
vGaze: Implicit Saliency-Aware Calibration for
Continuous Gaze Tracking on Mobile Devices

Songzhou Yang, Yuan He, Meng Jin
School of Software and BNRist, Tsinghua University

yangsz18@mails.tsinghua.edu.cn, heyuan@tsinghua.edu.cn, mengj@tsinghua.edu.cn

Abstract—Gaze tracking is a useful human-to-computer inter-
face, which plays an increasingly important role in a range of
mobile applications. Gaze calibration is an indispensable compo-
nent of gaze tracking, which transforms the eye coordinates to
the screen coordinates. The existing approaches of gaze tracking
either have limited accuracy or require the user’s cooperation
in calibration and in turn hurt the quality of experience. We in
this paper propose vGaze, implicit saliency-aware calibration for
continuous gaze tracking on mobile devices. The design of vGaze
stems from our insight on the temporal and spatial dependent
relation between the visual saliency and the user’s gaze. vGaze
is implemented as a light-weight software that identifies video
frames with “useful” saliency information, sensing the user’s head
movement, and performs opportunistic calibration using only
those “useful” frames. We implement vGaze on a commercial
mobile device and evaluate its performance in various scenarios.
The results show that vGaze can work at real time with video
playback applications. The average error of gaze tracking is
1.51cm.

Index Terms—Gaze Tracking, Visual Saliency, Implicit Cali-
bration, Mobile Computing

I. INTRODUCTION

Gaze reflects the potential intention and interest of a user on
the content displayed on the mobile device. Gaze tracking is a
useful human-to-computer interface, which plays an increas-
ingly important role in a range of mobile applications, such
as recommendation systems [1], [2], viewport-driven video
streaming [3], [4], gaze-based human-to-computer interaction
(HCI) [5], [6], etc.

The primary task of gaze tracking is to project the eye
movements captured by the camera onto the screen of the
mobile device. Due to the intrinsic mobility of the user, the
relative position of the user’s eyes to the screen may be varied
now and then. Therefore, gaze calibration, which transforms
the eye coordinates to the screen coordinates, becomes an
indispensable component of gaze tracking.

Gaze calibration is a non-trivial task, as it concerns not only
the tracking accuracy, but also affects the quality of experi-
ence of a mobile user. Early works mainly resort to explicit
calibration, which requires the user’s cooperation to gaze at
stimuli points at predefined coordinates on the screen [7]–[12].
Calibration in this way inevitably interrupts the normal usage
and hurts the user’s experience. Deep learning based gaze
tracking [13]–[16] doesn’t require calibration. Instead, it needs
to train a neural network model, which directly transforms
the eye position in the captured image to the corresponding
gaze position on the screen. The tracking accuracy of those

approaches highly depends on the training process and is likely
to degrade when generalized to different users and different
contexts. Running intensive neural network models on the
mobile devices is another obstacle.

Recent works propose to leverage visual saliency for im-
plicit gaze calibration [17], [18]. The visual saliency is a
kind of visual information (i.e., distinctive color, intensity,
orientation, objects, etc.) that is contained in the video frame
itself. Compared to other content in the screen, visual saliency
is much more likely to draw the user’s attention. Hence,
saliency is deemed as a significant indicator of user’s gaze.
More importantly, implicit gaze calibration doesn’t interrupt
the normal usage, so it can preserve high quality of experience
during the process of calibration. Unfortunately, directly or
blindly using the saliency information leads to poor calibration
accuracy.

We look into the mechanism of human attention and find
that the saliency is not always ”usable” for gaze calibration.
The effectiveness of saliency is actually determined by both
spatial and temporal features of the saliency. Specifically, the
user’s attention is in the bottom-up mode during the first
around 150ms after a video frame comes into his/her sight.
In that short period, the user’s gaze has a strong correlction
with the saliency in the video frames. After that, the user’s
attention enters the top-down mode, where the user’s con-
sciousness dominates the gaze. Whether the saliency is usable
then depends on the visual characteristics of the frame. For
example, when a frame contains multiple distinct regions or
contains relatively large distinct regions, the saliency inside
generally has low effectiveness in drawing the user’s attention.
How to sufficiently and properly exploit saliency information
for gaze calibration remains an open problem.

In order to address the above problem, we in this paper
propose vGaze, implicit saliency-aware calibration for contin-
uous gaze tracking on mobile devices. The design of vGaze
stems from our insight on the temporal and spatial dependent
relation between the saliency and the user’s gaze/attention.
vGaze is implemented as a light-weight software that identifies
video frames with “useful” saliency information, senses the
user’s eye movement, and performs opportunistic calibration
using only those “useful” frames. vGaze realizes accurate and
efficient gaze calibration, without sacrificing the quality of
experience.

Our contributions are summarized as follows:
• vGaze is the first work that quantifies the effectiveness of

the visual saliency contained in a video frame. It provides
fundamental understanding on the temporal and spatial
dependent relation between the saliency and the user’s
gaze.

• The design of vGaze tackles several critical challenges
in saliency-aware gaze calibration: i) By tracing the
temporal and spatial features of video frames, vGaze
enables opportunistic calibration, which answers the key
questions, i.e., when and how to utilize saliency for
calibration. ii) vGaze has high applicability: it includes a
gaze compensation method to correct the gaze distortion
caused by the biases camera position, a head movement
tracking module and a scene cut monitoring module to
trigger re-calibration.

• We implement vGave on commercial mobile device and
evaluate its performance with extensive experiments.
vGaze can work at real time with video playback ap-
plications. The average error of gaze tracking is 1.51cm.

The rest of this paper is organized as follows. Section II dis-
cusses the related works. Section III presents the preliminaries
of our work. We elaborate on the design of vGaze in Section
IV, implement it and evaluate it in Section V. Section VI
discusses practical issues. We conclude this paper in Section
VII.

II. RELATED WORK

Based on whether the calibration process is required, we
classify the existing gaze tracking methods into two categories:
calibration-free methods and calibration-based methods.

