.g., the accu-
racy of 1D vibration measurement, the processing efficiency,
and the measurement stability. We have collected > 1600
data traces of about 34𝐺𝐵.
PerformanceMetric:We adopt the polar-coordinate tra-

jectory distance as the main metric for the orbit restoration.
Give a point 𝑝𝑖 of the measured orbit, the line between 𝑝𝑖
and the origin of coordinate will generate two intersection
points 𝑝 ′

𝑖 and 𝑝
′′
𝑖 with the ground-truth orbit, and we denote

min( |𝑝𝑖 − 𝑝
′
𝑖 |, |𝑝𝑖 − 𝑝

′′
𝑖 |), the shortest Euclidean distance be-

tween 𝑝𝑖 and the intersection points, as the polar-coordinate
trajectory distance. Apart from the absolute trajectory dis-
tance, we also use the eccentricity (the focal length divides
the length of the major axis) and the phase (the rotation an-
gle of the major axis) of the ellipse-shaped orbit to evaluate
the performance of preserving relative shape features.

5.2 Performance of Orbit Restoration
In this section, we evaluate the performance of the orbit
restoration under differentmeasuring distances (60 ∼ 150𝑐𝑚),
reflector distances (15 ∼ 60𝑐𝑚), and rotating speeds (1500 ∼
3000𝑟𝑝𝑚). The experiments are conducted in a hall where a
concrete wall acts as the ambient reflector. We keep the cen-
trifuge running in a relatively stable state with no workload.

5.2.1 Overall Performance. Fig. 15 depicts the overall per-
formance of GWaltz considering the orbit restoration error,
i.e., orbit distance and restoration shape features, i.e., eccen-
tricity and orbit phase. For each measured orbit, we record
the median orbit distance from the ground-truth orbit as its
restoration error. Then we fit an ellipse with the measured
orbit to calculate its eccentricity and phase as well as the
errors between them and ground-truth ones.
The CDF results show that GWaltz well restores the 2D

rotor orbit with 80th-percentile restoration error of 8.42𝑢𝑚.
The relative error is around 8% respect to the 100𝑢𝑚-diameter
orbit, which is comparable to traditional sensors. Moreover,
GWaltz can well maintain the ellipse shape with the 80th-
percentile eccentricity error and phase error about 0.16 and
0.42𝑟𝑎𝑑 , respectively. We also compare GWaltz with its vari-
ant that only uses GMR signals contained in the detected
LOS-GMR area. The so-called GWaltz-LOS variant shares
the whole processing pipeline with GWaltz and only aban-
dons part of GMR signals before observation selection. The
results show GWaltz can achieve 2.86×, 2.25× and 1.30×
improvements in the orbit distance, eccentricity error and
phase error, respectively. This indicates the effectiveness of
GWaltz’s exploitation in ghost multipath reflections.

5.2.2 Performance and Measuring Distance. We evaluate
GWaltz under the conditions of different measuring distances
(60𝑐𝑚 ∼ 150𝑐𝑚). The reflector distance and the rotating
speed are set to 30𝑐𝑚 and 2000𝑟𝑝𝑚 respectively.
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Figure 17: Performance with practical factors.

The results are shown in Fig. 16(a). The red bars depict
the average absolute errors of the orbit restoration, and their
error bars stand for corresponding standard deviations. The
stacked blue & yellow bars stand for the average normalized
errors of the shape features. We normalize the phase errors
to [0, 1] with the value range of [0, 𝜋/2] since the maxi-
mum angle between the major axes of two ellipses will not
exceed 𝜋/2. Because the eccentricity of an ellipse belongs
to [0, 1), we keep the eccentricity errors unchanged. The
stacked bar, i.e., the sum of the normalized shape features
(denoted by shape errors below), measures the ability of the
shape estimation.
The average orbit distances are 6.62𝑢𝑚, 3.99𝑢𝑚, 5.53𝑢𝑚

and 7.26𝑢𝑚 respectively, and the shape errors are 0.35, 0.34,
0.39 and 0.49 respectively. The results show that both orbit
errors and shape errors do not increase significantly along
with the measuring distance. Since GWaltz has a good perfor-
mance in relatively long measuring distances, its capability
of wireless and non-contact working manner significantly
surpasses traditional approaches.