A. Calibration-free methods

This kind of methods mainly leverage deep learning meth-
ods to directly infer the gaze without calibration. Specifically,
the basic idea is to extract features from images of the eyes and
map them directly to points on the gaze plane based on a deep
learning model. The model is usually trained based on large-
scale datasets of eye images and the corresponding groundtruth
of gaze positions [13]. For example, GazeCapture [14] trains a
convolutional neural network based on an eyes image dataset
which are caputured using front cameras of mobile devices.
Mayberry et al. [19] design a neural network training with data
collected from cameras on eyeglasses to predict the user’s gaze
with such an eyeglass. Park et al. [15] design a deep neural
network to generate an intermediate pictorial representation
of eye, which is further used for gaze tracking. A problem
of these methods is that their accuracy largely rely on the
scale of the training data. Thus they suffer poor performance
once the training data are insufficient. More importantly, such
deep learning based method is difficult to be execute on the
resource-limited mobile devices.

B. Calibration-based methods

Traditional methods will first compute the gaze direction
based on the anatomy eye model. Then the intersection of the
gaze direction and the gaze plane (e.g., the screen) determines
the gaze position. Here, a calibration process is required to set

some parameters (e.g., the relative position between the user’s
eye and the screen). For example, Ohno and Mukawa [20]
utilize two cameras to obtain the eye position and utilize an
infrared camera to build the reflection model of the eyes. To
further calibrate the model, the user is asked to look at two
stimuli on the screen. Mora and Odobez [21] utilize Kinect
to combine 2D image information and 3D depth information
to build a 3D head model and use this model to infer gaze
direction. An offline calibration is needed to fit the user’s
features to the 3D model. Similar methods include [22], [23].
This kind of method is also widely used by commecial gaze
trackers like Tobii [24], with the support of hardwares. Some
works replace the camera with other electronic components,
like photodiodes. LiGaze [25] analyse reflected screen light by
user’s eye with a ring of photodiodes placed on VR headsets
to infer the user’s gaze direction. Li and Zhou [26] use near-
infrared light deployed on the eyeglasses as a light source
along with photodiodes to capture changes in the light reflected
by the user’s eyes to infer the user’s gaze. In these two
works, initial calibration is used to eliminate user diversity.
In summary, those methods either need explicit calibration for
gaze tracking initialization or require dedicated hardware. So
they are not suitable for mobile devices.

With the development of computer vision, methods of using
image information have been proposed. These methods usually
build a regression model leveraging the facial/eye features
and the ground-truth gaze positions. Using the regression
model, one can output estimated gaze positions with given
facial/eye features. In this kind of methods, calibration process
is required to collect data for regression analysis. The most
popular calibration method is the 9-points calibration [7], [8],
where a 3 × 3 visual point matrix is displayed on the screen
and the user is asked to gaze at each point in turn. Obviously,
the 9-points calibration usually takes a long time, which harms
user experience. To solve this problem, Pfeuffer et al. [9]
propose a smooth pursuit-based calibration method. Taking
advantage of the human eye’s automatic tracking of moving
targets, this approach can collect more valid data in a shorter
period of time.

However, although being accelerated, such explicit calibra-
tion process inevitably interrupt the continuous experience of
the user. To solve this problem, Sugano et al. [17] leverage
saliency information to achieve implicit calibration. In this
method, gaussian process regression is used to learn the
mapping between the images of the eyes and the gaze points.
Sugano and Bulling [18] bring saliency into egocentric video.
They use saliency extracted from the outer camera to calibra-
tion eye position from the inner camera. However, exsiting
methods just blindly involves all the saliency information in
the regression process, resulting in high calibration error since
not all the frames contain useful saliency information for
calibration.

III. PRELIMINARY

In this section, we briefly introduce the principle of gaze
calibration and gaze tracking, the basic knowledge of attention

Fig. 1. Optical reflection model between the user’s eye and the screen.

and saliency and our insight and process on saliency.

A. Principle of gaze calibration and tracking

The basic concept behind gaze tracking is to capture user’s
eye movement, and map it to the points on the gaze plane
(i.e., the screen), as shown in Figure 1. Two important pieces
of information are required in this process:

The first is a 3D model of the eye, based on which we can
estimate the visual axis (gaze direction). Then, the intersection
of the axis and the gaze plane determines the gaze point. Here,
the 3D model of the eye can be captured by a RGB-D camera,
which is widely available on today’s smartphones such as
iPhone X, Huawei Mate 20, OPPO Find X, etc. Specifically,
an inferred projector projects a beam of structured infrared
light onto the user’s face especially the eye area and the RGB-
D camera captures the reflection from the eye. The reflected
structure light contains the depth information, based on which
we can construct a 3D movement model of the eye. The
advantage in using infrared light is that it is imperceptible to
human eyes and is immune to the influences of environment
light. Moreover, it protects the user’s privacy.

The second is the relative position between the user’s eye
and the gaze plane. Without this information, the estimated
gaze position suffers an offset from the real position. So, a gaze
calibration process is required to compensate this offset. In
typical calibration process, users are asked to fixate their gaze
on certain stimuli on the screen, meanwhile the movement of
their eyes is captured by the camera. The stimuli act as the
ground truth of the gaze positions. The offset between the
estimated gaze position and ground truth position captures a
transform vector. Assuming that the relative position between
the eye and the screen remains unchanged within a short period
of time, we can directly applying the transform vector on the
estimated gaze positions for gaze calibration.

However, as we have discussed previously, the explicit
calibration process will harm the user experience, especially in
the mobile scenarios where the re-calibration process should
be triggered frequently to update the transform vector. To solve
this problem, researchers try to use the information contained
in the video frame itself (i.e., visual saliency) to perform gaze
calibration in an implicit manner.

B. Saliency-based calibration

The basic insight behind saliency-based calibration is that
the user’s attention/gaze is usually attracted by several salient
regions/objects on the screen when he/she is watching a video.

Fig. 2. Frames and corresponding saliency maps along with gaze points.