5.2.3 Performance and Reflector Distance. Weevaluate GWaltz
under the conditions of different reflector distances (15𝑐𝑚 ∼
60𝑐𝑚). The measuring distance and the rotating speed are set
to 90𝑐𝑚 and 2000𝑟𝑝𝑚 respectively. Fig. 16(b) shows the aver-
age orbit distances are 7.26𝑢𝑚, 7.28𝑢𝑚, 7.01𝑢𝑚 and 8.85𝑢𝑚
respectively, and the shape errors are 0.29, 0.34, 0.72 and
0.48 respectively. The errors are acceptable in these cases,
although they increase slightly with the increasing reflector
distance. We observe the ERAM of the 60𝑐𝑚 case and find
the magnitudes of NLOS GMRs in it are indeed much weaker
than the 15𝑐𝑚 case. This relatively long distance indicates
that when measuring orbits for horizontally placed rotors in
practice, we can probably leverage the GMRs from the floor
or pillars to provide multi-angle observations.

5.2.4 Performance and Rotating Speed. We evaluate GWaltz
under the conditions of different rotating speeds (1000𝑟𝑝𝑚 ∼
2500𝑟𝑝𝑚). The measuring distance and the reflector distance
are set to 90𝑐𝑚 and 30𝑐𝑚 respectively. Fig. 16(c) shows the

average orbit distances are 5.83𝑢𝑚, 7.90𝑢𝑚, 4.15𝑢𝑚, and
7.63𝑢𝑚 respectively, and the shape errors are 0.72, 1.13, 0.41
and 0.51 respectively. We find the performance of GWaltz
obviously degrades in low-speed cases. This is because when
the input power is constant, the lower the rotating speed, the
higher the 2D vibration amplitude. However, it’s difficult for
the system to determine the cause of an extract displacement
with a large amplitude when processing NLOS GMRs: it can
result from a large-amplitude motion of the target or just the
estimation error when SNR is limited. Therefore, we believe
that further improving the displacement extraction from
GMR signals is necessary in the future design of GWaltz.

5.3 Impact of Practical Factors
Next, we evaluate the impacts of two practical factors, work-
load, and multipath conditions. We also discuss the neces-
sity of adding extra metal reflectors to improve the perfor-
mance. The measuring distance, reflector distance, and rotat-
ing speed are set to 90𝑐𝑚, 30𝑐𝑚, and 2000𝑟𝑝𝑚 respectively.

5.3.1 Impact ofWorkload Condition. Weadd the same amount
of water to the 6 evenly-placed test tubes of the centrifuge to
control its workload. When there are 0 or 6 test tubes occu-
pied with water, the machine, and its orbit is stable. However,
when 2 or 4 test tubes are occupied, the centrifuge works
in an unstable state because its center of mass is not in a
balanced position.
Fig. 17(a) shows the average orbit distances are 6.95𝑢𝑚,

8.14𝑢𝑚, 12.08𝑢𝑚 and 5.26𝑢𝑚 respectively, and the shape er-
rors are 0.39, 0.83, 1.07 and 0.54 respectively. GWaltz works
well in stable states, but its performance degrades in un-
stable states. For unstable states, both the diameter and the
eccentricity of the orbits are larger than those of stable states.
Thus, the reason for the poor performance is similar to that in
§5.2.4, and there’s still room for improvement in the accurate
displacement extraction from NLOS GMR signals.

5.3.2 Impact of Multipath Condition. As shown in Fig. 13,
we change multipath conditions from mild (one wooden
table), moderate (one wall) to rich (two walls) to evaluate
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Figure 18: Measuring the 2D orbit of a fan.

GWaltz. Fig. 17(b) shows the average orbit distances are
4.98𝑢𝑚, 7.41𝑢𝑚, and 7.51𝑢𝑚 respectively, and the shape
errors are 0.97, 0.32, and 0.63 respectively. Since GWaltz
exploits ambient multipath reflections, basically richer multi-
path condition tends to achieve better performance. The per-
formance in the moderate condition is good enough, which
relaxes the requirements for system deployment.

5.3.3 Necessity of Dedicated Reflector. Weplace severalmetal
plates with different sizes (diameter of 10𝑐𝑚, 20𝑐𝑚 and 30𝑐𝑚)
close to the wall to see whether the metal reflector help
GWaltz produce better results or not. Fig. 17(c) shows the
average orbit distances are 5.14𝑢𝑚, 5.32𝑢𝑚, 6.68𝑢𝑚, and
4.30𝑢𝑚 respectively, and the shape errors are 0.38, 0.31, 0.36
and 0.50 respectively. The results suggest that there is no
obvious improvement when we dedicatedly place the metal
reflectors instead of leveraging ambient reflectors.

5.3.4 Availability of Floor as Reflector. We also measure the
2D orbit of a fan with GWaltz as shown in Fig 18(a). Since the
fan’s central axis is parallel to the ground, the floor is the only
ambient reflector we reckon on. We repeat the measurement
for about 50 times, and the statistical results in Fig 18(a).
The average orbit distance is 13.95𝑢𝑚 for the fan with about
220𝑢𝑚-diameter 2D trajectory, while the eccentricity error
and orbit phase error are also small. The good and relatively
consistent results demonstrate the availability of the floor as
the only reflector.

5.4 Micro Benchmarks
In this section, we run some microbenchmarks on GWaltz.

5.4.1 Accuracy and Correctness of 1D Displacement Extrac-
tion. One of the contributions of GWaltz is to ensure the
correctness and improve the accuracy of 1D displacement
extraction. Fig. 19 shows the amplitude and frequency estima-
tion errors along the X-axis and Y-axis when the measuring
distance increases. We define the X-axis as the LOS direction
and the Y-axis as its perpendicular direction. Note that the
1D displacement along the X-axis is extracted from the LOS
GMR signal, while the 1D displacement along the Y-axis is
derived from the projection of the 2D orbit to that direction.

For the correctness, we can see that the frequency estima-
tion errors are all no more than 0.5𝐻𝑧, which means Module
2 has extracted the correct displacement sequences. For ac-
curacy, due to the high SNR of the LOS GMR signal, the
amplitude estimation errors along the X-axis are basically
lower than those along the Y-axis. Nevertheless, the errors
of those inferred 1D displacements are no more than 8𝑢𝑚 in
most cases, which demonstrates our system can accurately
measure 2D rotor motion to a certain extent.

5.4.2 System Stability. Next, we evaluate the stability of 3
key functions of GWaltz in terms of GMR detection, 1D ob-
servation selection, and 2D restoration. Since our centrifuge
can continuously work for about 20 minutes, we collect the
mmWave data once every 4 minutes.
(1) Stability of GMR Detection: GMR detection is the 1st

function of GWaltz whose stability acts as the prerequi-
site of the stability of the whole system. We calculate the
average intersection over union (IoU) [29] between the
GMR areas at time 𝑡 = 0 and those at later times. The
line plot in Fig. 20(a) shows that the average IoUs are
around 0.9, which means the GMR area detections are
highly consistent across time.

(2) Stability of Observation Selection: Then, we calcu-
late the distances between the aggregated candidate loca-
tions across time as the metric for the stability of the 3rd
module. The unit of this metric is "bin", i.e., the range or
angular bin. The bar plot in Fig. 20(a) proves the stability
since both the median distances and their quartile ranges
are very small and relatively stable.

(3) Stability of Orbit Restoration: At last, we evaluate
the stability of the 4th module by visualizing 3 shape
features, i.e., major-axis length, eccentricity, and orbit
phase, across time. The results in Fig. 20(b) illustrate that
these shape features achieve relatively high stability in
most cases.

5.4.3 Processing Efficiency. At last, we test the processing
efficiency of GWaltz. We collect each module’s running time
when processing each frame of the entire dataset and show
their median values in Fig. 21 The results show that 1D
processing uses about 2.16𝑠 , almost 80% of processing time,
while 2D orbit restoration uses about 0.60𝑠 . We find during
1D processing, RBF in the 1st module and fitting process
in the 2nd module are the most time-consuming parts. To
improve the time efficiency, we can run these two modules
in parallel due to the high locality of their input data.

6 RELATEDWORKS
6.1 RF-based Micro-movement Sensing
RF-based wireless sensing is a new family of non-intrusive
measurement technologies that have been widely explored
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in industrial applications recently [9, 11, 12, 15, 18, 25, 45].
In this subsection, we review the most related literature of
GWaltz in micro-movement sensing with RF signals.