Such salient regions/objects are collectively called as saliency,
which stands out from its neighbors and can immediately draw
the user’s attention. Therefore, the positions of those salient
regions/objects can be treated as the ground truth of user’s gaze
position, which helps to estimate the user’s gaze. Today, with
the development of computer vision, many effective methods
have been proposed to detect the salient regions/objects in
a video or a frame. Borji et al. [27] comprehensively re-
views existing saliency detection mechanisms. These methods
generally output a visual saliency heatmap, which shows the
saliency of each pixel in a frame and can be regarded as
the probability distribution of gaze. As an example, Figure
2 shows two video frames and the corresponding saliency
heatmaps. Videos are from EyeTrackUAV [28] dataset. Here,
we utilize Apple’s algorithms [29] to detect saliency, which
extracts distinguish color, intensity, orientation as salient re-
gion. This kind of saliency is called bottom-up saliency, which
will be further introduced in Section III-C. The videos are
watched by two volunteers meanwhile a Tobii eye tracker
[24] is recording their gaze position and we extract the gaze
position corresponding to these two frames as shown in Figure
2. We can see that the saliency heatmaps basically capture the
salient regions/objects on the frames and the user’s gaze.

C. Deep into saliency

However, above observation fails in some scenarios, where
we can not derive the user’s gaze from the saliency.
For instance, when the frame contains multiple salient re-
gions/objects, the effect of using saliency for calibration is
poor, because we cannot tell which region the user is looking
at. On the contrary, the frame even may not contain saliency,
e.g., an all black frame. Also, if the saliency is relatively large
(e.g., a close-up frame), we are not able to determine which
sub-region the user gazes at. In summary, it is not always
possible to leverage the saliency in the spatial dimension to
infer the user’s gaze. We call this the spatial effectiveness of
saliency.

Also, ignoring the temporal effectiveness of saliency is
the other reason why the existing saliency-based calibration
methods suffer. The visual saliency is temporally related to
the user’s attention. There are two pathways for human visual
attention, the bottom-up and the top-down. In the bottom-up

Fig. 3. Example of gaze shift corresponding to attention switching after a
scene cut.

visual attention, the information presented in the brain is the
original phsical characteristics of the external stimuli trans-
mitted through the visual pathway, including color, intensity,
orientation, etc. In summary, the bottom-up visual attention is
driven by the external environmental information. As for the
top-down attention, it refers to the higher-level joint cortex
of the brain, including the prefrontal cortex (PFC) and the
posterior parietal cortex (PPC) to carry out information in the
visual pathway based on the goals of the current task and past
knowledge. This is attention driven by information inside the
brain. We refer the interested reader to [30].

Specific to videos or frames watching, once a new scene
appears, the user will first be driven by bottom-up attention
to pay attention on the distinct region in the frame, and
then will be dominated by top-down attention to focus on
semantic objects based on past knowledge. Let’s take Figure
3 as an example. We conduct a user survey to verify the
above neurological theory using this picture (which is from
[31]). Specifically, we ask the volunteers to watch one the
other picture on the screen, then that picture is replaced by
Figure 3 to simulate a scene cut in videos. The user is asked
to report his/her first sight (the region watched subconsciously)
and second sight (the region they later watched after subcon-
scious action). 6 volunteers are involved. According to their
feedbacks, all volunteers watch the brightest region (the moon)
at first, then switch their attention onto the right region (the
superhero) as shown in the Figure 3. This is consistent with
the theory.

D. Spatiotemporal use of saliency

Knowing the effectiveness of saliency in spatial and tempo-
ral dimension, the next step is how to better utilize saliency
based on this insight.

In order to solve aforementioned problem in spatial dimen-
sion, we design a metric to quantify the concentration degree
of the saliency heatmaps, and only the saliency heatmaps with
high concentration degree can be qualified as good calibration
opportunities.

The concentration degree of a saliency heatmap is deter-
mined by two features as we mentioned above. One is the
number of salient regions/objects on the heatmap. The other
one is the area of salient region/object. Based on this, we
propose a saliency metric called Saliency Concentration Score
(SCS), which can be calculated as follow:

S =

{
1

log2(n+1)

(
1− AS

AT

)
, n > 0

0, n = 0
(1)

where n denotes the number of salient regions/objects in a
frame. AS and AT are the areas of salient region/object and the
whole frame, respectively. The value of SCS varies between
0 and 1. The less n and the ratio of AS and AT are, the SCS
value becomes closer to 1; and vice versa.

Our next target is to extract features n and AS from each
frame. To do this, we first binarize the heatmap of each frame
to filter out the backgournd pixels whose saliency value is
lower than a threshold. The threshold of binarization is 170
in our later implementation. The remaining pixels reflect the
salient regions/objects. Clearly, the ratio of the remaining
pixels gives the ratio AS

AT
. The number of regions/objects n

can be calculated by peforming the connected component
analysis on the binarized heatmap. Using SCS score, we
can spatially select saliency. Concretely, we leverage above-
mentioned Apple’s algorithm for bottom-up saliency detection.
As for top-down saliency, we choose U2-Net [32] to detect
salient object.

Temporally, the bottom-up attention and top-down attention
are handed over at the 100 millisecond level, more specifically
150 ms [33]. During saliency detection in later design, to
match the change of attention, we leverage bottom-up saliency
within first 150 milliseconds (which is about the length of
5 frames in a 30FPS video), then turn to top-down saliency
in order to better match the attention mechanism. As for the
recognition of scene cut, we rely on detecting key frames.
Because during video encoding, once a scene cut occurs, it
will be encoded as a key frame. Therefore, the key frame
covers all scene cuts. By comparing the key frame with the
previous frame, we can detect if there is a scene cut. We use
pHash [34] to hash frames and calculate distance for detection
in our design. By this, we can temporally select appropriate
kind of saliency to denote the user’s visual attention.

IV. SYSTEM DESIGN

A. Overview

vGaze is a gaze tracking method which achieves highly
reliable and accurate gaze tracking even in mobile scenarios.
The key in achieving this is our saliency-aware calibiration
technique, which can perform gaze calibration whenever it’s
needed in an implicit manner. This implicit calibration is based
on our insight about the temporal and spatial properties of
saliency.

Figure 4 shows the workflow of vGaze. vGaze tracks the
user’s eye movement using a RGB-D camera and roughly
projects it on the screen coordinate. By this, we get the rough

gaze position estimation. Then, we compensate the rough esti-
mation with a transform vector to get calibrated gaze position,
which is acquired in calibration process. On the other hand, the
rough estimation is used as an input for calibration when the
calibration is required. The calibration is opportunistic process,
which can be called based on monitoring head movement and
scene cut. During calibration process, saliency information
is extracted for frames in the calibration window. Based on
our knowledge of the temporal and spatial dimensions of
saliency, we select saliency in these two aspects. Specifically,
we leverage bottom-up saliency and top-down saliency to
match changes of user attention in the temporal dimension.
Then, we filter out low-quality saliency maps by measuring the
spatial characteristics of saliency. After selection, appropriate
frames are used for the saliency-aware calibration to generate
transform vector by comparison with rough gaze estimation
acquired in tracking process.

The following of this section elaborates on the above
components, providing the technical details of vGaze.

B. Calibration

Here, we propose an implicit calibration mechanism in
vGaze by leveraging the visual saliency. The inputs of cali-
bration are frames from currently played video or AR content
and the corresponding rough eye position estimations. vGaze
use a calibration window to segment the frames and the
eye position estimates for calibration. Each window involves
N frames {F1, F2, ..., FN} and M eye position estimations
{E1, E2, ..., EM}. To eliminate the eye positioning errors,
vGaze uses multiple eye positions in one frame. That is to say,
the sampling rate of eye positions is higher than the frame rate
(i.e., M > N) in vGaze.

1) Saliency Detection: The visual saliency heatmaps can be
treated as probability distributions for gaze positions, which
provides an opportunity for implicit gaze calibration. As we
have discussed in Section III-D, we leverage two kinds of
saliency to denote the user’s attention. Moreover, we dynam-
ically select the appropriate detection algorithm according to
different timings.

Before feeding each frame to the detection algorithms, we
should first resize the frame into lower resolution (68 × 68
in our implementation). The reason behind is two-fold. First,
processing frames with high relosution e.g., 4K (3840×2160)
incurs high CPU, GPU, and energy overhead, which is unaf-
fordable for resource-limited mobile devices. Second, since the
resolution of the videos varies, we cannot predict the resolution
of every video in advance. So, resizing all the frames to a
fixed resolution is an effective and efficient solution to this
problem. Note that reducing the resolution of the frame will
not affect the saliency detection accuracy. This is because that
the features of a frame that used in saliency detection (i.e.,
color, intensity, orientations, shape of objects, etc.) will not be
changed at lower resolution.

The resized frames will then be feeded to the visual saliency
detection component to generate visual saliency heatmaps.

Each heatmap is then normalized to a fixed range to maintain
consistency.

2) Saliency Selection: We’ve performed one selection to
determine the type of saliency for each frame before saliency
detection. After this temporal selection and saliency detection,
there is still a problem, which is not all the frames can provide
good opportunity for implicit calibration.

In Section III-D, we propose a metric called SCS, which
spatially quantify the effectiveness of saliency. Here, we use
this metric to select frames that can be used for calibration.
After calculating, we filter out the frames with low SCS
value (0.6 in our implementation). We then extract saliency
information from the remaining frames. Specifically, for each
frame Fi, we find the pixel with highest saliency value in each
connected component domain, whose coordinate denotes the
position of the corresponding salient region/object. We then
compress the coordinates of all the ni regions/objects on Fi,
alonging with the region/object number ni and the SCS value
SCSi, into a feature vector Vi as follows:

Vi = (ni, SCSi, x1, y1, ..., xni
, yni

) (2)

The feature vector of each frame Fi will be fed to the
calibration component for implicit gaze error compensation.

Through both temporal and spatial selection, we now have
suitable saliency maps that can be used for calibration.

3) Calibration: With extracted visual saliency vectors
({v1, v2, ..., vN}), we now can calibrate the error in rough gaze
tracking result {G1, G2, ..., GM}, which we will introduce in
Section IV-C1.

Before the calibration process, we first pre-process the rough
gaze tracking result to filter out two sources of noise in the
results.

The first source of noise is cauased by the blink event.
Specifically, the human eye generally blink 15-20 times in one
minute [35]. The gaze position will rapidly change when the
user blink his eyes. Similar phenomenon can be also observed
in the saccade event. However, the gaze patterns are different
in these two events. For the blink event, the gaze position
rapidly changes but soon back to the original position. So, we
can use z-score to eliminate the outliers in this case. Here, the
z-score is calculated as:

z =
x− µ
σ

(3)

where the x is the original value, µ is the mean of the
whole values, and σ is the standard deviation. We calculate
the z-score for each rough gaze position in the calibration
window and identify the rough gaze position as a outlier if
the absolute value of its z-score is greater than a threshold α.
We empirically set the threshold at 3 in our design.

Besides the blink event, error in eye positioning also brings
noise in gaze tracking result. Specifically, it incurs small jitters
in the rough gaze positions. To filter out such jitters, we sample
more than one eye positions for each frame. We calculate
the average of the ni rough gaze positions {G1, G2, ..., Gni}
corresponding to one visual saliency vector vi. The averaged

Fig. 4. Overview of vGaze Design

gaze position is denoted as Ĝi. Since we use N frames in
one calibration window, we will get N average gaze positions
{Ĝ1, Ĝ2, ..., ĜN}.

Now, we can use the N gaze positions {Ĝ} and the N
saliency vectors {v} for gaze calibration. Here, N is set as
10 in implementation. Although one single saliency vector
can be used to predict the real gaze positions, the accuracy
is still not good enough to determine exact positions of gaze
points because one single frame may contain multiple salient
regions/objects. In addition, the uncertainty in user’s behavior
also incurs fluctuation for one single frame. For example,
the user’s attention can sometimes be attracted by unsalient
area in the background. So we utilize the sequence of the N
frames to eliminate such error. Specifically, we first cluster
{v} and {Ĝ} separately. Figure 5 illustrate an example of the
clustering result. Then for the clustering result of both {v}
and {Ĝ} (as shown by Figures 5a and 5b, respectively), we
select the clusters with the most samples to denote the most
frequent salient region and corresponding rough gaze region,
respectively. By calculating the offset between the centroids of
the two clusters, we get a vector called calibration transform
vector Vc. Using this vector, we can compensate the error in
the rough tracking result.