Mechanical VibrationMeasurement:Recently, several
works have been proposed to measure mechanical vibrations
of industrial machines. For the longer-wavelength RF sig-
nals, e.g., RFID, Tagbeat manages to estimate the frequency
of 𝑐𝑚-level mechanical vibrations [45]. Shorter-wavelength
RF signals have the opportunity to restore original wave-
forms of vibration signals, e.g., ART turns a 2.4𝐺𝐻𝑧 signal
to a wireless vibrometer [41]. Compared to these works,
we believe mmWave is a better choice to measure sub-𝑚𝑚-
level vibrations. Moreover, GWaltz focuses on extracting 2D
micro-movements rather than just measuring 1D vibrations.

mmWave Micro-movement Measurement: The sen-
sitivity to micro-movement of mmWave is much higher
due to its short wavelength. Therefore, apart from posi-
tioning [3, 24, 43], tracking [42, 48], imaging [25, 47, 49],
gesture recognition [20, 31, 38] and material recognition
[19, 44], mmWave is more competitive in continuous micro-
movement sensing, e.g., measuring vibrations of the machine
surface [15], the water surface [36], the chest [5, 10, 22, 46],
and etc. Similarly, GWaltz shares basic ideas of (i) translating
signal’s phase changes to 1D displacements and (ii) imaging a
rigid-body with reflections from different parts on its surface.
But we make extra contributions by studying the properties
of mmWave GMRs and conquering critical challenges when
exploiting them to measure 2D micro-movements.

6.2 Multipath Exploitation
Traditionally, the multipath effect is considered as the main
interference for wireless communication and sensing [21, 37].
Nowadays, the increasing size of antenna arrays has im-
proved the spatial separability ofmultipath reflections, which
makes researchers consider exploiting the extra information
contained in them.

Since multipath reflections create ghost images of the tar-
get, traditional approaches manage to detect and eliminate

GMRs, either through dedicated algorithms [30] or special-
ized hardware, [39]. Recent studies find ghost images sharing
the same motion characteristics with the intrinsic image [16]
can improve the positioning performance: the intrinsic im-
age provides the basic location while ghost images from
prior known reflectors further revise the positioning result
[17, 32]. Moreover, several recent works extend this posi-
tioning mechanism to localize the speaker with the help of
audio GMRs [33, 40]. GWaltz differs from the above works
because it explores the properties of GMRs to reveal micro-
movements and form multi-angle but coherent observations
of the same target.

7 CONCLUSION
In this work, we present GWaltz, a mmWave sensing system
that manages to measure sub-𝑚𝑚-level 2D rotor orbits by
exploiting ghost multipath reflections. GWaltz provides an
in-depth analysis of the relationship between the rotor orbit
and GMR signals and studies the orbit restoration problem
under poor signal quality. Our evaluations show that GWaltz
achieves an absolute error of about 8.42𝑢𝑚 and well restores
the shape features when measuring 100𝑢𝑚-diameter orbits.

For future work, we plan to deploy an embedded version of
GWaltz in the real-world industrial environment to measure
the rotor orbits of large rotating machinery like pumps and
generators. We believe there could still be plenty of critical
challenges to solve during the field studies.

ACKNOWLEDGMENTS
We are sincerely grateful to all the anonymous reviewers
for their valuable and constructive comments. This work
was jointly supported by National Key Research and Devel-
opment Program of China No. 2017YFB1003000, National
Natural Science Foundation of China No. 61902213, Nanjing
Nangang Industrial IoT Research Fund, and the Research and
Development Project of Key Core Technology and Generic
Technology in Shanxi Province under Grant 2020XXX007.



Dancing Waltz with Ghosts: Measuring Sub-𝑚𝑚-Level 2D Rotor Orbit with a Single mmWave Radar IPSN ’21, May 18–21, 2021, Nashville, TN, USA

REFERENCES
[1] Maurice L. Adams. 2009. Rotating Machinery Vibration: From Analysis

to Troubleshooting. CRC Press.
[2] N. Bachschmid, P. Pennacchi, and A. Vania. 2004. Diagnostic Signifi-

cance of Orbit Shape Analysis and its Application to Improve Machine
Fault Detection. Journal of the Brazilian Society of Mechanical Sciences
and Engineering 26, 2 (2004), 200–208.

[3] Guillermo Bielsa, Joan Palacios, Adrian Loch, Daniel Steinmetzer, Paolo
Casari, and JoergWidmer. 2018. Indoor Localization using Commercial
Off-The-Shelf 60GHz Access Points. In Proceedings of IEEE INFOCOM,
Honolulu, HI, USA, April 16-19, 2018. IEEE, 2384–2392.

[4] Keyence Corporation. 2020. Eddy-Current Displacement
Sensor. https://www.keyence.com/ss/products/measure/
measurement_library/type/inductive/.