C. Continuous Tracking

1) Tracking: Once calibrated, vGaze is able to perform
complete gaze tracking. Specifically, we first capture the user’s
3D eye information {E1, E2, ..., EM} using the front RGB-
D camera, based on which we can get gaze direction. The
intersection of the gaze direction and the gaze plane (the
screen) determines the gaze points {G1, G2, ..., GM} (which
we also used in calibration process). However, a problem
we face here is the position of the gaze plane (in relative
to user’s eyes) is not konwn. In the design of vGaze, we

400 450 500 550 600
X Axis

70

80

90

100
Y

 A
xi

s

Data
Clsuter Centers

(a) {vi}

700 725 750 775
X Axis

1500

1400

1300

1200

1100

Y
 A

xi
s

Data
Clsuter Centers

(b) {Ĝ}

Fig. 5. Clustering illustration of {vi} and {Ĝ} during calibration.

estimate the relative position of the screen by integrating the
inertial information of the phone from inertial measurement
unit (IMU) along with depth information from the camera’s
point of view.

However, a challenge will arise when the user holds the
phone with landscape posture. In this case, the camera will
be rotated 90 degree to either the left side or the right of the
user’s face. As a result, the user’s face is rotated a little when
captured by the camera. The estimated gaze direction is also
distorted, especially for the eye in the opposite direction of
the camera. So, how to eliminate this distortion?

Without loss of generality, let’s first consider the case
where the camera is rotated to the user’s left side. On the
screen coordinate system, we assume that the origin locates
at the bottem left corner of the screen. We have two key
observations: i) the farther away the gaze is from the origin
along x-axis, the larger its displacements will be when the
eyeball rotates with a certain degree; ii) the nearer the gaze
is from the origin along y-axis, the smaller its displacements
will be when the eyeball rotates with a certain degree. The first
observation is caused by the rotation of the user’s face when
captured by the camera. The second observation is caused

by the oval structure of the eyes. With the oval structure the
eyeball’s rotation from left to right is more obvious than its
rotation from upward to downward, even if the eyeball rotates
with the same degree. Moreover, the eye opens wider when
the user look upward compared with looking downward. So it
is more difficult for the camera to capture the user’s eye when
he/she looks downward.

To compensate the distortion on x axis, we compensate the
x value of the gaze position with the rotation of the user’s face,
which is captured by the front-facing camera of the mobile
device. For the distortion on y axis, we compensate the y
value of the gaze position with a constant value when y is
less than a threshold. With this compensation, we can perform
gaze tracking in both portrait and landscape posture.

Finally, we compensate transform vector onto the rough
gaze tracking result to acquire calibrated tracking result.

2) Recalibration: With the transform vector Vc, we can
apply this vector on the the rough gaze position to acquire
the calibrated gaze position as we just introduced. Now, a
missing piece is when should we trigger such a calibration
process. Our calibration mechanism is opportunistic, which is
reflected in two aspects:

Firstly, we know the calibration is built on a stable relative
position between the user and the deivce. Thus, we re-calibrate
when a change in the relative position is detected. Otherwise,
vGaze can directly use the previsously calculated transform
vector to perform calibrated tracking. We achieve such a
detection by tracking the user’s face movement with the
front-facing RGB-D camera. Specifically, when the relative
position between the user and the device changes, user’s face
posture that captured by the camera will inevitably changes.
So, we continuously captures 3D information of user’s face
during the gaze tracking process. Once the distance between
two successively face postures is greater than a pre-defined
threshold (0.005 as default), a change in the relative position is
detected. Then a new calibration process is triggered to update
the transform vector. This recalibration could also happened
during an existing calibration process to maintain the quality
of calibration.

Also, we perform calibration when scene cuts appear. As
we mentioned in Section III-D, the bottom-up attention will
immediately dominate the user’s gaze after a scene cut. This
kind of subconscious behavior has strong degree of confidence
that connects the user’s gaze with bottom-up saliency. Hence,
we trigger calibration for detected scene cuts to maintain the
quality of clibration result. As for this kind of calibration, the
length of calibration window is defined as 5 frames in order
to maintain consistency with the duration of attention.

V. EVALUATION

In this section, we evaluate the perfromance of vGaze in
various scenarios. We adopt six videos for evaluation. The
videos are from EyeTrackUAV [28] dataset. Also, we invite
volunteers to participate in our evaluation to assess the user
diversity. There are 10 volunteers (5 males and 5 females)
involved whose ages vary from 8 to 72 years old.

A. Implementation

In our implementation, we choose a iPhone Xs Max, which
integrates Apple A12 Bionic of 2.49 GHz, 4GB RAM, 6.5-
inches screen, TrueDepth camera and runs iOS 13.6 OS. The
TrueDepth camera provides one kind of RGB-D cameras. Our
implementation can apply to any iOS devices with TrueDepth
camera like iPhone 11, iPad Pro and so on. Also our design
of vGaze can be implemented on any Android devices with
RGB-D cameras, such as Huawei Mate 20, OPPO Find X,
Honor Magic 2 and so on.

vGaze is coded with Swift and Objective-C++. In order
to ensure the repeatability of frames between different users
for evaluation, we use videos as the visual input in the
implementation. This implementation can be easily converted
to AR scenarios with simple settings. To acquire the RGB-D
camera data we use ARKit framework [36]. OpenCV for iOS
[37] is utilized for several frame processing funtions.