[5] Lei Ding, Murtaza Ali, Sujeet Patole, and Anand Dabak. 2016. Vibra-
tion Parameter Estimation using FMCW Radar. In Proceedings of IEEE
ICASSP, Shanghai, China, March 20-25, 2016. IEEE, 2224–2228.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996.
A Density-based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proceedings of AAAI KDD, Portland, Oregon,
USA, August 2–4, 1996. AAAI, 226–231.

[7] Walter Gander, Gene H. Golub, and Rolf Strebel. 1994. Least-Squares
Fitting of Circles and Ellipses. BIT Numerical Mathematics 34, 4 (1994),
558–578.

[8] Paul Goldman and Agnes Muszynska. 1999. Application of Full Spec-
trum to Rotating Machinery Diagnostics. Orbit 20, 1 (1999), 17–21.

[9] Junchen Guo, Ting Wang, Yuan He, Meng Jin, Chengkun Jiang, and
Yunhao Liu. 2019. TwinLeak: RFID-based Liquid Leakage Detection
in Industrial Environments. In Proceedings of IEEE INFOCOM, Paris,
France, April 29 - May 2, 2019. IEEE, 883–891.

[10] Unsoo Ha, Salah Assana, and Fadel Adib. 2020. Contactless Seismocar-
diography via Deep Learning Radars. In Proceedings of ACM MobiCom,
Virtual Event, September 21-25, 2020. ACM, 62:1–62:14.

[11] Yuan He, Junchen Guo, and Xiaolong Zheng. 2018. From Surveillance
to Digital Twin: Challenges and Recent Advances of Signal Processing
for Industrial Internet of Things. IEEE Signal Processing Magazine 35,
5 (2018), 120–129.

[12] Yuan He, Yilun Zheng, Meng Jin, Songzhen Yang, Xiaolong Zheng, and
Yunhao Liu. 2021. RED: RFID-based Eccentricity Detection for High-
Speed Rotating Machinery. IEEE Transactions on Mobile Computing
20, 4 (2021), 1590–1601.

[13] Texas Instruments. 2020. IWR1642: Single-Chip 76GHz to 81GHz
mmWave Sensor Integrating DSP and MCU. http://www.ti.com/
product/IWR1642.

[14] Texas Intruments. 2020. Introduction to mmWave Sensing: FMCW
Radars. https://training.ti.com/intro-mmwave-sensing-fmcw-radars-
module-1-range-estimation.

[15] Chengkun Jiang, Junchen Guo, Yuan He, Meng Jin, Shuai Li, and
Yunhao Liu. 2020. mmVib: Micrometer-Level Vibration Measurement
with mmWave Radar. In Proceedings of ACM MobiCom, Virtual Event,
September 21-25, 2020. ACM, 45:1–45:13.

[16] Alexander Kamann, Patrick Held, Florian Perras, Patrick Zaumseil,
Thomas Brandmeier, and Ulrich T. Schwarz. 2018. Automotive Radar
Multipath Propagation in Uncertain Environments. In Proceedings of
IEEE International Conference on Intelligent Transportation Systems,
Maui, HI, USA, November 4-7, 2018. IEEE, 859–864.

[17] Michael Leigsnering, Fauzia Ahmad, Moeness G. Amin, and Abdel-
hak M. Zoubir. 2015. Compressive Sensing-based Multipath Exploita-
tion for Stationary and Moving Indoor Target Localization. IEEE
Journal of Selected Topics in Signal Processing 9, 8 (2015), 1469–1483.

[18] Ping Li, Zhenlin An, Lei Yang, and Panlong Yang. 2019. Towards
Physical-Layer Vibration Sensing with RFIDs. In Proceedings of IEEE

INFOCOM, Paris, France, April 29 - May 2, 2019. IEEE, 892–900.
[19] Zhengxiong Li, Baicheng Chen, Zhuolin Yang, Huining Li, Chenhan

Xu, Xingyu Chen, KunWang, andWenyao Xu. 2019. FerroTag: a Paper-
based mmWave-Scannable Tagging Infrastructure. In Proceedings of
ACM SenSys, New York, NY, USA, November 10-13, 2019. ACM, 324–337.

[20] Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood,
Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016.
Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM
Transactions on Graphics 35, 4 (2016), 142:1–142:19.