B. Evaluation Scenarios

The user is not explicitly involved for calibration and gaze
tracking in our design of vGaze in order to maintain the user’s
continuous experience. Thus, the groundtruth of the user’s
gaze is unknown because we don’t utilize explicit stimuli.
In order to evaluate the performance of gaze tracking, we
constructed evaluation scenarios. In these scenario, we first
run vGaze with normal frames from videos to perform normal
process. After a while, we replace the normal frames by
artifical frames with explicit stimuli as groundtruth to measure
the gaze tracking performance of vGaze by asking volunteers
to gaze at these stimuli.

C. Gaze Tracking Performance

In this experiment, we evaluate the performance of vGaze on
gaze tracking accuracy. Here, we take explicit calibration and
traditional saliency-based calibration as baselines. Specifically,
we perform an explicit calibration with 5 red dots located on
the center and four corners of the screen before vGaze starts.
The user is asked to gaze at 5 dots in given order, which
lasts for 10 seconds. After the explicit calibration finished,
aforementioned evaluation scenarios immediately starts. We
simplify our saliency related process to simulate existing
work, and retain our recalibration mechanism. Note existing
work don’t have any recalibration mechanism. We denote
this simplified vGaze as vGaze-lite. After 300 frames normal
running, the evaluation frames appear. These frames are the
same as those used for explicit calibration. Performance of
all three methods are synchronously evaluated. To be fair, we
perform evaluation in three scenarios. In the static scenario, the
user is asked to stay static at the beginning to maintain the best
performance for explicit calibration. In the dynamic scenario,
the user is asked to perform at least one head movement in
the middle of the videos to simulate possible movement on
mobile scenarios. Also, the user’s actions are not constrained
to indicate in the natural scenario.

Figure 6 shows the overall results. We can see the overall
error is 2.43cm, 1.51cm and 1.99cm for explicit calibration,

0 2 4 6 8 10
Errors (cm)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Explicit
vGaze
vGaze-lite

Fig. 6. Overall gaze tracking errors of
vGaze and two baselines.

Explicit vGaze vGaze-lite
0

1

2

3

E
rr

or
s

(c
m

)

(a) Static

Explicit vGaze vGaze-lite
0

1

2

3

4

E
rr

or
s

(c
m

)

(b) Natural

Explicit vGaze vGaze-lite
0.0

2.5

5.0

7.5

10.0

E
rr

or
s

(c
m

)

(c) Dynamic

Fig. 7. Gaze tracking errors on 6 videos with 10 volunteers compared with explicit calibration and traditional
saliency-based calibration in three different scenarios.

vGaze and vGaze-lite, respectively. To better understand the
results, Figure 7 shows the results on three different scenarios.
Figure 7a gives the comparision of three methods in static
scenario. The average errors of explicit calibration, vGaze
and vGaze-lite are 1.58cm, 1.47cm, 2.06cm respectively. The
tracking error of vGaze is equivalent to explicit calibration,
but vGaze doesn’t need a long time waiting for calibration.
Meanwhile the error of vGaze-lite increase by 30.38% and
40.14% compared with explicit calibration and vGaze. This
shows our insight on saliency works effectively. In the Figure
7b, we see the errors reach 1.94cm, 1.54cm and 1.92cm,
respectively in the natural scenario. The error of explicit
calibration significantly increase by 22.78%, while the other
two maintain the similar errors as the static scenario. The
reason behind is the tracking based on explicit calibration
suffers once movement occurs. Also, this result proves the
effectiveness of our recalibration mechanism. When it comes
to the dynamic scenario, the explicit calibration perform worse.
Figure 7c shows the result in this scenario. The average
errors are 3.92cm, 1.56cm and 2.00cm, respectively. Since the
user must move after calibration, the performance of explicit
calibration is worse, increasing by 148.1% compared with the
static scenario.

D. Influence of the Mobile Phone Posture

The above experiments are carried out by placing the mobile
phone on a phone stand in the landscape posture. In order to
verify the effectiveness of our design on landscape posture and
evaluate the performance of vGaze while the phone is held by
the user. We conduct following experiments.

1) Landscape v.s. Portrait: We compare our design with
two different scenarios, the portrait and landscape without any
process. For the portrait scenario, videos are cropped to fit
vertical screen without changing the contents. In these two
scenario, they share the whole design of vGaze except the
correction of distortion for landscape posture. We perform
these two experiements in the static setting and compare them
with above results of vGaze in static scenario.

Figure 8 gives the results. The average error of the portrait
is 1.66cm, which is 12.93% higher than vGaze’s 1.47cm error.
The reason for this is that the oval structure of the eye makes
the upward and downward rotation not obvious, which we
discussed in Section IV-C1 and solved for vGaze. As for the
unprocessed landscape senario, the error is 2.16cm increasing

by 46.94% to vGaze’s. The experimental results prove the
effectiveness of our design for the landscape screen.

2) Fixed v.s. Holding: Here, we conduct experiments on
two different use scenarios, the phone is placed on a stand and
the phone is held by the user. We compare vGaze with explicit
calibration and vGaze-lite. Figure 9 represents the result. The
overall gaze tracking errors where the user holds the phone
is 3.05cm, 1.79cm, 2.11cm for explicit calibration, vGaze
and vGaze-lite, repectively. Compared to the errors 2.43cm,
1.51cm and 1.99cm where the phone is placed on a stand, the
error increased in this senario. Because this senario is more
dynamic, the relative position between the user and the screen
has more opportunities to change. The explicit frames for
collecting data have more chance to appear before recalibration
and thus the recalibration is blocked, which results the gaze
tracking inaccurate while data collecting. Also, the phone held
by the user is not as stable as when the mobile phone is placed,
which is more possible to generate errors while colllecting
data. However, vGaze will perform recalibration in time under
the normal using scenarios.

E. Influence of Parameters

There are several parameters in the design of vGaze. In
order to evaluate them, we conducted controlled experiments.
We use collected trajectories to perform offline calculation
with different parameters in order to maintain consistency
in different settings. The trajectories used is collected from
dynamic scenarios. Four parameters are involved which are
the threshold of binaration in SCS, the threshold of SCS, the
frames used for calibration and the threshold of recalibration.
Figure 10 represents the influence of different parameters.

The threshold of binaration in saliency selection component
influence the SCS value of each frame which is ultimately
reflected in the calibration process. This threshold influences
both the number of saliency and the area of saliency in the
calculation of SCS. In general, high threshold reduces the
calculated area, but may increase the calculated number in
complicated videos. The result shows the errors increase as
the threshold rises.

As for the threshold of SCS, low threshold results the less
waiting time in calibration but low-quality frames may reduce
the quality of calibration itself. That’s the reason why the error
increase when the threshold is reduced from 0.6 to 0.4. When
the threshold is increased from 0.6 to 0.8, the error remains

0 2 4 6 8
Errors (cm)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Landscape w/
Landscape wo/
Portrait

Fig. 8. Different phone orientation.

0 2 4 6 8
Errors (cm)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Explicit
vGaze
vGaze-lite

Fig. 9. Different phone placement
methods.

170
0.6 10 5e-3

128
0.4 30 1e-3

85 0.8 5 1e-2

 Bin. SCS CW Re-Ca.

0.0

0.5

1.0

1.5

2.0

E
rr

or
s

(c
m

)

Fig. 10. Gaze tracking errors of
vGaze with different parameters.

Det. Sel. Tra. Cal. Com.
0

10

20

Ti
m

e
(m

s)

Fig. 11. Time elapsed by each module
in vGaze.

constant. It’s because the SCS scores of selected frames under
threshold with 0.6 are nearly all greater than 0.8.

The length of calibration window means how many frames
are used for calibration which influences the waiting time to
get accurate gaze tracking again after the relative position
changes. The error increases when the thereshold is increased
from 10 frames to 30 because of more waiting time are needed.
Also, the error increases when the calibration window is
shortened. Maybe it’s because the saliency of the frames used
for calibration has minor changes where less frames cannot
tolerate the changes.

When relative position between the user and the screen
changes, a recalibration is needed to recover accurate gaze
tracking. Radical strategy results more recalibration happen-
ing, but unnecessary recalibration may waste computing re-
souces. Conservative strategy results less recalibration, but the
accuracy of gaze tracking may suffer. The error get minor
decrease with lower threshold (0.001), but the decrease is
not significant. Because a appropriate threshold (0.005) has
already handles most movement. However, the error get severe
increase with higher threshold (0.010). Because the several
continuous minor changes under threshold will compose a
significant change which severely decrease the accuracy of
gaze tracking.

F. vGaze Efficiency

During experiments above, we simultaneously record the
time elapsed by different components in vGaze. In Figure
11, we show times elapsed by fives components relevant to
the frame process and gaze tracking. The abbreviations in the
figure represent Saliency Detection, Saliency Selection, Rough
Gaze Tracking, Calibration and Compensation of rough gaze
tracking and transform vector. The average values are 17.83ms,
1.83ms, 2.56ms, 6.25ms and 0.018ms respectively. The de-
tection time is the average of two algorithms. The average
total time consumed by saliency detection and selection is
19.66 ms for a frame, which is much shorter than the frame
display interval 33.33ms of 30 FPS video/AR. According to
the results, the maximum FPS supported by vGaze is about
50 FPS.

VI. DISCUSSION & FUTURE WORK

The performance of vGaze can be further improved in the
following scenarios.

Interaction Usage. In the gaze-based interaction, there is
usually a marker on the screen to indicate the estimated
user gaze, just like a cursor while using a mouse. This
marker, in turn, can also act as a potential stimulus, which
provides additional information to improve the accuracy of
gaze tracking.

Saliency Detection Optimization with Historical Informa-
tion. The performance of vGaze’s saliency detection module
can be further improved if historical gaze tracking trajectories
can be included. For example, one popular application of gaze
tracking in VR is training new staff in industry [38]. In this
case, the VR content is watched by a large number of users. So,
we can collect the gaze tracking trajectory of all the users, and
use the statistical information for reliable saliency detection.

Device Movement for Recalibration. Almost all mobile
phones have an inertial measurement unit. Many mobile
sensing applications are proposed based on the inertial sensor
readings [39], [40]. In our design, we utilize inertial sensor
to acquire the position of the phone for rough model-based
tracking. Besides, the inertial information of the phone has
the ability to reflect the precise movement of the mobile
phone. Combined with the user’s face movement in the camera
perspective, we may directly compensate the transformation
instead of recalibration.

We leave all the aforementioned potential optimization of
vGaze for future works.

VII. CONCLUSION

In this paper, we explore how to achieve reliable gaze
tracking on mobile device. With the insight of the temporal
and spatial relation between the gaze and the visual saliency,
we persent the design and implementation of vGaze, implicit
saliency-aware calibration for continuous gaze tracking on
mobile devices. vGaze utilize the visual saliency information
that naturally contained in video frames or images to perform
implicit calibration. We implement vGaze on an iPhone and
evaluate its performance under different scenarios. The evalua-
tion results show that vGaze realizes continuous gaze tracking
with average 1.51cm errors.

ACKNOWLEDGEMENTS

This work is supported by the Smart Xingfu Lindai Project.
We thank all the anonymous reviewers for their valuable
comments and helpful suggestions.

REFERENCES

[1] N. Silva, T. Schreck, E. Veas, V. Sabol, E. Eggeling, and D. W. Fellner,
“Leveraging eye-gaze and time-series features to predict user interests
and build a recommendation model for visual analysis,” in Proceedings
of the ACM ETRA, 2018.

[2] Q. Zhao, S. Chang, F. M. Harper, and J. A. Konstan, “Gaze prediction
for recommender systems,” in Proceedings of the ACM RecSys, 2016.

[3] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360 video streaming with a better understanding of quality perception,”
in Proceedings of the ACM SIGCOMM, 2019.

[4] S. Yang, Y. He, and X. Zheng, “Fovr: Attention-based vr streaming
through bandwidth-limited wireless networks,” in Proceedings of the
IEEE SECON, 2019.