[21] Chris Xiaoxuan Lu, Stefano Rosa, Peijun Zhao, Bing Wang, Changhao
Chen, Niki Trigoni, and Andrew Markham. 2020. See through Smoke:
Robust Indoor Mapping with Low-Cost mmWave Radar. In Proceedings
of ACM MobiSys, Virtual Event, June 15-19, 2020. ACM, 14–27.

[22] Ilya V. Mikhelson, Sasan Bakhtiari, ThomasW. Elmer, Alan V. Sahakian,
et al. 2011. Remote Sensing of Heart Rate and Patterns of Respiration
on a Stationary Subject using 94GHz Millimeter-Wave Interferometry.
IEEE Transactions on Biomedical Engineering 58, 6 (2011), 1671–1677.

[23] Caner Ozdemir. 2012. Inverse Synthetic Aperture Radar Imaging with
MATLAB Algorithms. Vol. 210. John Wiley & Sons.

[24] Ioannis Pefkianakis and Kyu-Han Kim. 2018. Accurate 3D Localization
for 60GHz Networks. In Proceedings of ACM SenSys, Shenzhen, China,
November 4-7, 2018. ACM, 120–131.

[25] Akarsh Prabhakara, Vaibhav Singh, Swarun Kumar, and Anthony
Rowe. 2020. Osprey: A mmWave Approach to Tire Wear Sensing. In
Proceedings of ACM MobiSys, Virtual Event, June 15-19, 2020. ACM,
28–41.

[26] Alexander Prokhorov. 2012. Effective Emissivities of Isothermal Black-
body Cavities Calculated by the Monte Carlo Method using the Three-
Component Bidirectional Reflectance Distribution Function Model.
Applied Optics 51, 13 (2012), 2322–2332.

[27] Mark A. Richards. 2005. Fundamentals of Radar Signal Processing.
McGraw-Hill Education.

[28] Hermann Rohling. 1983. Radar CFAR Thresholding in Clutter and
Multiple Target Situations. IEEE Trans. Aerospace Electron. Systems 4
(1983), 608–621.

[29] Adrian Rosebrock. 2016. Intersection over Union for Object Detec-
tion. https://www.pyimagesearch.com/2016/11/07/intersection-over-
union-iou-for-object-detection/.

[30] In-hwan Ryu, Insu Won, and Jangwoo Kwon. 2018. Detecting Ghost
Targets using Multi-Layer Perceptron in Multiple-Target Tracking.
Symmetry 10, 1 (2018), 16.

[31] Panneer Selvam Santhalingam, Al Amin Hosain, Ding Zhang, Parth
Pathak, Huzefa Rangwala, and Raja Kushalnagar. 2020. mmASL:
Environment-Independent ASL Gesture Recognition Using 60GHz
Millimeter-Wave Signals. Proceedings of ACM IMWUT 4, 1 (2020),
1–30.

[32] Pawan Setlur, Moeness Amin, and Fauzia Ahmad. 2011. Multipath
Model and Exploitation in Through-the-Wall and Urban Radar Sensing.
IEEE Transactions on Geoscience and Remote Sensing 49, 10 (2011), 4021–
4034.

[33] Sheng Shen, Daguan Chen, Yulin Wei, Zhijian Yang, and Romit Roy
Choudhury. 2020. Voice Localization using Nearby Wall Reflections.
In Proceedings of ACM MobiCom, Virtual Event, September 21-25, 2020.
ACM, 7:1–7:14.

[34] Petre Stoica, Randolph L. Moses, et al. 2005. Spectral Analysis of Signals.
Pearson Prentice Hall Upper Saddle River, NJ.

[35] Petre Stoica, Zhisong Wang, and Jian Li. 2006. Robust Capon Beam-
forming. Signal Processing Letters IEEE 10, 6 (2006), 172–175.

[36] Francesco Tonolini and Fadel Adib. 2018. Networking across Bound-
aries: Enabling Wireless Communication through the Water-Air In-
terface. In Proceedings of ACM SIGCOMM, Budapest, Hungary, August
20-25, 2018. ACM, 117–131.

https://www.keyence.com/ss/products/measure/measurement_library/type/inductive/
https://www.keyence.com/ss/products/measure/measurement_library/type/inductive/
http://www.ti.com/product/IWR1642
http://www.ti.com/product/IWR1642
https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation
https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/


IPSN ’21, May 18–21, 2021, Nashville, TN, USA Junchen Guo, Meng Jin, Yuan He, Weiguo Wang, and Yunhao Liu

[37] David Tse and Pramod Viswanath. 2005. Fundamentals of Wireless
Communication. Cambridge University Press.

[38] Luc Vignaud, Antoine Ghaleb, Julien Le Kernec, and Jean-Marie Nico-
las. 2009. Radar High Resolution Range & Micro-Doppler Analysis of
Human Motions. In Proceedings of IEEE International Radar Conference,
Pasadena, CA, USA, May 4-8, 2009. IEEE, 1–6.

[39] Tristan Visentin, Jürgen Hasch, and Thomas Zwick. 2018. Analysis of
Multipath and DOA Detection using a Fully Polarimetric Automotive
Radar. International Journal of Microwave and Wireless Technologies
10, 5-6 (2018), 570–577.

[40] Weiguo Wang, Jinming Li, Yuan He, and Yunhao Liu. 2020. Symphony:
Localizing Multiple Acoustic Sources with a Single Microphone Array.
In Proceedings of ACM SenSys, Virtual Event, November 16-19, 2020.
ACM, 82–94.

[41] Teng Wei, Shu Wang, Anfu Zhou, and Xinyu Zhang. 2015. Acoustic
Eavesdropping through Wireless Vibrometry. In Proceedings of ACM
MobiCom, Paris, France, September 7-11, 2015. ACM, 130–141.

[42] Teng Wei and Xinyu Zhang. 2015. mTrack: High-Precision Passive
Tracking using Millimeter Wave Radios. In Proceedings of ACM Mobi-
Com, Paris, France, September 7-11, 2015. ACM, 117–129.

[43] Teng Wei, Anfu Zhou, and Xinyu Zhang. 2017. Facilitating Robust
60GHz Network Deployment by Sensing Ambient Reflectors. In Pro-
ceedings of USENIX NSDI, Boston, MA, USA, March 27-29, 2017. USENIX,

213–226.
[44] Chen Shu Wu, Feng Zhang, Bei Bei Wang, and KJ Ray Liu. 2020.

mSense: Towards Mobile Material Sensing with a Single Millimeter-
Wave Radio. Proceedings of ACM IMWUT 4, 3 (2020), 1–20.

[45] Lei Yang, Yao Li, Qiongzheng Lin, Huanyu Jia, Xiang-Yang Li, and
Yunhao Liu. 2017. Tagbeat: Sensing Mechanical Vibration Period with
COTS RFID Systems. IEEE/ACM Transactions on Networking 25, 6
(2017), 3823–3835.

[46] Zhicheng Yang, Parth H. Pathak, Yunze Zeng, Xixi Liran, and Prasant
Mohapatra. 2016. Monitoring Vital Signs using Millimeter Wave. In
Proceedings of ACMMobiHoc, Paderborn, Germany, July 4-8, 2016. ACM,
211–220.

[47] Feng Zhang, Chen Shu Wu, Bei Bei Wang, and KJ Ray Liu. 2020. mm-
Eye: Super-Resolution Millimeter Wave Imaging. IEEE Internet of
Things Journal 1, 1 (2020), 1–20.

[48] Anfu Zhou, Shaoyuan Yang, Yi Yang, Yuhang Fan, and Huadong
Ma. 2019. Autonomous Environment Mapping Using Commodity
Millimeter-Wave Network Device. In Proceedings of IEEE INFOCOM,
Paris, France, April 29 - May 2, 2019. IEEE, 1126–1134.

[49] Yanzi Zhu, Yibo Zhu, Ben Y. Zhao, and Haitao Zheng. 2015. Reusing
60GHz Radios for Mobile Radar Imaging. In Proceedings of ACM Mobi-
Com, Paris, France, September 7-11, 2015. ACM, 103–116.


	Abstract
	1 Introduction
	2 Exploiting GMRs For Orbit Restoration
	2.1 mmWave Displacement Measurement
	2.2 Orbit-to-Signal Transformation Model

	3 GWaltz Overview
	4 GWaltz Design
	4.1 GMR Signal Extraction
	4.2 1D Displacement Extraction
	4.3 Observation Selection
	4.4 2D Orbit Restoration
	4.5 Discussion

	5 Evaluation
	5.1 Implementation and Methodology
	5.2 Performance of Orbit Restoration
	5.3 Impact of Practical Factors
	5.4 Micro Benchmarks

	6 Related Works
	6.1 RF-based Micro-movement Sensing
	6.2 Multipath Exploitation

	7 Conclusion
	Acknowledgments
	References