[5] T. E. Hutchinson, K. P. White, W. N. Martin, K. C. Reichert, and L. A.
Frey, “Human-computer interaction using eye-gaze input,” IEEE Trans.
on Systems, Man and Cybernetics, vol. 19, no. 6, pp. 1527–1534, 1989.

[6] K.-N. Kim and R. Ramakrishna, “Vision-based eye-gaze tracking for
human computer interface,” in Proceedings of the IEEE SMC, 1999.

[7] C. Colombo and A. Del Bimbo, “Interacting through eyes,” Robotics
and Autonomous Systems, vol. 19, no. 3-4, pp. 359–368, 1997.

[8] C. H. Morimoto, D. Koons, A. Amit, M. Flickner, and S. Zhai, “Keeping
an eye for hci,” in Proceedings of the IEEE SIBGRAPI, 1999.

[9] K. Pfeuffer, M. Vidal, J. Turner, A. Bulling, and H. Gellersen, “Pursuit
calibration: Making gaze calibration less tedious and more flexible,” in
Proceedings of the ACM UIST, 2013.

[10] F. Alnajar, T. Gevers, R. Valenti, and S. Ghebreab, “Calibration-free
gaze estimation using human gaze patterns,” in Proceedings of the IEEE
ICCV, 2013.

[11] J. H. Goldberg and A. M. Wichansky, “Eye tracking in usability
evaluation: A practitioner’s guide,” in the Mind’s Eye, 2003, pp. 493–
516.

[12] S. Baluja and D. Pomerleau, “Non-intrusive gaze tracking using artificial
neural networks,” in Proceedings of the NIPS, 1994.

[13] R. Stiefelhagen, J. Yang, and A. Waibel, “Tracking eyes and monitoring
eye gaze,” in Proceedings of the PUis, 1997.

[14] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Ma-
tusik, and A. Torralba, “Eye tracking for everyone,” in Proceedings of
the IEEE CVPR, 2016.

[15] S. Park, A. Spurr, and O. Hilliges, “Deep pictorial gaze estimation,” in
Proceedings of the ECCV, 2018.

[16] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s written all over
your face: Full-face appearance-based gaze estimation,” in Proceedings
of the IEEE CVPR, 2017.

[17] Y. Sugano, Y. Matsushita, and Y. Sato, “Appearance-based gaze estima-
tion using visual saliency,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 35, no. 2, pp. 329–341, 2012.

[18] Y. Sugano and A. Bulling, “Self-calibrating head-mounted eye trackers
using egocentric visual saliency,” in Proceedings of the ACM UIST,
2015.

[19] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan, “ishadow:
design of a wearable, real-time mobile gaze tracker,” in Proceedings of
ACM MobiSys, 2014.

[20] T. Ohno and N. Mukawa, “A free-head, simple calibration, gaze tracking
system that enables gaze-based interaction,” in Proceedings of the ACM
ETRA, 2004.

[21] K. A. F. Mora and J.-M. Odobez, “Gaze estimation from multimodal
kinect data,” in Proceedings of the IEEE CVPR, 2012.

[22] H. Yamazoe, A. Utsumi, T. Yonezawa, and S. Abe, “Remote gaze
estimation with a single camera based on facial-feature tracking without
special calibration actions,” in Proceedings of the ACM ETRA, 2008.

[23] L. Sun, Z. Liu, and M.-T. Sun, “Real time gaze estimation with a
consumer depth camera,” Information Sciences, vol. 320, pp. 346–360,
2015.

[24] “Tobii,” https://www.tobii.com/.
[25] T. Li, Q. Liu, and X. Zhou, “Ultra-low power gaze tracking for virtual

reality,” in Proceedings of the ACM SenSys, 2017.
[26] T. Li and X. Zhou, “Battery-free eye tracker on glasses,” in Proceedings

of the ACM MobiCom, 2018.
[27] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object

detection: A survey,” Computational visual media, pp. 1–34, 2019.
[28] V. Krassanakis, M. Perreira Da Silva, and V. Ricordel, “Monitoring

human visual behavior during the observation of unmanned aerial
vehicles (uavs) videos,” Drones, vol. 2, no. 4, p. 36, 2018.

[29] “Apple developer,” https://developer.apple.com/documentation/vision/
vngenerateattentionbasedsaliencyimagerequest.

[30] F. Katsuki and C. Constantinidis, “Bottom-up and top-down attention:
different processes and overlapping neural systems,” The Neuroscientist,
vol. 20, no. 5, pp. 509–521, 2014.

[31] David allen reeves photography. [Online]. Available:
https://davidallenreeves.tumblr.com/

[32] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jager-
sand, “U2-net: Going deeper with nested u-structure for salient object
detection,” Pattern Recognition, vol. 106, p. 107404, 2020.

[33] C. E. Connor, H. E. Egeth, and S. Yantis, “Visual attention: bottom-
up versus top-down,” Current biology, vol. 14, no. 19, pp. R850–R852,
2004.

[34] C. Zauner, “Implementation and benchmarking of perceptual image hash
functions,” Online, 2010.

[35] A. R. Bentivoglio, S. B. Bressman, E. Cassetta, D. Carretta, P. Tonali,
and A. Albanese, “Analysis of blink rate patterns in normal subjects,”
Movement disorders, vol. 12, no. 6, pp. 1028–1034, 1997.

[36] “Arkit,” https://developer.apple.com/augmented-reality/.
[37] Opencv. [Online]. Available: https://opencv.org/
[38] Y. He, J. Guo, and X. Zheng, “From surveillance to digital twin:

Challenges and recent advances of signal processing for industrial
internet of things,” IEEE Signal Processing Magazine, vol. 35, no. 5,
pp. 120–129, 2018.

[39] M. Jin, Y. He, D. Fang, X. Chen, X. Meng, and T. Xing, “iguard: A
real-time anti-theft system for smartphones,” IEEE Trans. on Mobile
Computing, vol. 17, no. 10, pp. 2307–2320, 2018.

[40] Y. He, J. Liang, and Y. Liu, “Pervasive floorplan generation based on
only inertial sensing: Feasibility, design, and implementation,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1132–
1140, 2017.

